# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import datasets def get_file_list(): file_list = [] with open("./file_list.json") as f: file_list = json.load(f) return file_list _CITATION = """\ @InProceedings{huggingface:dataset, title = {Ember2018}, author=Christian Williams }, year={2023} } """ _DESCRIPTION = """\ This dataset is from the EMBER 2018 Malware Analysis dataset """ _HOMEPAGE = "https://github.com/elastic/ember" _LICENSE = "" _URLS = { "text_classification": "https://huggingface.co/datasets/cw1521/ember2018-malware/blob/main/data/" } class EMBERConfig(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="text_classification", version=VERSION, description="This part of my dataset covers text classification" ) ] DEFAULT_CONFIG_NAME = "text_classification" def _info(self): if self.config.name == "text_classification": features = datasets.Features( { "input": datasets.Value("string"), "label": datasets.Value("string"), "x": datasets.features.Sequence( datasets.Value("float32") ), "y": datasets.Value("float32"), "appeared": datasets.Value("string"), "avclass": datasets.Value("string"), "subset": datasets.Value("string"), "sha256": datasets.Value("string") } ) else: features = datasets.Features( { "input": datasets.Value("string"), "label": datasets.Value("string"), "x": datasets.features.Sequence( datasets.Value("float32") ), "y": datasets.Value("float32"), "appeared": datasets.Value("string"), "avclass": datasets.Value("string"), "subset": datasets.Value("string"), "sha256": datasets.Value("string") } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) # "*_train_*.jsonl" # "*_test_*.jsonl" def _split_generators(self, dl_manager): urls = _URLS[self.config.name] data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepaths": os.path.join(data_dir, "ember2018_train_*.jsonl"), "split": "train", }, ), # datasets.SplitGenerator( # name=datasets.Split.VALIDATION, # gen_kwargs={ # "filepaths": os.path.join(data_dir, "*_valid_*.jsonl"), # "split": "valid", # }, # ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepaths": os.path.join(data_dir, "ember2018_test_*.jsonl"), "split": "test" }, ) ] def _generate_examples(self, filepaths, split): key = 0 for id, filepath in enumerate(filepaths[split]): with open(filepath[id], encoding="utf-8") as f: data_list = json.load(f) for data in data_list: key += 1 if self.config.name == "text_classification": yield key, { "input": data["input"], "label": data["label"], "x": data["x"], "y": data["y"], "appeared": data["appeared"], "avclass": data["avclass"], "subset": data["subset"], "sha256": data["sha256"] } else: yield key, { "input": data["input"], "label": data["label"], "x": data["x"], "y": data["y"], "appeared": data["appeared"], "avclass": data["avclass"], "subset": data["subset"], "sha256": data["sha256"] }