tokens
sequencelengths
1
6
freq
uint32
0
332M
n
uint8
1
6
tokens_str
stringlengths
1
66
tok5
int32
-1
50.3k
tok5_str
stringlengths
0
15
tok4
int32
-1
50.3k
tok4_str
stringlengths
0
14
tok3
int32
-1
50.3k
tok3_str
stringlengths
0
17
tok2
int32
-1
50.3k
tok2_str
stringlengths
0
16
tok1
int32
-1
50.3k
tok1_str
stringlengths
0
18
tok0
int32
0
50.3k
tok0_str
stringlengths
1
66
[ 0 ]
5,487,308
1
!
-1
-1
-1
-1
-1
0
!
[ 1 ]
13,327,355
1
"
-1
-1
-1
-1
-1
1
"
[ 2 ]
453,372
1
#
-1
-1
-1
-1
-1
2
#
[ 3 ]
519,325
1
$
-1
-1
-1
-1
-1
3
$
[ 4 ]
3,917,074
1
%
-1
-1
-1
-1
-1
4
%
[ 5 ]
668,676
1
&
-1
-1
-1
-1
-1
5
&
[ 6 ]
4,899,625
1
'
-1
-1
-1
-1
-1
6
'
[ 7 ]
2,959,408
1
(
-1
-1
-1
-1
-1
7
(
[ 8 ]
19,473,764
1
)
-1
-1
-1
-1
-1
8
)
[ 9 ]
788,274
1
*
-1
-1
-1
-1
-1
9
*
[ 10 ]
849,945
1
+
-1
-1
-1
-1
-1
10
+
[ 11 ]
331,770,469
1
,
-1
-1
-1
-1
-1
11
,
[ 12 ]
73,115,588
1
-
-1
-1
-1
-1
-1
12
-
[ 13 ]
317,302,752
1
.
-1
-1
-1
-1
-1
13
.
[ 14 ]
12,120,103
1
/
-1
-1
-1
-1
-1
14
/
[ 15 ]
2,955,772
1
0
-1
-1
-1
-1
-1
15
0
[ 16 ]
5,978,432
1
1
-1
-1
-1
-1
-1
16
1
[ 17 ]
5,073,915
1
2
-1
-1
-1
-1
-1
17
2
[ 18 ]
3,895,993
1
3
-1
-1
-1
-1
-1
18
3
[ 19 ]
3,167,346
1
4
-1
-1
-1
-1
-1
19
4
[ 20 ]
3,560,767
1
5
-1
-1
-1
-1
-1
20
5
[ 21 ]
2,358,514
1
6
-1
-1
-1
-1
-1
21
6
[ 22 ]
2,189,522
1
7
-1
-1
-1
-1
-1
22
7
[ 23 ]
2,258,639
1
8
-1
-1
-1
-1
-1
23
8
[ 24 ]
1,938,115
1
9
-1
-1
-1
-1
-1
24
9
[ 25 ]
33,924,449
1
:
-1
-1
-1
-1
-1
25
:
[ 26 ]
7,581,302
1
;
-1
-1
-1
-1
-1
26
;
[ 27 ]
307,115
1
<
-1
-1
-1
-1
-1
27
<
[ 28 ]
956,882
1
=
-1
-1
-1
-1
-1
28
=
[ 29 ]
988,348
1
>
-1
-1
-1
-1
-1
29
>
[ 30 ]
12,128,614
1
?
-1
-1
-1
-1
-1
30
?
[ 31 ]
761,206
1
@
-1
-1
-1
-1
-1
31
@
[ 32 ]
5,493,307
1
A
-1
-1
-1
-1
-1
32
A
[ 33 ]
2,692,962
1
B
-1
-1
-1
-1
-1
33
B
[ 34 ]
3,055,331
1
C
-1
-1
-1
-1
-1
34
C
[ 35 ]
2,874,327
1
D
-1
-1
-1
-1
-1
35
D
[ 36 ]
1,399,952
1
E
-1
-1
-1
-1
-1
36
E
[ 37 ]
2,110,413
1
F
-1
-1
-1
-1
-1
37
F
[ 38 ]
2,001,010
1
G
-1
-1
-1
-1
-1
38
G
[ 39 ]
1,862,554
1
H
-1
-1
-1
-1
-1
39
H
[ 40 ]
8,556,245
1
I
-1
-1
-1
-1
-1
40
I
[ 41 ]
1,311,763
1
J
-1
-1
-1
-1
-1
41
J
[ 42 ]
2,000,100
1
K
-1
-1
-1
-1
-1
42
K
[ 43 ]
1,855,725
1
L
-1
-1
-1
-1
-1
43
L
[ 44 ]
2,451,631
1
M
-1
-1
-1
-1
-1
44
M
[ 45 ]
1,762,596
1
N
-1
-1
-1
-1
-1
45
N
[ 46 ]
1,372,599
1
O
-1
-1
-1
-1
-1
46
O
[ 47 ]
2,107,505
1
P
-1
-1
-1
-1
-1
47
P
[ 48 ]
696,484
1
Q
-1
-1
-1
-1
-1
48
Q
[ 49 ]
2,174,567
1
R
-1
-1
-1
-1
-1
49
R
[ 50 ]
5,586,036
1
S
-1
-1
-1
-1
-1
50
S
[ 51 ]
2,116,146
1
T
-1
-1
-1
-1
-1
51
T
[ 52 ]
1,136,509
1
U
-1
-1
-1
-1
-1
52
U
[ 53 ]
1,401,815
1
V
-1
-1
-1
-1
-1
53
V
[ 54 ]
1,481,801
1
W
-1
-1
-1
-1
-1
54
W
[ 55 ]
884,765
1
X
-1
-1
-1
-1
-1
55
X
[ 56 ]
1,045,843
1
Y
-1
-1
-1
-1
-1
56
Y
[ 57 ]
861,450
1
Z
-1
-1
-1
-1
-1
57
Z
[ 58 ]
1,684,351
1
[
-1
-1
-1
-1
-1
58
[
[ 59 ]
861,769
1
\
-1
-1
-1
-1
-1
59
\
[ 60 ]
8,698,958
1
]
-1
-1
-1
-1
-1
60
]
[ 61 ]
136,885
1
^
-1
-1
-1
-1
-1
61
^
[ 62 ]
4,129,741
1
_
-1
-1
-1
-1
-1
62
_
[ 63 ]
125,031
1
`
-1
-1
-1
-1
-1
63
`
[ 64 ]
5,567,006
1
a
-1
-1
-1
-1
-1
64
a
[ 65 ]
2,184,387
1
b
-1
-1
-1
-1
-1
65
b
[ 66 ]
2,210,917
1
c
-1
-1
-1
-1
-1
66
c
[ 67 ]
3,317,323
1
d
-1
-1
-1
-1
-1
67
d
[ 68 ]
2,643,819
1
e
-1
-1
-1
-1
-1
68
e
[ 69 ]
1,986,830
1
f
-1
-1
-1
-1
-1
69
f
[ 70 ]
1,822,512
1
g
-1
-1
-1
-1
-1
70
g
[ 71 ]
2,085,684
1
h
-1
-1
-1
-1
-1
71
h
[ 72 ]
3,977,354
1
i
-1
-1
-1
-1
-1
72
i
[ 73 ]
1,385,829
1
j
-1
-1
-1
-1
-1
73
j
[ 74 ]
1,975,873
1
k
-1
-1
-1
-1
-1
74
k
[ 75 ]
1,878,104
1
l
-1
-1
-1
-1
-1
75
l
[ 76 ]
5,278,088
1
m
-1
-1
-1
-1
-1
76
m
[ 77 ]
1,990,360
1
n
-1
-1
-1
-1
-1
77
n
[ 78 ]
3,399,287
1
o
-1
-1
-1
-1
-1
78
o
[ 79 ]
1,698,336
1
p
-1
-1
-1
-1
-1
79
p
[ 80 ]
532,952
1
q
-1
-1
-1
-1
-1
80
q
[ 81 ]
1,718,866
1
r
-1
-1
-1
-1
-1
81
r
[ 82 ]
46,501,587
1
s
-1
-1
-1
-1
-1
82
s
[ 83 ]
15,084,616
1
t
-1
-1
-1
-1
-1
83
t
[ 84 ]
1,776,410
1
u
-1
-1
-1
-1
-1
84
u
[ 85 ]
1,492,903
1
v
-1
-1
-1
-1
-1
85
v
[ 86 ]
1,261,040
1
w
-1
-1
-1
-1
-1
86
w
[ 87 ]
1,993,162
1
x
-1
-1
-1
-1
-1
87
x
[ 88 ]
3,326,055
1
y
-1
-1
-1
-1
-1
88
y
[ 89 ]
1,838,137
1
z
-1
-1
-1
-1
-1
89
z
[ 90 ]
261,610
1
{
-1
-1
-1
-1
-1
90
{
[ 91 ]
577,959
1
|
-1
-1
-1
-1
-1
91
|
[ 92 ]
410,243
1
}
-1
-1
-1
-1
-1
92
}
[ 93 ]
112,424
1
~
-1
-1
-1
-1
-1
93
~
[ 94 ]
187,522
1
-1
-1
-1
-1
-1
94
[ 95 ]
114,158
1
-1
-1
-1
-1
-1
95
[ 96 ]
137,071
1
-1
-1
-1
-1
-1
96
[ 97 ]
165,632
1
-1
-1
-1
-1
-1
97
[ 98 ]
161,228
1
-1
-1
-1
-1
-1
98
[ 99 ]
93,769
1
-1
-1
-1
-1
-1
99

Dataset Card for OpenWebText n-grams

Dataset Summary

This dataset contains 246K of the most common token-based (GPT-2/GPT-3) n-grams (n=1 to n=6), in the OpenWebText (OWT) dataset.

For convenient searching, it provides full tokens/strings, as well as per-position tokens/strings.

Usage

Generally, this dataset allows identifying the most common n-grams in a text corpus.

When researching LLMs tokenized similarly to GPT-2/GPT-3, it allows:

  • Constructing intermediate vectors spanning the most common short phrases (n-grams), e.g. for similarity sampling.
  • Fast searches for common phrases containing particular tokens or substrings (and in particular sequence positions).
  • Showing the effects of training set n-gram frequency.

The authors (Thomas Dooms and Dan Wilhelm) used this dataset to show that sparse auto-encoders are biased toward reconstructing the most common n-grams.

Loading the Dataset

We recommend you convert the dataset to a Pandas DataFrame for easy querying:

from datasets import load_dataset

ngrams = load_dataset('danwil/owt-ngrams')['train'].to_pandas()

Contents

Below, we list the number of n-grams and their count/frequency in the original ~9B-token OWT corpus.

  • We include all individual tokens (1-grams).
  • Note that if an n-gram occurs >N times, then every contiguous subsequence must also occur >N times.
total n=1 n=2 n=3 n=4 n=5 n=6
owt_1-6grams_246k 245831 50257 58302 44560 32831 13566 12495
count in OWT >= 0 >= 10000 >= 10000 > 5000 > 5000 > 2000

Point of Contact: Dan Wilhelm

Downloads last month
29