|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
def get_file_list(): |
|
file_list = [] |
|
with open("./file_list.json") as f: |
|
file_list = json.load(f) |
|
return file_list |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {Ember2018}, |
|
author=Christian Williams |
|
}, |
|
year={2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset is from the EMBER 2018 Malware Analysis dataset |
|
""" |
|
_HOMEPAGE = "https://github.com/elastic/ember" |
|
_LICENSE = "" |
|
_URLS = { |
|
"text_classification": "https://huggingface.co/datasets/cw1521/ember2018-malware/blob/main/data/" |
|
} |
|
|
|
|
|
class EMBERConfig(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.1.0") |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="text_classification", |
|
version=VERSION, description="This part of my dataset covers text classification" |
|
) |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "text_classification" |
|
|
|
def _info(self): |
|
if self.config.name == "text_classification": |
|
features = datasets.Features( |
|
{ |
|
"input": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
"x": datasets.features.Sequence( |
|
datasets.Value("float32") |
|
), |
|
"y": datasets.Value("float32"), |
|
"appeared": datasets.Value("string"), |
|
"avclass": datasets.Value("string"), |
|
"subset": datasets.Value("string"), |
|
"sha256": datasets.Value("string") |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"input": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
"x": datasets.features.Sequence( |
|
datasets.Value("float32") |
|
), |
|
"y": datasets.Value("float32"), |
|
"appeared": datasets.Value("string"), |
|
"avclass": datasets.Value("string"), |
|
"subset": datasets.Value("string"), |
|
"sha256": datasets.Value("string") |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URLS[self.config.name] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepaths": os.path.join(data_dir, "ember2018_train_*.jsonl"), |
|
"split": "train", |
|
}, |
|
), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepaths": os.path.join(data_dir, "ember2018_test_*.jsonl"), |
|
"split": "test" |
|
}, |
|
) |
|
] |
|
|
|
|
|
def _generate_examples(self, filepaths, split): |
|
key = 0 |
|
for id, filepath in enumerate(filepaths[split]): |
|
with open(filepath[id], encoding="utf-8") as f: |
|
data_list = json.load(f) |
|
for data in data_list: |
|
key += 1 |
|
if self.config.name == "text_classification": |
|
yield key, { |
|
"input": data["input"], |
|
"label": data["label"], |
|
"x": data["x"], |
|
"y": data["y"], |
|
"appeared": data["appeared"], |
|
"avclass": data["avclass"], |
|
"subset": data["subset"], |
|
"sha256": data["sha256"] |
|
} |
|
else: |
|
yield key, { |
|
"input": data["input"], |
|
"label": data["label"], |
|
"x": data["x"], |
|
"y": data["y"], |
|
"appeared": data["appeared"], |
|
"avclass": data["avclass"], |
|
"subset": data["subset"], |
|
"sha256": data["sha256"] |
|
} |
|
|