cybersectony's picture
Update README.md
b107f74 verified
|
raw
history blame
1.61 kB
---
dataset_info:
features:
- name: content
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 47241927
num_examples: 120000
- name: validation
num_bytes: 5052323
num_examples: 20000
- name: test
num_bytes: 14856442
num_examples: 60000
download_size: 40289388
dataset_size: 67150692
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
# PhishingEmailDetectionv2.0 Dataset
A comprehensive dataset combining email messages and URLs for phishing detection.
## Dataset Overview
[![Downloads](https://img.shields.io/badge/downloads-statistics-blue)](https://huggingface.co/datasets/cybersectony/PhishingEmailDetectionv2.0/statistics)
[![License](https://img.shields.io/badge/License-Apache%202.0-green.svg)](LICENSE)
### Quick Facts
- **Task Type**: Multi-class Classification
- **Languages**: English
- **Total Samples**: 200,000 entries
- **Size Split**:
- Email samples: 22,644
- URL samples: 177,356
- **Label Distribution**: Four classes (0, 1, 2, 3)
- **Format**: Two columns - `content` and `labels`
## Dataset Structure
### Features
```python
{
'content': Value(dtype='string', description='The text content - either email body or URL'),
'labels': ClassLabel(num_classes=4, names=[
'legitimate_email', # 0
'phishing_email', # 1
'legitimate_url', # 2
'phishing_url' # 3
], description='Multi-class label for content classification')
}