File size: 12,300 Bytes
8347ae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import json
import pathlib
from collections import defaultdict
from dataclasses import asdict, dataclass
from typing import Any, Dict, List, Optional, Tuple, TypedDict, Union

import datasets as ds
import numpy as np
from datasets.utils.logging import get_logger
from PIL import Image
from PIL.Image import Image as PilImage
from pycocotools import mask as cocomask
from tqdm.auto import tqdm

logger = get_logger(__name__)

JsonDict = Dict[str, Any]
ImageId = int
AnnotationId = int
LicenseId = int
CategoryId = int
Bbox = Tuple[float, float, float, float]

_DESCRIPTION = """\
PubLayNet is a dataset for document layout analysis. It contains images of research papers and articles and annotations for various elements in a page such as "text", "list", "figure" etc in these research paper images. The dataset was obtained by automatically matching the XML representations and the content of over 1 million PDF articles that are publicly available on PubMed Central.
"""

_CITATION = """\
@inproceedings{zhong2019publaynet,
  title={Publaynet: largest dataset ever for document layout analysis},
  author={Zhong, Xu and Tang, Jianbin and Yepes, Antonio Jimeno},
  booktitle={2019 International Conference on Document Analysis and Recognition (ICDAR)},
  pages={1015--1022},
  year={2019},
  organization={IEEE}
}
"""

_HOMEPAGE = "https://developer.ibm.com/exchanges/data/all/publaynet/"

_LICENSE = "CDLA-Permissive"

_URL = "https://dax-cdn.cdn.appdomain.cloud/dax-publaynet/1.0.0/publaynet.tar.gz"


class UncompressedRLE(TypedDict):
    counts: List[int]
    size: Tuple[int, int]


class CompressedRLE(TypedDict):
    counts: bytes
    size: Tuple[int, int]


@dataclass
class CategoryData(object):
    category_id: int
    name: str
    supercategory: str

    @classmethod
    def from_dict(cls, json_dict: JsonDict) -> "CategoryData":
        return cls(
            category_id=json_dict["id"],
            name=json_dict["name"],
            supercategory=json_dict["supercategory"],
        )


@dataclass
class ImageData(object):
    image_id: ImageId
    file_name: str
    width: int
    height: int

    @classmethod
    def from_dict(cls, json_dict: JsonDict) -> "ImageData":
        return cls(
            image_id=json_dict["id"],
            file_name=json_dict["file_name"],
            width=json_dict["width"],
            height=json_dict["height"],
        )

    @property
    def shape(self) -> Tuple[int, int]:
        return (self.height, self.width)


@dataclass
class AnnotationData(object):
    annotation_id: AnnotationId
    image_id: ImageId
    segmentation: Union[np.ndarray, CompressedRLE]
    area: float
    iscrowd: bool
    bbox: Bbox
    category_id: int

    @classmethod
    def compress_rle(
        cls,
        segmentation: Union[List[List[float]], UncompressedRLE],
        iscrowd: bool,
        height: int,
        width: int,
    ) -> CompressedRLE:
        if iscrowd:
            rle = cocomask.frPyObjects(segmentation, h=height, w=width)
        else:
            rles = cocomask.frPyObjects(segmentation, h=height, w=width)
            rle = cocomask.merge(rles)  # type: ignore

        return rle  # type: ignore

    @classmethod
    def rle_segmentation_to_binary_mask(
        cls, segmentation, iscrowd: bool, height: int, width: int
    ) -> np.ndarray:
        rle = cls.compress_rle(
            segmentation=segmentation, iscrowd=iscrowd, height=height, width=width
        )
        return cocomask.decode(rle)  # type: ignore

    @classmethod
    def rle_segmentation_to_mask(
        cls,
        segmentation: Union[List[List[float]], UncompressedRLE],
        iscrowd: bool,
        height: int,
        width: int,
    ) -> np.ndarray:
        binary_mask = cls.rle_segmentation_to_binary_mask(
            segmentation=segmentation, iscrowd=iscrowd, height=height, width=width
        )
        return binary_mask * 255

    @classmethod
    def from_dict(
        cls,
        json_dict: JsonDict,
        images: Dict[ImageId, ImageData],
        decode_rle: bool,
    ) -> "AnnotationData":
        segmentation = json_dict["segmentation"]
        image_id = json_dict["image_id"]
        image_data = images[image_id]
        iscrowd = bool(json_dict["iscrowd"])

        segmentation_mask = (
            cls.rle_segmentation_to_mask(
                segmentation=segmentation,
                iscrowd=iscrowd,
                height=image_data.height,
                width=image_data.width,
            )
            if decode_rle
            else cls.compress_rle(
                segmentation=segmentation,
                iscrowd=iscrowd,
                height=image_data.height,
                width=image_data.width,
            )
        )
        return cls(
            annotation_id=json_dict["id"],
            image_id=image_id,
            segmentation=segmentation_mask,  # type: ignore
            area=json_dict["area"],
            iscrowd=iscrowd,
            bbox=json_dict["bbox"],
            category_id=json_dict["category_id"],
        )


def load_json(json_path: pathlib.Path) -> JsonDict:
    logger.info(f"Load from {json_path}")
    with json_path.open("r") as rf:
        json_dict = json.load(rf)
    return json_dict


def load_image(image_path: pathlib.Path) -> PilImage:
    return Image.open(image_path)


def load_categories_data(
    category_dicts: List[JsonDict],
    tqdm_desc: str = "Load categories",
) -> Dict[CategoryId, CategoryData]:
    categories = {}
    for category_dict in tqdm(category_dicts, desc=tqdm_desc):
        category_data = CategoryData.from_dict(category_dict)
        categories[category_data.category_id] = category_data
    return categories


def load_images_data(
    image_dicts: List[JsonDict],
    tqdm_desc="Load images",
) -> Dict[ImageId, ImageData]:
    images = {}
    for image_dict in tqdm(image_dicts, desc=tqdm_desc):
        image_data = ImageData.from_dict(image_dict)
        images[image_data.image_id] = image_data
    return images


def load_annotation_data(
    label_dicts: List[JsonDict],
    images: Dict[ImageId, ImageData],
    decode_rle: bool,
    tqdm_desc: str = "Load label data",
) -> Dict[ImageId, List[AnnotationData]]:
    labels = defaultdict(list)
    label_dicts = sorted(label_dicts, key=lambda d: d["image_id"])

    for label_dict in tqdm(label_dicts, desc=tqdm_desc):
        label_data = AnnotationData.from_dict(
            label_dict, images=images, decode_rle=decode_rle
        )
        labels[label_data.image_id].append(label_data)
    return labels


def generate_train_val_examples(
    annotations: Dict[ImageId, List[AnnotationData]],
    image_dir: pathlib.Path,
    images: Dict[ImageId, ImageData],
    categories: Dict[CategoryId, CategoryData],
):
    for idx, image_id in enumerate(images.keys()):
        image_data = images[image_id]
        image_anns = annotations[image_id]

        if len(image_anns) < 1:
            logger.warning(f"No annotation found for image id: {image_id}.")
            continue

        image = load_image(image_path=image_dir / image_data.file_name)
        example = asdict(image_data)
        example["image"] = image

        example["annotations"] = []
        for ann in image_anns:
            ann_dict = asdict(ann)
            category = categories[ann.category_id]
            ann_dict["category"] = asdict(category)
            example["annotations"].append(ann_dict)

        yield idx, example


def generate_test_examples(image_dir: pathlib.Path):
    image_paths = [f for f in image_dir.iterdir() if f.suffix == ".jpg"]
    image_paths = sorted(image_paths)

    for idx, image_path in enumerate(image_paths):
        image = load_image(image_path=image_path)
        image_width, image_height = image.size
        image_data = ImageData(
            image_id=idx,
            file_name=image_path.name,
            width=image_width,
            height=image_height,
        )
        example = asdict(image_data)
        example["image"] = image
        example["annotations"] = []
        yield idx, example


@dataclass
class PubLayNetConfig(ds.BuilderConfig):
    decode_rle: bool = False


class PubLayNetDataset(ds.GeneratorBasedBuilder):
    VERSION = ds.Version("1.0.0")
    BUILDER_CONFIG_CLASS = PubLayNetConfig
    BUILDER_CONFIGS = [
        PubLayNetConfig(
            version=VERSION,
            description="PubLayNet is a dataset for document layout analysis.",
        )
    ]

    def _info(self) -> ds.DatasetInfo:
        segmentation_feature = (
            ds.Image()
            if self.config.decode_rle
            else {
                "counts": ds.Value("binary"),
                "size": ds.Sequence(ds.Value("int32")),
            }
        )
        features = ds.Features(
            {
                "image_id": ds.Value("int32"),
                "file_name": ds.Value("string"),
                "width": ds.Value("int32"),
                "height": ds.Value("int32"),
                "image": ds.Image(),
                "annotations": ds.Sequence(
                    {
                        "annotation_id": ds.Value("int32"),
                        "area": ds.Value("float32"),
                        "bbox": ds.Sequence(ds.Value("float32"), length=4),
                        "category": {
                            "category_id": ds.Value("int32"),
                            "name": ds.ClassLabel(
                                num_classes=5,
                                names=["text", "title", "list", "table", "figure"],
                            ),
                            "supercategory": ds.Value("string"),
                        },
                        "category_id": ds.Value("int32"),
                        "image_id": ds.Value("int32"),
                        "iscrowd": ds.Value("bool"),
                        "segmentation": segmentation_feature,
                    }
                ),
            }
        )
        return ds.DatasetInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            features=features,
        )

    def _split_generators(self, dl_manager: ds.DownloadManager):
        base_dir = dl_manager.download_and_extract(_URL)
        publaynet_dir = pathlib.Path(base_dir) / "publaynet"

        return [
            ds.SplitGenerator(
                name=ds.Split.TRAIN,
                gen_kwargs={
                    "image_dir": publaynet_dir / "train",
                    "label_path": publaynet_dir / "train.json",
                },
            ),
            ds.SplitGenerator(
                name=ds.Split.VALIDATION,
                gen_kwargs={
                    "image_dir": publaynet_dir / "val",
                    "label_path": publaynet_dir / "val.json",
                },
            ),
            ds.SplitGenerator(
                name=ds.Split.TEST,
                gen_kwargs={
                    "image_dir": publaynet_dir / "test",
                },
            ),
        ]

    def _generate_train_val_examples(
        self, image_dir: pathlib.Path, label_path: pathlib.Path
    ):
        label_json = load_json(json_path=label_path)

        images = load_images_data(image_dicts=label_json["images"])
        categories = load_categories_data(category_dicts=label_json["categories"])

        annotations = load_annotation_data(
            label_dicts=label_json["annotations"],
            images=images,
            decode_rle=self.config.decode_rle,
        )
        yield from generate_train_val_examples(
            annotations=annotations,
            image_dir=image_dir,
            images=images,
            categories=categories,
        )

    def _generate_test_examples(self, image_dir: pathlib.Path):
        yield from generate_test_examples(image_dir=image_dir)

    def _generate_examples(
        self, image_dir: pathlib.Path, label_path: Optional[pathlib.Path] = None
    ):
        if label_path is not None:
            yield from self._generate_train_val_examples(
                image_dir=image_dir,
                label_path=label_path,
            )
        else:
            yield from self._generate_test_examples(
                image_dir=image_dir,
            )