Datasets:
metadata
task_categories:
- image-classification
pretty_name: imagenet5GB
size_categories:
- 1M<n<10M
ImageNet-1k in 5GB
The full ImageNet-1k compressed to less than 5 GB
Compression procedure:
- Resize shorter edge to 288 and crop longer edge to a multiple of 32
- Analysis transform: DC-AE f32 c32
- Quantization: 8 bit float (e4m3)
- Entropy coding: TIFF (CMYK) with deflate
Example dataloader for training
import torch
import datasets
from types import SimpleNamespace
from diffusers import AutoencoderDC
from torchvision.transforms.v2 import ToPILImage, PILToTensor, RandomCrop, CenterCrop
from walloc.walloc import pil_to_latent
from IPython.display import display
device = 'cuda'
config = SimpleNamespace()
config.crop_size = 160
config.valid_crop_size = 288
ds = datasets.load_dataset('danjacobellis/imagenet_288_dcae_fp8')
decoder = AutoencoderDC.from_pretrained("mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers", torch_dtype=torch.float32).decoder.to(device)
rand_crop = RandomCrop((config.crop_size//32,config.crop_size//32))
cent_crop = CenterCrop((config.valid_crop_size//32,config.valid_crop_size//32))
def train_collate_fn(batch):
B = len(batch)
x = torch.zeros((B, 32, config.crop_size//32, config.crop_size//32), dtype=torch.torch.float8_e4m3fn)
y = torch.zeros(B, dtype=torch.long)
for i_sample, sample in enumerate(batch):
y[i_sample] = sample['cls']
z = pil_to_latent([sample['latent']], N=36, n_bits=8, C=4)[:,:32]
x[i_sample,:,:,:] = rand_crop(z.to(torch.int8).view(torch.float8_e4m3fn))
return x, y
def valid_collate_fn(batch):
B = len(batch)
x = torch.zeros((B, 32, config.valid_crop_size//32, config.valid_crop_size//32), dtype=torch.torch.float8_e4m3fn)
y = torch.zeros(B, dtype=torch.long)
for i_sample, sample in enumerate(batch):
y[i_sample] = sample['cls']
z = pil_to_latent([sample['latent']], N=36, n_bits=8, C=4)[:,:32]
x[i_sample,:,:,:] = cent_crop(z.to(torch.int8).view(torch.float8_e4m3fn))
return x, y
%%time
# warmup batch
x,y = valid_collate_fn(ds['train'].select(range(64)))
with torch.no_grad():
xh = decoder(x.to(torch.float32).to(device))
CPU times: user 1.68 s, sys: 124 ms, total: 1.8 s
Wall time: 1.47 s
%%time
x,y = valid_collate_fn(ds['train'].select(range(64)))
with torch.no_grad():
xh = decoder(x.to(torch.float32).to(device))
CPU times: user 282 ms, sys: 2.51 ms, total: 285 ms
Wall time: 29.2 ms
for img in xh[:2]:
display(ToPILImage()(img.clamp(-0.5,0.5)+0.5))
!jupyter nbconvert --to markdown README.ipynb
[NbConvertApp] Converting notebook README.ipynb to markdown
[NbConvertApp] Support files will be in README_files/
[NbConvertApp] Making directory README_files
[NbConvertApp] Writing 2752 bytes to README.md