|
import json |
|
import pathlib |
|
from collections import defaultdict |
|
from dataclasses import asdict, dataclass |
|
from typing import Any, Dict, List, Optional, Tuple, TypedDict, Union |
|
|
|
import datasets as ds |
|
import numpy as np |
|
from datasets.utils.logging import get_logger |
|
from PIL import Image |
|
from PIL.Image import Image as PilImage |
|
from pycocotools import mask as cocomask |
|
from tqdm.auto import tqdm |
|
|
|
logger = get_logger(__name__) |
|
|
|
JsonDict = Dict[str, Any] |
|
ImageId = int |
|
AnnotationId = int |
|
LicenseId = int |
|
CategoryId = int |
|
Bbox = Tuple[float, float, float, float] |
|
|
|
_DESCRIPTION = """\ |
|
PubLayNet is a dataset for document layout analysis. It contains images of research papers and articles and annotations for various elements in a page such as "text", "list", "figure" etc in these research paper images. The dataset was obtained by automatically matching the XML representations and the content of over 1 million PDF articles that are publicly available on PubMed Central. |
|
""" |
|
|
|
_CITATION = """\ |
|
@inproceedings{zhong2019publaynet, |
|
title={Publaynet: largest dataset ever for document layout analysis}, |
|
author={Zhong, Xu and Tang, Jianbin and Yepes, Antonio Jimeno}, |
|
booktitle={2019 International Conference on Document Analysis and Recognition (ICDAR)}, |
|
pages={1015--1022}, |
|
year={2019}, |
|
organization={IEEE} |
|
} |
|
""" |
|
|
|
_HOMEPAGE = "https://developer.ibm.com/exchanges/data/all/publaynet/" |
|
|
|
_LICENSE = "CDLA-Permissive" |
|
|
|
_URL = "https://dax-cdn.cdn.appdomain.cloud/dax-publaynet/1.0.0/publaynet.tar.gz" |
|
|
|
|
|
class UncompressedRLE(TypedDict): |
|
counts: List[int] |
|
size: Tuple[int, int] |
|
|
|
|
|
class CompressedRLE(TypedDict): |
|
counts: bytes |
|
size: Tuple[int, int] |
|
|
|
|
|
@dataclass |
|
class CategoryData(object): |
|
category_id: int |
|
name: str |
|
supercategory: str |
|
|
|
@classmethod |
|
def from_dict(cls, json_dict: JsonDict) -> "CategoryData": |
|
return cls( |
|
category_id=json_dict["id"], |
|
name=json_dict["name"], |
|
supercategory=json_dict["supercategory"], |
|
) |
|
|
|
|
|
@dataclass |
|
class ImageData(object): |
|
image_id: ImageId |
|
file_name: str |
|
width: int |
|
height: int |
|
|
|
@classmethod |
|
def from_dict(cls, json_dict: JsonDict) -> "ImageData": |
|
return cls( |
|
image_id=json_dict["id"], |
|
file_name=json_dict["file_name"], |
|
width=json_dict["width"], |
|
height=json_dict["height"], |
|
) |
|
|
|
@property |
|
def shape(self) -> Tuple[int, int]: |
|
return (self.height, self.width) |
|
|
|
|
|
@dataclass |
|
class AnnotationData(object): |
|
annotation_id: AnnotationId |
|
image_id: ImageId |
|
segmentation: Union[np.ndarray, CompressedRLE] |
|
area: float |
|
iscrowd: bool |
|
bbox: Bbox |
|
category_id: int |
|
|
|
@classmethod |
|
def compress_rle( |
|
cls, |
|
segmentation: Union[List[List[float]], UncompressedRLE], |
|
iscrowd: bool, |
|
height: int, |
|
width: int, |
|
) -> CompressedRLE: |
|
if iscrowd: |
|
rle = cocomask.frPyObjects(segmentation, h=height, w=width) |
|
else: |
|
rles = cocomask.frPyObjects(segmentation, h=height, w=width) |
|
rle = cocomask.merge(rles) |
|
|
|
return rle |
|
|
|
@classmethod |
|
def rle_segmentation_to_binary_mask( |
|
cls, segmentation, iscrowd: bool, height: int, width: int |
|
) -> np.ndarray: |
|
rle = cls.compress_rle( |
|
segmentation=segmentation, iscrowd=iscrowd, height=height, width=width |
|
) |
|
return cocomask.decode(rle) |
|
|
|
@classmethod |
|
def rle_segmentation_to_mask( |
|
cls, |
|
segmentation: Union[List[List[float]], UncompressedRLE], |
|
iscrowd: bool, |
|
height: int, |
|
width: int, |
|
) -> np.ndarray: |
|
binary_mask = cls.rle_segmentation_to_binary_mask( |
|
segmentation=segmentation, iscrowd=iscrowd, height=height, width=width |
|
) |
|
return binary_mask * 255 |
|
|
|
@classmethod |
|
def from_dict( |
|
cls, |
|
json_dict: JsonDict, |
|
images: Dict[ImageId, ImageData], |
|
decode_rle: bool, |
|
) -> "AnnotationData": |
|
segmentation = json_dict["segmentation"] |
|
image_id = json_dict["image_id"] |
|
image_data = images[image_id] |
|
iscrowd = bool(json_dict["iscrowd"]) |
|
|
|
segmentation_mask = ( |
|
cls.rle_segmentation_to_mask( |
|
segmentation=segmentation, |
|
iscrowd=iscrowd, |
|
height=image_data.height, |
|
width=image_data.width, |
|
) |
|
if decode_rle |
|
else cls.compress_rle( |
|
segmentation=segmentation, |
|
iscrowd=iscrowd, |
|
height=image_data.height, |
|
width=image_data.width, |
|
) |
|
) |
|
return cls( |
|
annotation_id=json_dict["id"], |
|
image_id=image_id, |
|
segmentation=segmentation_mask, |
|
area=json_dict["area"], |
|
iscrowd=iscrowd, |
|
bbox=json_dict["bbox"], |
|
category_id=json_dict["category_id"], |
|
) |
|
|
|
|
|
def load_json(json_path: pathlib.Path) -> JsonDict: |
|
logger.info(f"Load from {json_path}") |
|
with json_path.open("r") as rf: |
|
json_dict = json.load(rf) |
|
return json_dict |
|
|
|
|
|
def load_image(image_path: pathlib.Path) -> PilImage: |
|
return Image.open(image_path) |
|
|
|
|
|
def load_categories_data( |
|
category_dicts: List[JsonDict], |
|
tqdm_desc: str = "Load categories", |
|
) -> Dict[CategoryId, CategoryData]: |
|
categories = {} |
|
for category_dict in tqdm(category_dicts, desc=tqdm_desc): |
|
category_data = CategoryData.from_dict(category_dict) |
|
categories[category_data.category_id] = category_data |
|
return categories |
|
|
|
|
|
def load_images_data( |
|
image_dicts: List[JsonDict], |
|
tqdm_desc="Load images", |
|
) -> Dict[ImageId, ImageData]: |
|
images = {} |
|
for image_dict in tqdm(image_dicts, desc=tqdm_desc): |
|
image_data = ImageData.from_dict(image_dict) |
|
images[image_data.image_id] = image_data |
|
return images |
|
|
|
|
|
def load_annotation_data( |
|
label_dicts: List[JsonDict], |
|
images: Dict[ImageId, ImageData], |
|
decode_rle: bool, |
|
tqdm_desc: str = "Load label data", |
|
) -> Dict[ImageId, List[AnnotationData]]: |
|
labels = defaultdict(list) |
|
label_dicts = sorted(label_dicts, key=lambda d: d["image_id"]) |
|
|
|
for label_dict in tqdm(label_dicts, desc=tqdm_desc): |
|
label_data = AnnotationData.from_dict( |
|
label_dict, images=images, decode_rle=decode_rle |
|
) |
|
labels[label_data.image_id].append(label_data) |
|
return labels |
|
|
|
|
|
def generate_train_val_examples( |
|
annotations: Dict[ImageId, List[AnnotationData]], |
|
image_dir: pathlib.Path, |
|
images: Dict[ImageId, ImageData], |
|
categories: Dict[CategoryId, CategoryData], |
|
): |
|
for idx, image_id in enumerate(images.keys()): |
|
image_data = images[image_id] |
|
image_anns = annotations[image_id] |
|
|
|
if len(image_anns) < 1: |
|
logger.warning(f"No annotation found for image id: {image_id}.") |
|
continue |
|
|
|
image = load_image(image_path=image_dir / image_data.file_name) |
|
example = asdict(image_data) |
|
example["image"] = image |
|
|
|
example["annotations"] = [] |
|
for ann in image_anns: |
|
ann_dict = asdict(ann) |
|
category = categories[ann.category_id] |
|
ann_dict["category"] = asdict(category) |
|
example["annotations"].append(ann_dict) |
|
|
|
yield idx, example |
|
|
|
|
|
def generate_test_examples(image_dir: pathlib.Path): |
|
image_paths = [f for f in image_dir.iterdir() if f.suffix == ".jpg"] |
|
image_paths = sorted(image_paths) |
|
|
|
for idx, image_path in enumerate(image_paths): |
|
image = load_image(image_path=image_path) |
|
image_width, image_height = image.size |
|
image_data = ImageData( |
|
image_id=idx, |
|
file_name=image_path.name, |
|
width=image_width, |
|
height=image_height, |
|
) |
|
example = asdict(image_data) |
|
example["image"] = image |
|
example["annotations"] = [] |
|
yield idx, example |
|
|
|
|
|
@dataclass |
|
class PubLayNetConfig(ds.BuilderConfig): |
|
decode_rle: bool = False |
|
|
|
|
|
class PubLayNetDataset(ds.GeneratorBasedBuilder): |
|
VERSION = ds.Version("1.0.0") |
|
BUILDER_CONFIG_CLASS = PubLayNetConfig |
|
BUILDER_CONFIGS = [ |
|
PubLayNetConfig( |
|
version=VERSION, |
|
description="PubLayNet is a dataset for document layout analysis.", |
|
) |
|
] |
|
|
|
def _info(self) -> ds.DatasetInfo: |
|
segmentation_feature = ( |
|
ds.Image() |
|
if self.config.decode_rle |
|
else { |
|
"counts": ds.Value("binary"), |
|
"size": ds.Sequence(ds.Value("int32")), |
|
} |
|
) |
|
features = ds.Features( |
|
{ |
|
"image_id": ds.Value("int32"), |
|
"file_name": ds.Value("string"), |
|
"width": ds.Value("int32"), |
|
"height": ds.Value("int32"), |
|
"image": ds.Image(), |
|
"annotations": ds.Sequence( |
|
{ |
|
"annotation_id": ds.Value("int32"), |
|
"area": ds.Value("float32"), |
|
"bbox": ds.Sequence(ds.Value("float32"), length=4), |
|
"category": { |
|
"category_id": ds.Value("int32"), |
|
"name": ds.ClassLabel( |
|
num_classes=5, |
|
names=["text", "title", "list", "table", "figure"], |
|
), |
|
"supercategory": ds.Value("string"), |
|
}, |
|
"category_id": ds.Value("int32"), |
|
"image_id": ds.Value("int32"), |
|
"iscrowd": ds.Value("bool"), |
|
"segmentation": segmentation_feature, |
|
} |
|
), |
|
} |
|
) |
|
return ds.DatasetInfo( |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
features=features, |
|
) |
|
|
|
def _split_generators(self, dl_manager: ds.DownloadManager): |
|
base_dir = dl_manager.download_and_extract(_URL) |
|
publaynet_dir = pathlib.Path(base_dir) / "publaynet" |
|
|
|
return [ |
|
ds.SplitGenerator( |
|
name=ds.Split.TRAIN, |
|
gen_kwargs={ |
|
"image_dir": publaynet_dir / "train", |
|
"label_path": publaynet_dir / "train.json", |
|
}, |
|
), |
|
ds.SplitGenerator( |
|
name=ds.Split.VALIDATION, |
|
gen_kwargs={ |
|
"image_dir": publaynet_dir / "val", |
|
"label_path": publaynet_dir / "val.json", |
|
}, |
|
), |
|
ds.SplitGenerator( |
|
name=ds.Split.TEST, |
|
gen_kwargs={ |
|
"image_dir": publaynet_dir / "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_train_val_examples( |
|
self, image_dir: pathlib.Path, label_path: pathlib.Path |
|
): |
|
label_json = load_json(json_path=label_path) |
|
|
|
images = load_images_data(image_dicts=label_json["images"]) |
|
categories = load_categories_data(category_dicts=label_json["categories"]) |
|
|
|
annotations = load_annotation_data( |
|
label_dicts=label_json["annotations"], |
|
images=images, |
|
decode_rle=self.config.decode_rle, |
|
) |
|
yield from generate_train_val_examples( |
|
annotations=annotations, |
|
image_dir=image_dir, |
|
images=images, |
|
categories=categories, |
|
) |
|
|
|
def _generate_test_examples(self, image_dir: pathlib.Path): |
|
yield from generate_test_examples(image_dir=image_dir) |
|
|
|
def _generate_examples( |
|
self, image_dir: pathlib.Path, label_path: Optional[pathlib.Path] = None |
|
): |
|
if label_path is not None: |
|
yield from self._generate_train_val_examples( |
|
image_dir=image_dir, |
|
label_path=label_path, |
|
) |
|
else: |
|
yield from self._generate_test_examples( |
|
image_dir=image_dir, |
|
) |
|
|