Datasets:

ArXiv:
DOI:
License:
mdCATH / README.md
AntonioMirarchi's picture
update readme
5e3ed8a verified
metadata
viewer: false
license: cc-by-4.0
tags:
  - chemistry
  - biology
  - molecular dynamics
  - neural network potential
pretty_name: 'mdCATH: A Large-Scale MD Dataset for Data-Driven Computational Biophysics'
author: A. Mirarchi, T. Giorgino and G. De Fabritiis
size_categories:
  - 10M<n<100M

mdCATH: A Large-Scale MD Dataset for Data-Driven Computational Biophysics

This dataset comprises all-atom systems for 5,398 CATH domains, modeled with a state-of-the-art classical force field, and simulated in five replicates each at five temperatures from 320 K to 450 K.

Availability

Citing The Dataset

Please cite this manuscript for papers that use the mdCATH dataset:

Mirarchi, A., Giorgino, T. & De Fabritiis, G. mdCATH: A Large-Scale MD Dataset for Data-Driven Computational Biophysics. Sci Data 11, 1299 (2024). https://doi.org/10.1038/s41597-024-04140-z. Preprint available at arXiv:2407.14794 (2024).

Dataset Size

Description Value
Domains 5,398
Trajectories 134,950
Total sampled time 62.6 ms
Total atoms 11,671,592
Total amino acids 740,813
Avg. traj. length 464 ns
Avg. system size 2,162 atoms
Avg. domain length 137 AAs
Total file size 3.3 TB