instance_id
stringlengths
11
13
prompt
stringlengths
115
1.36k
canonical_solution
stringlengths
16
864
test
stringlengths
84
2.1k
HumanEval/0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers closer to each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """
for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) if distance < threshold: return True return False
candidate = has_close_elements def test1(): assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True def test2(): assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False def test3(): assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True def test4(): assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False def test5(): assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True def test6(): assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True def test7(): assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False
HumanEval/1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. >>> separate_paren_groups('( ) (( )) (( )( ))') ['()', '(())', '(()())'] """
result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
candidate = separate_paren_groups def test1(): assert candidate('(()()) ((())) () ((())()())') == [ def test2(): assert candidate('() (()) ((())) (((())))') == [ def test3(): assert candidate('(()(())((())))') == [ def test4(): assert candidate('( ) (( )) (( )( ))') == ['()', '(())', '(()())']
HumanEval/2
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """
return number % 1.0
candidate = truncate_number def test1(): assert candidate(3.5) == 0.5 def test2(): assert abs(candidate(1.33) - 0.33) < 1e-6 def test3(): assert abs(candidate(123.456) - 0.456) < 1e-6
HumanEval/3
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) False >>> below_zero([1, 2, -4, 5]) True """
balance = 0 for op in operations: balance += op if balance < 0: return True return False
candidate = below_zero def test1(): assert candidate([]) == False def test2(): assert candidate([1, 2, -3, 1, 2, -3]) == False def test3(): assert candidate([1, 2, -4, 5, 6]) == True def test4(): assert candidate([1, -1, 2, -2, 5, -5, 4, -4]) == False def test5(): assert candidate([1, -1, 2, -2, 5, -5, 4, -5]) == True def test6(): assert candidate([1, -2, 2, -2, 5, -5, 4, -4]) == True
HumanEval/4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation around the mean of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (mean in this case): MAD = average | x - x_mean | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.0 """
mean = sum(numbers) / len(numbers) return sum(abs(x - mean) for x in numbers) / len(numbers)
candidate = mean_absolute_deviation def test1(): assert abs(candidate([1.0, 2.0, 3.0]) - 2.0/3.0) < 1e-6 def test2(): assert abs(candidate([1.0, 2.0, 3.0, 4.0]) - 1.0) < 1e-6 def test3(): assert abs(candidate([1.0, 2.0, 3.0, 4.0, 5.0]) - 6.0/5.0) < 1e-6
HumanEval/5
from typing import List def intersperse(numbers: List[int], delimeter: int) -> List[int]: """ Insert a number 'delimeter' between every two consecutive elements of input list `numbers' >>> intersperse([], 4) [] >>> intersperse([1, 2, 3], 4) [1, 4, 2, 4, 3] """
if not numbers: return [] result = [] for n in numbers[:-1]: result.append(n) result.append(delimeter) result.append(numbers[-1]) return result
candidate = intersperse def test1(): assert candidate([], 7) == [] def test2(): assert candidate([5, 6, 3, 2], 8) == [5, 8, 6, 8, 3, 8, 2] def test3(): assert candidate([2, 2, 2], 2) == [2, 2, 2, 2, 2]
HumanEval/6
from typing import List def parse_nested_parens(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output the deepest level of nesting of parentheses. E.g. (()()) has maximum two levels of nesting while ((())) has three. >>> parse_nested_parens('(()()) ((())) () ((())()())') [2, 3, 1, 3] """
def parse_paren_group(s): depth = 0 max_depth = 0 for c in s: if c == '(': depth += 1 max_depth = max(depth, max_depth) else: depth -= 1 return max_depth return [parse_paren_group(x) for x in paren_string.split(' ') if x]
candidate = parse_nested_parens def test1(): assert candidate('(()()) ((())) () ((())()())') == [2, 3, 1, 3] def test2(): assert candidate('() (()) ((())) (((())))') == [1, 2, 3, 4] def test3(): assert candidate('(()(())((())))') == [4]
HumanEval/7
from typing import List def filter_by_substring(strings: List[str], substring: str) -> List[str]: """ Filter an input list of strings only for ones that contain given substring >>> filter_by_substring([], 'a') [] >>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a') ['abc', 'bacd', 'array'] """
return [x for x in strings if substring in x]
candidate = filter_by_substring def test1(): assert candidate([], 'john') == [] def test2(): assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx'] def test3(): assert candidate(['xxx', 'asd', 'aaaxxy', 'john doe', 'xxxAAA', 'xxx'], 'xx') == ['xxx', 'aaaxxy', 'xxxAAA', 'xxx'] def test4(): assert candidate(['grunt', 'trumpet', 'prune', 'gruesome'], 'run') == ['grunt', 'prune']
HumanEval/8
from typing import List, Tuple def sum_product(numbers: List[int]) -> Tuple[int, int]: """ For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list. Empty sum should be equal to 0 and empty product should be equal to 1. >>> sum_product([]) (0, 1) >>> sum_product([1, 2, 3, 4]) (10, 24) """
sum_value = 0 prod_value = 1 for n in numbers: sum_value += n prod_value *= n return sum_value, prod_value
candidate = sum_product def test1(): assert candidate([]) == (0, 1) def test2(): assert candidate([1, 1, 1]) == (3, 1) def test3(): assert candidate([100, 0]) == (100, 0) def test4(): assert candidate([3, 5, 7]) == (3 + 5 + 7, 3 * 5 * 7) def test5(): assert candidate([10]) == (10, 10)
HumanEval/9
from typing import List, Tuple def rolling_max(numbers: List[int]) -> List[int]: """ From a given list of integers, generate a list of rolling maximum element found until given moment in the sequence. >>> rolling_max([1, 2, 3, 2, 3, 4, 2]) [1, 2, 3, 3, 3, 4, 4] """
running_max = None result = [] for n in numbers: if running_max is None: running_max = n else: running_max = max(running_max, n) result.append(running_max) return result
candidate = rolling_max def test1(): assert candidate([]) == [] def test2(): assert candidate([1, 2, 3, 4]) == [1, 2, 3, 4] def test3(): assert candidate([4, 3, 2, 1]) == [4, 4, 4, 4] def test4(): assert candidate([3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]
HumanEval/10
def is_palindrome(string: str) -> bool: """ Test if given string is a palindrome """ return string == string[::-1] def make_palindrome(string: str) -> str: """ Find the shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> make_palindrome('') '' >>> make_palindrome('cat') 'catac' >>> make_palindrome('cata') 'catac' """
if not string: return '' beginning_of_suffix = 0 while not is_palindrome(string[beginning_of_suffix:]): beginning_of_suffix += 1 return string + string[:beginning_of_suffix][::-1]
candidate = make_palindrome def test1(): assert candidate('') == '' def test2(): assert candidate('x') == 'x' def test3(): assert candidate('xyz') == 'xyzyx' def test4(): assert candidate('xyx') == 'xyx' def test5(): assert candidate('jerry') == 'jerryrrej'
HumanEval/11
from typing import List def string_xor(a: str, b: str) -> str: """ Input are two strings a and b consisting only of 1s and 0s. Perform binary XOR on these inputs and return result also as a string. >>> string_xor('010', '110') '100' """
def xor(i, j): if i == j: return '0' else: return '1' return ''.join(xor(x, y) for x, y in zip(a, b))
candidate = string_xor def test1(): assert candidate('111000', '101010') == '010010' def test2(): assert candidate('1', '1') == '0' def test3(): assert candidate('0101', '0000') == '0101'
HumanEval/12
from typing import List, Optional def longest(strings: List[str]) -> Optional[str]: """ Out of list of strings, return the longest one. Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. >>> longest([]) >>> longest(['a', 'b', 'c']) 'a' >>> longest(['a', 'bb', 'ccc']) 'ccc' """
if not strings: return None maxlen = max(len(x) for x in strings) for s in strings: if len(s) == maxlen: return s
candidate = longest def test1(): assert candidate([]) == None def test2(): assert candidate(['x', 'y', 'z']) == 'x' def test3(): assert candidate(['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']) == 'zzzz'
HumanEval/13
def greatest_common_divisor(a: int, b: int) -> int: """ Return a greatest common divisor of two integers a and b >>> greatest_common_divisor(3, 5) 1 >>> greatest_common_divisor(25, 15) 5 """
while b: a, b = b, a % b return a
candidate = greatest_common_divisor def test1(): assert candidate(3, 7) == 1 def test2(): assert candidate(10, 15) == 5 def test3(): assert candidate(49, 14) == 7 def test4(): assert candidate(144, 60) == 12
HumanEval/14
from typing import List def all_prefixes(string: str) -> List[str]: """ Return list of all prefixes from shortest to longest of the input string >>> all_prefixes('abc') ['a', 'ab', 'abc'] """
result = [] for i in range(len(string)): result.append(string[:i+1]) return result
candidate = all_prefixes def test1(): assert candidate('') == [] def test2(): assert candidate('asdfgh') == ['a', 'as', 'asd', 'asdf', 'asdfg', 'asdfgh'] def test3(): assert candidate('WWW') == ['W', 'WW', 'WWW']
HumanEval/15
def string_sequence(n: int) -> str: """ Return a string containing space-delimited numbers starting from 0 upto n inclusive. >>> string_sequence(0) '0' >>> string_sequence(5) '0 1 2 3 4 5' """
return ' '.join([str(x) for x in range(n + 1)])
candidate = string_sequence def test1(): assert candidate(0) == '0' def test2(): assert candidate(3) == '0 1 2 3' def test3(): assert candidate(10) == '0 1 2 3 4 5 6 7 8 9 10'
HumanEval/16
def count_distinct_characters(string: str) -> int: """ Given a string, find out how many distinct characters (regardless of case) does it consist of >>> count_distinct_characters('xyzXYZ') 3 >>> count_distinct_characters('Jerry') 4 """
return len(set(string.lower()))
candidate = count_distinct_characters def test1(): assert candidate('') == 0 def test2(): assert candidate('abcde') == 5 def test3(): assert candidate('abcde' + 'cade' + 'CADE') == 5 def test4(): assert candidate('aaaaAAAAaaaa') == 1 def test5(): assert candidate('Jerry jERRY JeRRRY') == 5
HumanEval/17
from typing import List def parse_music(music_string: str) -> List[int]: """ Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts four beats 'o|' - half note, lasts two beats '.|' - quater note, lasts one beat >>> parse_music('o o| .| o| o| .| .| .| .| o o') [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] """
note_map = {'o': 4, 'o|': 2, '.|': 1} return [note_map[x] for x in music_string.split(' ') if x]
candidate = parse_music def test1(): assert candidate('') == [] def test2(): assert candidate('o o o o') == [4, 4, 4, 4] def test3(): assert candidate('.| .| .| .|') == [1, 1, 1, 1] def test4(): assert candidate('o| o| .| .| o o o o') == [2, 2, 1, 1, 4, 4, 4, 4] def test5(): assert candidate('o| .| o| .| o o| o o|') == [2, 1, 2, 1, 4, 2, 4, 2]
HumanEval/18
def how_many_times(string: str, substring: str) -> int: """ Find how many times a given substring can be found in the original string. Count overlaping cases. >>> how_many_times('', 'a') 0 >>> how_many_times('aaa', 'a') 3 >>> how_many_times('aaaa', 'aa') 3 """
times = 0 for i in range(len(string) - len(substring) + 1): if string[i:i+len(substring)] == substring: times += 1 return times
candidate = how_many_times def test1(): assert candidate('', 'x') == 0 def test2(): assert candidate('xyxyxyx', 'x') == 4 def test3(): assert candidate('cacacacac', 'cac') == 4 def test4(): assert candidate('john doe', 'john') == 1
HumanEval/19
from typing import List def sort_numbers(numbers: str) -> str: """ Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers sorted from smallest to largest >>> sort_numbers('three one five') 'one three five' """
value_map = { 'zero': 0, 'one': 1, 'two': 2, 'three': 3, 'four': 4, 'five': 5, 'six': 6, 'seven': 7, 'eight': 8, 'nine': 9 } return ' '.join(sorted([x for x in numbers.split(' ') if x], key=lambda x: value_map[x]))
candidate = sort_numbers def test1(): assert candidate('') == '' def test2(): assert candidate('three') == 'three' def test3(): assert candidate('three five nine') == 'three five nine' def test4(): assert candidate('five zero four seven nine eight') == 'zero four five seven eight nine' def test5(): assert candidate('six five four three two one zero') == 'zero one two three four five six'
HumanEval/20
from typing import List, Tuple def find_closest_elements(numbers: List[float]) -> Tuple[float, float]: """ From a supplied list of numbers (of length at least two) select and return two that are the closest to each other and return them in order (smaller number, larger number). >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) (2.0, 2.2) >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) (2.0, 2.0) """
closest_pair = None distance = None for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: if distance is None: distance = abs(elem - elem2) closest_pair = tuple(sorted([elem, elem2])) else: new_distance = abs(elem - elem2) if new_distance < distance: distance = new_distance closest_pair = tuple(sorted([elem, elem2])) return closest_pair
candidate = find_closest_elements def test1(): assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0) def test2(): assert candidate([1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9) def test3(): assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2) def test4(): assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) def test5(): assert candidate([1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)
HumanEval/21
from typing import List def rescale_to_unit(numbers: List[float]) -> List[float]: """ Given list of numbers (of at least two elements), apply a linear transform to that list, such that the smallest number will become 0 and the largest will become 1 >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0]) [0.0, 0.25, 0.5, 0.75, 1.0] """
min_number = min(numbers) max_number = max(numbers) return [(x - min_number) / (max_number - min_number) for x in numbers]
candidate = rescale_to_unit def test1(): assert candidate([2.0, 49.9]) == [0.0, 1.0] def test2(): assert candidate([100.0, 49.9]) == [1.0, 0.0] def test3(): assert candidate([1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] def test4(): assert candidate([2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75] def test5(): assert candidate([12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]
HumanEval/22
from typing import List, Any def filter_integers(values: List[Any]) -> List[int]: """ Filter given list of any python values only for integers >>> filter_integers(['a', 3.14, 5]) [5] >>> filter_integers([1, 2, 3, 'abc', {}, []]) [1, 2, 3] """
return [x for x in values if isinstance(x, int)]
candidate = filter_integers def test1(): assert candidate([]) == [] def test2(): assert candidate([4, {}, [], 23.2, 9, 'adasd']) == [4, 9] def test3(): assert candidate([3, 'c', 3, 3, 'a', 'b']) == [3, 3, 3]
HumanEval/23
def strlen(string: str) -> int: """ Return length of given string >>> strlen('') 0 >>> strlen('abc') 3 """
return len(string)
candidate = strlen def test1(): assert candidate('') == 0 def test2(): assert candidate('x') == 1 def test3(): assert candidate('asdasnakj') == 9
HumanEval/24
def largest_divisor(n: int) -> int: """ For a given number n, find the largest number that divides n evenly, smaller than n >>> largest_divisor(15) 5 """
for i in reversed(range(n)): if n % i == 0: return i
candidate = largest_divisor def test1(): assert candidate(3) == 1 def test2(): assert candidate(7) == 1 def test3(): assert candidate(10) == 5 def test4(): assert candidate(100) == 50 def test5(): assert candidate(49) == 7
HumanEval/25
from typing import List def factorize(n: int) -> List[int]: """ Return list of prime factors of given integer in the order from smallest to largest. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors >>> factorize(8) [2, 2, 2] >>> factorize(25) [5, 5] >>> factorize(70) [2, 5, 7] """
import math fact = [] i = 2 while i <= int(math.sqrt(n) + 1): if n % i == 0: fact.append(i) n //= i else: i += 1 if n > 1: fact.append(n) return fact
candidate = factorize def test1(): assert candidate(2) == [2] def test2(): assert candidate(4) == [2, 2] def test3(): assert candidate(8) == [2, 2, 2] def test4(): assert candidate(3 * 19) == [3, 19] def test5(): assert candidate(3 * 19 * 3 * 19) == [3, 3, 19, 19] def test6(): assert candidate(3 * 19 * 3 * 19 * 3 * 19) == [3, 3, 3, 19, 19, 19] def test7(): assert candidate(3 * 19 * 19 * 19) == [3, 19, 19, 19] def test8(): assert candidate(3 * 2 * 3) == [2, 3, 3]
HumanEval/26
from typing import List def remove_duplicates(numbers: List[int]) -> List[int]: """ From a list of integers, remove all elements that occur more than once. Keep order of elements left the same as in the input. >>> remove_duplicates([1, 2, 3, 2, 4]) [1, 3, 4] """
import collections c = collections.Counter(numbers) return [n for n in numbers if c[n] <= 1]
candidate = remove_duplicates def test1(): assert candidate([]) == [] def test2(): assert candidate([1, 2, 3, 4]) == [1, 2, 3, 4] def test3(): assert candidate([1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]
HumanEval/27
def flip_case(string: str) -> str: """ For a given string, flip lowercase characters to uppercase and uppercase to lowercase. >>> flip_case('Hello') 'hELLO' """
return string.swapcase()
candidate = flip_case def test1(): assert candidate('') == '' def test2(): assert candidate('Hello!') == 'hELLO!' def test3(): assert candidate('These violent delights have violent ends') == 'tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS'
HumanEval/28
from typing import List def concatenate(strings: List[str]) -> str: """ Concatenate list of strings into a single string >>> concatenate([]) '' >>> concatenate(['a', 'b', 'c']) 'abc' """
return ''.join(strings)
candidate = concatenate def test1(): assert candidate([]) == '' def test2(): assert candidate(['x', 'y', 'z']) == 'xyz' def test3(): assert candidate(['x', 'y', 'z', 'w', 'k']) == 'xyzwk'
HumanEval/29
from typing import List def filter_by_prefix(strings: List[str], prefix: str) -> List[str]: """ Filter an input list of strings only for ones that start with a given prefix. >>> filter_by_prefix([], 'a') [] >>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a') ['abc', 'array'] """
return [x for x in strings if x.startswith(prefix)]
candidate = filter_by_prefix def test1(): assert candidate([], 'john') == [] def test2(): assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx']
HumanEval/30
def get_positive(l: list): """Return only positive numbers in the list. >>> get_positive([-1, 2, -4, 5, 6]) [2, 5, 6] >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [5, 3, 2, 3, 9, 123, 1] """
return [e for e in l if e > 0]
candidate = get_positive def test1(): assert candidate([-1, -2, 4, 5, 6]) == [4, 5, 6] def test2(): assert candidate([5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1] def test3(): assert candidate([-1, -2]) == [] def test4(): assert candidate([]) == []
HumanEval/31
def is_prime(n): """Return true if a given number is prime, and false otherwise. >>> is_prime(6) False >>> is_prime(101) True >>> is_prime(11) True >>> is_prime(13441) True >>> is_prime(61) True >>> is_prime(4) False >>> is_prime(1) False """
if n < 2: return False for k in range(2, n - 1): if n % k == 0: return False return True
candidate = is_prime def test1(): assert candidate(6) == False def test2(): assert candidate(101) == True def test3(): assert candidate(11) == True def test4(): assert candidate(13441) == True def test5(): assert candidate(61) == True def test6(): assert candidate(4) == False def test7(): assert candidate(1) == False def test8(): assert candidate(5) == True def test9(): assert candidate(11) == True def test10(): assert candidate(17) == True def test11(): assert candidate(5 * 17) == False def test12(): assert candidate(11 * 7) == False def test13(): assert candidate(13441 * 19) == False
HumanEval/32
import math def poly(xs: list, x: float): """ Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """ return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def find_zero(xs: list): """ xs are coefficients of a polynomial. find_zero find x such that poly(x) = 0. find_zero returns only only zero point, even if there are many. Moreover, find_zero only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. >>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x -0.5 >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 1.0 """
begin, end = -1., 1. while poly(xs, begin) * poly(xs, end) > 0: begin *= 2.0 end *= 2.0 while end - begin > 1e-10: center = (begin + end) / 2.0 if poly(xs, center) * poly(xs, begin) > 0: begin = center else: end = center return begin
candidate = find_zero def test1(): assert math.fabs(poly(coeffs, solution)) < 1e-4
HumanEval/33
def sort_third(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted. >>> sort_third([1, 2, 3]) [1, 2, 3] >>> sort_third([5, 6, 3, 4, 8, 9, 2]) [2, 6, 3, 4, 8, 9, 5] """
l = list(l) l[::3] = sorted(l[::3]) return l
candidate = sort_third def test1(): assert tuple(candidate([1, 2, 3])) == tuple(sort_third([1, 2, 3])) def test2(): assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple(sort_third([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) def test3(): assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple(sort_third([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) def test4(): assert tuple(candidate([5, 6, 3, 4, 8, 9, 2])) == tuple([2, 6, 3, 4, 8, 9, 5]) def test5(): assert tuple(candidate([5, 8, 3, 4, 6, 9, 2])) == tuple([2, 8, 3, 4, 6, 9, 5]) def test6(): assert tuple(candidate([5, 6, 9, 4, 8, 3, 2])) == tuple([2, 6, 9, 4, 8, 3, 5]) def test7(): assert tuple(candidate([5, 6, 3, 4, 8, 9, 2, 1])) == tuple([2, 6, 3, 4, 8, 9, 5, 1])
HumanEval/34
def unique(l: list): """Return sorted unique elements in a list >>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123]) [0, 2, 3, 5, 9, 123] """
return sorted(list(set(l)))
candidate = unique def test1(): assert candidate([5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
HumanEval/35
def max_element(l: list): """Return maximum element in the list. >>> max_element([1, 2, 3]) 3 >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) 123 """
m = l[0] for e in l: if e > m: m = e return m
candidate = max_element def test1(): assert candidate([1, 2, 3]) == 3 def test2(): assert candidate([5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124
HumanEval/36
def fizz_buzz(n: int): """Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13. >>> fizz_buzz(50) 0 >>> fizz_buzz(78) 2 >>> fizz_buzz(79) 3 """
ns = [] for i in range(n): if i % 11 == 0 or i % 13 == 0: ns.append(i) s = ''.join(list(map(str, ns))) ans = 0 for c in s: ans += (c == '7') return ans
candidate = fizz_buzz def test1(): assert candidate(50) == 0 def test2(): assert candidate(78) == 2 def test3(): assert candidate(79) == 3 def test4(): assert candidate(100) == 3 def test5(): assert candidate(200) == 6 def test6(): assert candidate(4000) == 192 def test7(): assert candidate(10000) == 639 def test8(): assert candidate(100000) == 8026
HumanEval/37
def sort_even(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted. >>> sort_even([1, 2, 3]) [1, 2, 3] >>> sort_even([5, 6, 3, 4]) [3, 6, 5, 4] """
evens = l[::2] odds = l[1::2] evens.sort() ans = [] for e, o in zip(evens, odds): ans.extend([e, o]) if len(evens) > len(odds): ans.append(evens[-1]) return ans
candidate = sort_even def test1(): assert tuple(candidate([1, 2, 3])) == tuple([1, 2, 3]) def test2(): assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple([-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) def test3(): assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple([-12, 8, 3, 4, 5, 2, 12, 11, 23, -10])
HumanEval/38
def encode_cyclic(s: str): """ returns encoded string by cycling groups of three characters. """ # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return "".join(groups) def decode_cyclic(s: str): """ takes as input string encoded with encode_cyclic function. Returns decoded string. """
return encode_cyclic(encode_cyclic(s))
candidate = decode_cyclic def test1(): assert candidate(encoded_str) == str
HumanEval/39
def prime_fib(n: int): """ prime_fib returns n-th number that is a Fibonacci number and it's also prime. >>> prime_fib(1) 2 >>> prime_fib(2) 3 >>> prime_fib(3) 5 >>> prime_fib(4) 13 >>> prime_fib(5) 89 """
import math def is_prime(p): if p < 2: return False for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)): if p % k == 0: return False return True f = [0, 1] while True: f.append(f[-1] + f[-2]) if is_prime(f[-1]): n -= 1 if n == 0: return f[-1]
candidate = prime_fib def test1(): assert candidate(1) == 2 def test2(): assert candidate(2) == 3 def test3(): assert candidate(3) == 5 def test4(): assert candidate(4) == 13 def test5(): assert candidate(5) == 89 def test6(): assert candidate(6) == 233 def test7(): assert candidate(7) == 1597 def test8(): assert candidate(8) == 28657 def test9(): assert candidate(9) == 514229 def test10(): assert candidate(10) == 433494437
HumanEval/40
def triples_sum_to_zero(l: list): """ triples_sum_to_zero takes a list of integers as an input. it returns True if there are three distinct elements in the list that sum to zero, and False otherwise. >>> triples_sum_to_zero([1, 3, 5, 0]) False >>> triples_sum_to_zero([1, 3, -2, 1]) True >>> triples_sum_to_zero([1, 2, 3, 7]) False >>> triples_sum_to_zero([2, 4, -5, 3, 9, 7]) True >>> triples_sum_to_zero([1]) False """
for i in range(len(l)): for j in range(i + 1, len(l)): for k in range(j + 1, len(l)): if l[i] + l[j] + l[k] == 0: return True return False
candidate = triples_sum_to_zero def test1(): assert candidate([1, 3, 5, 0]) == False def test2(): assert candidate([1, 3, 5, -1]) == False def test3(): assert candidate([1, 3, -2, 1]) == True def test4(): assert candidate([1, 2, 3, 7]) == False def test5(): assert candidate([1, 2, 5, 7]) == False def test6(): assert candidate([2, 4, -5, 3, 9, 7]) == True def test7(): assert candidate([1]) == False def test8(): assert candidate([1, 3, 5, -100]) == False def test9(): assert candidate([100, 3, 5, -100]) == False
HumanEval/41
def car_race_collision(n: int): """ Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions. """
return n**2
candidate = car_race_collision def test1(): assert candidate(2) == 4 def test2(): assert candidate(3) == 9 def test3(): assert candidate(4) == 16 def test4(): assert candidate(8) == 64 def test5(): assert candidate(10) == 100
HumanEval/42
def incr_list(l: list): """Return list with elements incremented by 1. >>> incr_list([1, 2, 3]) [2, 3, 4] >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) [6, 4, 6, 3, 4, 4, 10, 1, 124] """
return [(e + 1) for e in l]
candidate = incr_list def test1(): assert candidate([]) == [] def test2(): assert candidate([3, 2, 1]) == [4, 3, 2] def test3(): assert candidate([5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]
HumanEval/43
def pairs_sum_to_zero(l): """ pairs_sum_to_zero takes a list of integers as an input. it returns True if there are two distinct elements in the list that sum to zero, and False otherwise. >>> pairs_sum_to_zero([1, 3, 5, 0]) False >>> pairs_sum_to_zero([1, 3, -2, 1]) False >>> pairs_sum_to_zero([1, 2, 3, 7]) False >>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7]) True >>> pairs_sum_to_zero([1]) False """
for i, l1 in enumerate(l): for j in range(i + 1, len(l)): if l1 + l[j] == 0: return True return False
candidate = pairs_sum_to_zero def test1(): assert candidate([1, 3, 5, 0]) == False def test2(): assert candidate([1, 3, -2, 1]) == False def test3(): assert candidate([1, 2, 3, 7]) == False def test4(): assert candidate([2, 4, -5, 3, 5, 7]) == True def test5(): assert candidate([1]) == False def test6(): assert candidate([-3, 9, -1, 3, 2, 30]) == True def test7(): assert candidate([-3, 9, -1, 3, 2, 31]) == True def test8(): assert candidate([-3, 9, -1, 4, 2, 30]) == False def test9(): assert candidate([-3, 9, -1, 4, 2, 31]) == False
HumanEval/44
def change_base(x: int, base: int): """Change numerical base of input number x to base. return string representation after the conversion. base numbers are less than 10. >>> change_base(8, 3) '22' >>> change_base(8, 2) '1000' >>> change_base(7, 2) '111' """
ret = "" while x > 0: ret = str(x % base) + ret x //= base return ret
candidate = change_base def test1(): assert candidate(8, 3) == "22" def test2(): assert candidate(9, 3) == "100" def test3(): assert candidate(234, 2) == "11101010" def test4(): assert candidate(16, 2) == "10000" def test5(): assert candidate(8, 2) == "1000" def test6(): assert candidate(7, 2) == "111" def test7(): assert candidate(x, x + 1) == str(x)
HumanEval/45
def triangle_area(a, h): """Given length of a side and high return area for a triangle. >>> triangle_area(5, 3) 7.5 """
return a * h / 2.0
candidate = triangle_area def test1(): assert candidate(5, 3) == 7.5 def test2(): assert candidate(2, 2) == 2.0 def test3(): assert candidate(10, 8) == 40.0
HumanEval/46
def fib4(n: int): """The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 4 >>> fib4(6) 8 >>> fib4(7) 14 """
results = [0, 0, 2, 0] if n < 4: return results[n] for _ in range(4, n + 1): results.append(results[-1] + results[-2] + results[-3] + results[-4]) results.pop(0) return results[-1]
candidate = fib4 def test1(): assert candidate(5) == 4 def test2(): assert candidate(8) == 28 def test3(): assert candidate(10) == 104 def test4(): assert candidate(12) == 386
HumanEval/47
def median(l: list): """Return median of elements in the list l. >>> median([3, 1, 2, 4, 5]) 3 >>> median([-10, 4, 6, 1000, 10, 20]) 15.0 """
l = sorted(l) if len(l) % 2 == 1: return l[len(l) // 2] else: return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
candidate = median def test1(): assert candidate([3, 1, 2, 4, 5]) == 3 def test2(): assert candidate([-10, 4, 6, 1000, 10, 20]) == 8.0 def test3(): assert candidate([5]) == 5 def test4(): assert candidate([6, 5]) == 5.5 def test5(): assert candidate([8, 1, 3, 9, 9, 2, 7]) == 7
HumanEval/48
def is_palindrome(text: str): """ Checks if given string is a palindrome >>> is_palindrome('') True >>> is_palindrome('aba') True >>> is_palindrome('aaaaa') True >>> is_palindrome('zbcd') False """
for i in range(len(text)): if text[i] != text[len(text) - 1 - i]: return False return True
candidate = is_palindrome def test1(): assert candidate('') == True def test2(): assert candidate('aba') == True def test3(): assert candidate('aaaaa') == True def test4(): assert candidate('zbcd') == False def test5(): assert candidate('xywyx') == True def test6(): assert candidate('xywyz') == False def test7(): assert candidate('xywzx') == False
HumanEval/49
def modp(n: int, p: int): """Return 2^n modulo p (be aware of numerics). >>> modp(3, 5) 3 >>> modp(1101, 101) 2 >>> modp(0, 101) 1 >>> modp(3, 11) 8 >>> modp(100, 101) 1 """
ret = 1 for i in range(n): ret = (2 * ret) % p return ret
candidate = modp def test1(): assert candidate(3, 5) == 3 def test2(): assert candidate(1101, 101) == 2 def test3(): assert candidate(0, 101) == 1 def test4(): assert candidate(3, 11) == 8 def test5(): assert candidate(100, 101) == 1 def test6(): assert candidate(30, 5) == 4 def test7(): assert candidate(31, 5) == 3
HumanEval/50
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def decode_shift(s: str): """ takes as input string encoded with encode_shift function. Returns decoded string. """
return "".join([chr(((ord(ch) - 5 - ord("a")) % 26) + ord("a")) for ch in s])
candidate = decode_shift def test1(): assert candidate(copy.deepcopy(encoded_str)) == str
HumanEval/51
def remove_vowels(text): """ remove_vowels is a function that takes string and returns string without vowels. >>> remove_vowels('') '' >>> remove_vowels("abcdef\nghijklm") 'bcdf\nghjklm' >>> remove_vowels('abcdef') 'bcdf' >>> remove_vowels('aaaaa') '' >>> remove_vowels('aaBAA') 'B' >>> remove_vowels('zbcd') 'zbcd' """
return "".join([s for s in text if s.lower() not in ["a", "e", "i", "o", "u"]])
candidate = remove_vowels def test1(): assert candidate('') == '' def test2(): assert candidate("abcdef\nghijklm") == 'bcdf\nghjklm' def test3(): assert candidate('fedcba') == 'fdcb' def test4(): assert candidate('eeeee') == '' def test5(): assert candidate('acBAA') == 'cB' def test6(): assert candidate('EcBOO') == 'cB' def test7(): assert candidate('ybcd') == 'ybcd'
HumanEval/52
def below_threshold(l: list, t: int): """Return True if all numbers in the list l are below threshold t. >>> below_threshold([1, 2, 4, 10], 100) True >>> below_threshold([1, 20, 4, 10], 5) False """
for e in l: if e >= t: return False return True
candidate = below_threshold def test1(): assert candidate([1, 2, 4, 10], 100) def test2(): assert not candidate([1, 20, 4, 10], 5) def test3(): assert candidate([1, 20, 4, 10], 21) def test4(): assert candidate([1, 20, 4, 10], 22) def test5(): assert candidate([1, 8, 4, 10], 11) def test6(): assert not candidate([1, 8, 4, 10], 10)
HumanEval/53
def add(x: int, y: int): """Add two numbers x and y >>> add(2, 3) 5 >>> add(5, 7) 12 """
return x + y
candidate = add def test1(): assert candidate(0, 1) == 1 def test2(): assert candidate(1, 0) == 1 def test3(): assert candidate(2, 3) == 5 def test4(): assert candidate(5, 7) == 12 def test5(): assert candidate(7, 5) == 12 def test6(): assert candidate(x, y) == x + y
HumanEval/54
def same_chars(s0: str, s1: str): """ Check if two words have the same characters. >>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc') True >>> same_chars('abcd', 'dddddddabc') True >>> same_chars('dddddddabc', 'abcd') True >>> same_chars('eabcd', 'dddddddabc') False >>> same_chars('abcd', 'dddddddabce') False >>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc') False """
return set(s0) == set(s1)
candidate = same_chars def test1(): assert candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') == True def test2(): assert candidate('abcd', 'dddddddabc') == True def test3(): assert candidate('dddddddabc', 'abcd') == True def test4(): assert candidate('eabcd', 'dddddddabc') == False def test5(): assert candidate('abcd', 'dddddddabcf') == False def test6(): assert candidate('eabcdzzzz', 'dddzzzzzzzddddabc') == False def test7(): assert candidate('aabb', 'aaccc') == False
HumanEval/55
def fib(n: int): """Return n-th Fibonacci number. >>> fib(10) 55 >>> fib(1) 1 >>> fib(8) 21 """
if n == 0: return 0 if n == 1: return 1 return fib(n - 1) + fib(n - 2)
candidate = fib def test1(): assert candidate(10) == 55 def test2(): assert candidate(1) == 1 def test3(): assert candidate(8) == 21 def test4(): assert candidate(11) == 89 def test5(): assert candidate(12) == 144
HumanEval/56
def correct_bracketing(brackets: str): """ brackets is a string of "<" and ">". return True if every opening bracket has a corresponding closing bracket. >>> correct_bracketing("<") False >>> correct_bracketing("<>") True >>> correct_bracketing("<<><>>") True >>> correct_bracketing("><<>") False """
depth = 0 for b in brackets: if b == "<": depth += 1 else: depth -= 1 if depth < 0: return False return depth == 0
candidate = correct_bracketing def test1(): assert candidate("<>") def test2(): assert candidate("<<><>>") def test3(): assert candidate("<><><<><>><>") def test4(): assert candidate("<><><<<><><>><>><<><><<>>>") def test5(): assert not candidate("<<<><>>>>") def test6(): assert not candidate("><<>") def test7(): assert not candidate("<") def test8(): assert not candidate("<<<<") def test9(): assert not candidate(">") def test10(): assert not candidate("<<>") def test11(): assert not candidate("<><><<><>><>><<>") def test12(): assert not candidate("<><><<><>><>>><>")
HumanEval/57
def monotonic(l: list): """Return True is list elements are monotonically increasing or decreasing. >>> monotonic([1, 2, 4, 20]) True >>> monotonic([1, 20, 4, 10]) False >>> monotonic([4, 1, 0, -10]) True """
if l == sorted(l) or l == sorted(l, reverse=True): return True return False
candidate = monotonic def test1(): assert candidate([1, 2, 4, 10]) == True def test2(): assert candidate([1, 2, 4, 20]) == True def test3(): assert candidate([1, 20, 4, 10]) == False def test4(): assert candidate([4, 1, 0, -10]) == True def test5(): assert candidate([4, 1, 1, 0]) == True def test6(): assert candidate([1, 2, 3, 2, 5, 60]) == False def test7(): assert candidate([1, 2, 3, 4, 5, 60]) == True def test8(): assert candidate([9, 9, 9, 9]) == True
HumanEval/58
def common(l1: list, l2: list): """Return sorted unique common elements for two lists. >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [1, 5, 653] >>> common([5, 3, 2, 8], [3, 2]) [2, 3] """
ret = set() for e1 in l1: for e2 in l2: if e1 == e2: ret.add(e1) return sorted(list(ret))
candidate = common def test1(): assert candidate([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653] def test2(): assert candidate([5, 3, 2, 8], [3, 2]) == [2, 3] def test3(): assert candidate([4, 3, 2, 8], [3, 2, 4]) == [2, 3, 4] def test4(): assert candidate([4, 3, 2, 8], []) == []
HumanEval/59
def largest_prime_factor(n: int): """Return the largest prime factor of n. Assume n > 1 and is not a prime. >>> largest_prime_factor(13195) 29 >>> largest_prime_factor(2048) 2 """
def is_prime(k): if k < 2: return False for i in range(2, k - 1): if k % i == 0: return False return True largest = 1 for j in range(2, n + 1): if n % j == 0 and is_prime(j): largest = max(largest, j) return largest
candidate = largest_prime_factor def test1(): assert candidate(15) == 5 def test2(): assert candidate(27) == 3 def test3(): assert candidate(63) == 7 def test4(): assert candidate(330) == 11 def test5(): assert candidate(13195) == 29
HumanEval/60
def sum_to_n(n: int): """sum_to_n is a function that sums numbers from 1 to n. >>> sum_to_n(30) 465 >>> sum_to_n(100) 5050 >>> sum_to_n(5) 15 >>> sum_to_n(10) 55 >>> sum_to_n(1) 1 """
return sum(range(n + 1))
candidate = sum_to_n def test1(): assert candidate(1) == 1 def test2(): assert candidate(6) == 21 def test3(): assert candidate(11) == 66 def test4(): assert candidate(30) == 465 def test5(): assert candidate(100) == 5050
HumanEval/61
def correct_bracketing(brackets: str): """ brackets is a string of "(" and ")". return True if every opening bracket has a corresponding closing bracket. >>> correct_bracketing("(") False >>> correct_bracketing("()") True >>> correct_bracketing("(()())") True >>> correct_bracketing(")(()") False """
depth = 0 for b in brackets: if b == "(": depth += 1 else: depth -= 1 if depth < 0: return False return depth == 0
candidate = correct_bracketing def test1(): assert candidate("()") def test2(): assert candidate("(()())") def test3(): assert candidate("()()(()())()") def test4(): assert candidate("()()((()()())())(()()(()))") def test5(): assert not candidate("((()())))") def test6(): assert not candidate(")(()") def test7(): assert not candidate("(") def test8(): assert not candidate("((((") def test9(): assert not candidate(")") def test10(): assert not candidate("(()") def test11(): assert not candidate("()()(()())())(()") def test12(): assert not candidate("()()(()())()))()")
HumanEval/62
def derivative(xs: list): """ xs represent coefficients of a polynomial. xs[0] + xs[1] * x + xs[2] * x^2 + .... Return derivative of this polynomial in the same form. >>> derivative([3, 1, 2, 4, 5]) [1, 4, 12, 20] >>> derivative([1, 2, 3]) [2, 6] """
return [(i * x) for i, x in enumerate(xs)][1:]
candidate = derivative def test1(): assert candidate([3, 1, 2, 4, 5]) == [1, 4, 12, 20] def test2(): assert candidate([1, 2, 3]) == [2, 6] def test3(): assert candidate([3, 2, 1]) == [2, 2] def test4(): assert candidate([3, 2, 1, 0, 4]) == [2, 2, 0, 16] def test5(): assert candidate([1]) == []
HumanEval/63
def fibfib(n: int): """The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 fibfib(2) == 1 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3). Please write a function to efficiently compute the n-th element of the fibfib number sequence. >>> fibfib(1) 0 >>> fibfib(5) 4 >>> fibfib(8) 24 """
if n == 0: return 0 if n == 1: return 0 if n == 2: return 1 return fibfib(n - 1) + fibfib(n - 2) + fibfib(n - 3)
candidate = fibfib def test1(): assert candidate(2) == 1 def test2(): assert candidate(1) == 0 def test3(): assert candidate(5) == 4 def test4(): assert candidate(8) == 24 def test5(): assert candidate(10) == 81 def test6(): assert candidate(12) == 274 def test7(): assert candidate(14) == 927
HumanEval/64
FIX = """ Add more test cases. """ def vowels_count(s): """Write a function vowels_count which takes a string representing a word as input and returns the number of vowels in the string. Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the end of the given word. Example: >>> vowels_count("abcde") 2 >>> vowels_count("ACEDY") 3 """
vowels = "aeiouAEIOU" n_vowels = sum(c in vowels for c in s) if s[-1] == 'y' or s[-1] == 'Y': n_vowels += 1 return n_vowels
candidate = vowels_count def test1(): assert candidate("abcde") == 2, "Test 1" def test2(): assert candidate("Alone") == 3, "Test 2" def test3(): assert candidate("key") == 2, "Test 3" def test4(): assert candidate("bye") == 1, "Test 4" def test5(): assert candidate("keY") == 2, "Test 5" def test6(): assert candidate("bYe") == 1, "Test 6" def test7(): assert candidate("ACEDY") == 3, "Test 7" def test8(): assert True, "This prints if this assert fails 2 (also good for debugging!)"
HumanEval/65
def circular_shift(x, shift): """Circular shift the digits of the integer x, shift the digits right by shift and return the result as a string. If shift > number of digits, return digits reversed. >>> circular_shift(12, 1) "21" >>> circular_shift(12, 2) "12" """
s = str(x) if shift > len(s): return s[::-1] else: return s[len(s) - shift:] + s[:len(s) - shift]
candidate = circular_shift def test1(): assert candidate(100, 2) == "001" def test2(): assert candidate(12, 2) == "12" def test3(): assert candidate(97, 8) == "79" def test4(): assert candidate(12, 1) == "21", "This prints if this assert fails 1 (good for debugging!)" def test5(): assert candidate(11, 101) == "11", "This prints if this assert fails 2 (also good for debugging!)"
HumanEval/66
def digitSum(s): """Task Write a function that takes a string as input and returns the sum of the upper characters only' ASCII codes. Examples: digitSum("") => 0 digitSum("abAB") => 131 digitSum("abcCd") => 67 digitSum("helloE") => 69 digitSum("woArBld") => 131 digitSum("aAaaaXa") => 153 """
if s == "": return 0 return sum(ord(char) if char.isupper() else 0 for char in s)
candidate = digitSum def test1(): assert True, "This prints if this assert fails 1 (good for debugging!)" def test2(): assert candidate("") == 0, "Error" def test3(): assert candidate("abAB") == 131, "Error" def test4(): assert candidate("abcCd") == 67, "Error" def test5(): assert candidate("helloE") == 69, "Error" def test6(): assert candidate("woArBld") == 131, "Error" def test7(): assert candidate("aAaaaXa") == 153, "Error" def test8(): assert True, "This prints if this assert fails 2 (also good for debugging!)" def test9(): assert candidate(" How are yOu?") == 151, "Error" def test10(): assert candidate("You arE Very Smart") == 327, "Error"
HumanEval/67
def fruit_distribution(s,n): """ In this task, you will be given a string that represents a number of apples and oranges that are distributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total number of the oranges and apples and an integer that represent the total number of the fruits in the basket return the number of the mango fruits in the basket. for examble: fruit_distribution("5 apples and 6 oranges", 19) ->19 - 5 - 6 = 8 fruit_distribution("0 apples and 1 oranges",3) -> 3 - 0 - 1 = 2 fruit_distribution("2 apples and 3 oranges", 100) -> 100 - 2 - 3 = 95 fruit_distribution("100 apples and 1 oranges",120) -> 120 - 100 - 1 = 19 """
lis = list() for i in s.split(' '): if i.isdigit(): lis.append(int(i)) return n - sum(lis)
candidate = fruit_distribution def test1(): assert candidate("5 apples and 6 oranges",19) == 8 def test2(): assert candidate("5 apples and 6 oranges",21) == 10 def test3(): assert candidate("0 apples and 1 oranges",3) == 2 def test4(): assert candidate("1 apples and 0 oranges",3) == 2 def test5(): assert candidate("2 apples and 3 oranges",100) == 95 def test6(): assert candidate("2 apples and 3 oranges",5) == 0 def test7(): assert candidate("1 apples and 100 oranges",120) == 19
HumanEval/68
def pluck(arr): """ "Given an array representing a branch of a tree that has non-negative integer nodes your task is to pluck one of the nodes and return it. The plucked node should be the node with the smallest even value. If multiple nodes with the same smallest even value are found return the node that has smallest index. The plucked node should be returned in a list, [ smalest_value, its index ], If there are no even values or the given array is empty, return []. Example 1: Input: [4,2,3] Output: [2, 1] Explanation: 2 has the smallest even value, and 2 has the smallest index. Example 2: Input: [1,2,3] Output: [2, 1] Explanation: 2 has the smallest even value, and 2 has the smallest index. Example 3: Input: [] Output: [] Example 4: Input: [5, 0, 3, 0, 4, 2] Output: [0, 1] Explanation: 0 is the smallest value, but there are two zeros, so we will choose the first zero, which has the smallest index. Constraints: * 1 <= nodes.length <= 10000 * 0 <= node.value """
if(len(arr) == 0): return [] evens = list(filter(lambda x: x%2 == 0, arr)) if(evens == []): return [] return [min(evens), arr.index(min(evens))]
candidate = pluck def test1(): assert True, "This prints if this assert fails 1 (good for debugging!)" def test2(): assert candidate([4,2,3]) == [2, 1], "Error" def test3(): assert candidate([1,2,3]) == [2, 1], "Error" def test4(): assert candidate([]) == [], "Error" def test5(): assert candidate([5, 0, 3, 0, 4, 2]) == [0, 1], "Error" def test6(): assert True, "This prints if this assert fails 2 (also good for debugging!)" def test7(): assert candidate([1, 2, 3, 0, 5, 3]) == [0, 3], "Error" def test8(): assert candidate([5, 4, 8, 4 ,8]) == [4, 1], "Error" def test9(): assert candidate([7, 6, 7, 1]) == [6, 1], "Error" def test10(): assert candidate([7, 9, 7, 1]) == [], "Error"
HumanEval/69
def search(lst): ''' You are given a non-empty list of positive integers. Return the greatest integer that is greater than zero, and has a frequency greater than or equal to the value of the integer itself. The frequency of an integer is the number of times it appears in the list. If no such a value exist, return -1. Examples: search([4, 1, 2, 2, 3, 1]) == 2 search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3 search([5, 5, 4, 4, 4]) == -1 '''
frq = [0] * (max(lst) + 1) for i in lst: frq[i] += 1; ans = -1 for i in range(1, len(frq)): if frq[i] >= i: ans = i return ans
candidate = search def test1(): assert candidate([5, 5, 5, 5, 1]) == 1 def test2(): assert candidate([4, 1, 4, 1, 4, 4]) == 4 def test3(): assert candidate([3, 3]) == -1 def test4(): assert candidate([8, 8, 8, 8, 8, 8, 8, 8]) == 8 def test5(): assert candidate([2, 3, 3, 2, 2]) == 2 def test6(): assert candidate([2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1 def test7(): assert candidate([3, 2, 8, 2]) == 2 def test8(): assert candidate([6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1 def test9(): assert candidate([8, 8, 3, 6, 5, 6, 4]) == -1 def test10(): assert candidate([6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1 def test11(): assert candidate([1, 9, 10, 1, 3]) == 1 def test12(): assert candidate([6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5 def test13(): assert candidate([1]) == 1 def test14(): assert candidate([8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4 def test15(): assert candidate([2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2 def test16(): assert candidate([1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1 def test17(): assert candidate([9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4 def test18(): assert candidate([2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4 def test19(): assert candidate([9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2 def test20(): assert candidate([5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1 def test21(): assert candidate([10]) == -1 def test22(): assert candidate([9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2 def test23(): assert candidate([5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1 def test24(): assert candidate([7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1 def test25(): assert candidate([3, 10, 10, 9, 2]) == -1
HumanEval/70
def strange_sort_list(lst): ''' Given list of integers, return list in strange order. Strange sorting, is when you start with the minimum value, then maximum of the remaining integers, then minimum and so on. Examples: strange_sort_list([1, 2, 3, 4]) == [1, 4, 2, 3] strange_sort_list([5, 5, 5, 5]) == [5, 5, 5, 5] strange_sort_list([]) == [] '''
res, switch = [], True while lst: res.append(min(lst) if switch else max(lst)) lst.remove(res[-1]) switch = not switch return res
candidate = strange_sort_list def test1(): assert candidate([1, 2, 3, 4]) == [1, 4, 2, 3] def test2(): assert candidate([5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7] def test3(): assert candidate([1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3] def test4(): assert candidate([5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7] def test5(): assert candidate([5, 5, 5, 5]) == [5, 5, 5, 5] def test6(): assert candidate([]) == [] def test7(): assert candidate([1,2,3,4,5,6,7,8]) == [1, 8, 2, 7, 3, 6, 4, 5] def test8(): assert candidate([0,2,2,2,5,5,-5,-5]) == [-5, 5, -5, 5, 0, 2, 2, 2] def test9(): assert candidate([111111]) == [111111] def test10(): assert True
HumanEval/71
def triangle_area(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Otherwise return -1 Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: triangle_area(3, 4, 5) == 6.00 triangle_area(1, 2, 10) == -1 '''
if a + b <= c or a + c <= b or b + c <= a: return -1 s = (a + b + c)/2 area = (s * (s - a) * (s - b) * (s - c)) ** 0.5 area = round(area, 2) return area
candidate = triangle_area def test1(): assert candidate(3, 4, 5) == 6.00, "This prints if this assert fails 1 (good for debugging!)" def test2(): assert candidate(1, 2, 10) == -1 def test3(): assert candidate(4, 8, 5) == 8.18 def test4(): assert candidate(2, 2, 2) == 1.73 def test5(): assert candidate(1, 2, 3) == -1 def test6(): assert candidate(10, 5, 7) == 16.25 def test7(): assert candidate(2, 6, 3) == -1 def test8(): assert candidate(1, 1, 1) == 0.43, "This prints if this assert fails 2 (also good for debugging!)" def test9(): assert candidate(2, 2, 10) == -1
HumanEval/72
def will_it_fly(q,w): ''' Write a function that returns True if the object q will fly, and False otherwise. The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w. Example: will_it_fly([1, 2], 5) âžž False # 1+2 is less than the maximum possible weight, but it's unbalanced. will_it_fly([3, 2, 3], 1) âžž False # it's balanced, but 3+2+3 is more than the maximum possible weight. will_it_fly([3, 2, 3], 9) âžž True # 3+2+3 is less than the maximum possible weight, and it's balanced. will_it_fly([3], 5) âžž True # 3 is less than the maximum possible weight, and it's balanced. '''
if sum(q) > w: return False i, j = 0, len(q)-1 while i<j: if q[i] != q[j]: return False i+=1 j-=1 return True
candidate = will_it_fly def test1(): assert candidate([3, 2, 3], 9) is True def test2(): assert candidate([1, 2], 5) is False def test3(): assert candidate([3], 5) is True def test4(): assert candidate([3, 2, 3], 1) is False def test5(): assert candidate([1, 2, 3], 6) is False def test6(): assert candidate([5], 5) is True
HumanEval/73
def smallest_change(arr): """ Given an array arr of integers, find the minimum number of elements that need to be changed to make the array palindromic. A palindromic array is an array that is read the same backwards and forwards. In one change, you can change one element to any other element. For example: smallest_change([1,2,3,5,4,7,9,6]) == 4 smallest_change([1, 2, 3, 4, 3, 2, 2]) == 1 smallest_change([1, 2, 3, 2, 1]) == 0 """
ans = 0 for i in range(len(arr) // 2): if arr[i] != arr[len(arr) - i - 1]: ans += 1 return ans
candidate = smallest_change def test1(): assert candidate([1,2,3,5,4,7,9,6]) == 4 def test2(): assert candidate([1, 2, 3, 4, 3, 2, 2]) == 1 def test3(): assert candidate([1, 4, 2]) == 1 def test4(): assert candidate([1, 4, 4, 2]) == 1 def test5(): assert candidate([1, 2, 3, 2, 1]) == 0 def test6(): assert candidate([3, 1, 1, 3]) == 0 def test7(): assert candidate([1]) == 0 def test8(): assert candidate([0, 1]) == 1
HumanEval/74
def total_match(lst1, lst2): ''' Write a function that accepts two lists of strings and returns the list that has total number of chars in the all strings of the list less than the other list. if the two lists have the same number of chars, return the first list. Examples total_match([], []) âžž [] total_match(['hi', 'admin'], ['hI', 'Hi']) âžž ['hI', 'Hi'] total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) âžž ['hi', 'admin'] total_match(['hi', 'admin'], ['hI', 'hi', 'hi']) âžž ['hI', 'hi', 'hi'] total_match(['4'], ['1', '2', '3', '4', '5']) âžž ['4'] '''
l1 = 0 for st in lst1: l1 += len(st) l2 = 0 for st in lst2: l2 += len(st) if l1 <= l2: return lst1 else: return lst2
candidate = total_match def test1(): assert True, "This prints if this assert fails 1 (good for debugging!)" def test2(): assert candidate([], []) == [] def test3(): assert candidate(['hi', 'admin'], ['hi', 'hi']) == ['hi', 'hi'] def test4(): assert candidate(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) == ['hi', 'admin'] def test5(): assert candidate(['4'], ['1', '2', '3', '4', '5']) == ['4'] def test6(): assert candidate(['hi', 'admin'], ['hI', 'Hi']) == ['hI', 'Hi'] def test7(): assert candidate(['hi', 'admin'], ['hI', 'hi', 'hi']) == ['hI', 'hi', 'hi'] def test8(): assert candidate(['hi', 'admin'], ['hI', 'hi', 'hii']) == ['hi', 'admin'] def test9(): assert True, "This prints if this assert fails 2 (also good for debugging!)" def test10(): assert candidate([], ['this']) == [] def test11(): assert candidate(['this'], []) == []
HumanEval/75
def is_multiply_prime(a): """Write a function that returns true if the given number is the multiplication of 3 prime numbers and false otherwise. Knowing that (a) is less then 100. Example: is_multiply_prime(30) == True 30 = 2 * 3 * 5 """
def is_prime(n): for j in range(2,n): if n%j == 0: return False return True for i in range(2,101): if not is_prime(i): continue for j in range(2,101): if not is_prime(j): continue for k in range(2,101): if not is_prime(k): continue if i*j*k == a: return True return False
candidate = is_multiply_prime def test1(): assert candidate(5) == False def test2(): assert candidate(30) == True def test3(): assert candidate(8) == True def test4(): assert candidate(10) == False def test5(): assert candidate(125) == True def test6(): assert candidate(3 * 5 * 7) == True def test7(): assert candidate(3 * 6 * 7) == False def test8(): assert candidate(9 * 9 * 9) == False def test9(): assert candidate(11 * 9 * 9) == False def test10(): assert candidate(11 * 13 * 7) == True
HumanEval/76
def is_simple_power(x, n): """Your task is to write a function that returns true if a number x is a simple power of n and false in other cases. x is a simple power of n if n**int=x For example: is_simple_power(1, 4) => true is_simple_power(2, 2) => true is_simple_power(8, 2) => true is_simple_power(3, 2) => false is_simple_power(3, 1) => false is_simple_power(5, 3) => false """
if (n == 1): return (x == 1) power = 1 while (power < x): power = power * n return (power == x)
candidate = is_simple_power def test1(): assert candidate(16, 2)== True, "This prints if this assert fails 1 (good for debugging!)" def test2(): assert candidate(143214, 16)== False, "This prints if this assert fails 1 (good for debugging!)" def test3(): assert candidate(4, 2)==True, "This prints if this assert fails 1 (good for debugging!)" def test4(): assert candidate(9, 3)==True, "This prints if this assert fails 1 (good for debugging!)" def test5(): assert candidate(16, 4)==True, "This prints if this assert fails 1 (good for debugging!)" def test6(): assert candidate(24, 2)==False, "This prints if this assert fails 1 (good for debugging!)" def test7(): assert candidate(128, 4)==False, "This prints if this assert fails 1 (good for debugging!)" def test8(): assert candidate(12, 6)==False, "This prints if this assert fails 1 (good for debugging!)" def test9(): assert candidate(1, 1)==True, "This prints if this assert fails 2 (also good for debugging!)" def test10(): assert candidate(1, 12)==True, "This prints if this assert fails 2 (also good for debugging!)"
HumanEval/77
def iscube(a): ''' Write a function that takes an integer a and returns True if this ingeger is a cube of some integer number. Note: you may assume the input is always valid. Examples: iscube(1) ==> True iscube(2) ==> False iscube(-1) ==> True iscube(64) ==> True iscube(0) ==> True iscube(180) ==> False '''
a = abs(a) return int(round(a ** (1. / 3))) ** 3 == a
candidate = iscube def test1(): assert candidate(1) == True, "First test error: " + str(candidate(1)) def test2(): assert candidate(2) == False, "Second test error: " + str(candidate(2)) def test3(): assert candidate(-1) == True, "Third test error: " + str(candidate(-1)) def test4(): assert candidate(64) == True, "Fourth test error: " + str(candidate(64)) def test5(): assert candidate(180) == False, "Fifth test error: " + str(candidate(180)) def test6(): assert candidate(1000) == True, "Sixth test error: " + str(candidate(1000)) def test7(): assert candidate(0) == True, "1st edge test error: " + str(candidate(0)) def test8(): assert candidate(1729) == False, "2nd edge test error: " + str(candidate(1728))
HumanEval/78
def hex_key(num): """You have been tasked to write a function that receives a hexadecimal number as a string and counts the number of hexadecimal digits that are primes (prime number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, B (=decimal 11), D (=decimal 13). Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always uppercase. Examples: For num = "AB" the output should be 1. For num = "1077E" the output should be 2. For num = "ABED1A33" the output should be 4. For num = "123456789ABCDEF0" the output should be 6. For num = "2020" the output should be 2. """
primes = ('2', '3', '5', '7', 'B', 'D') total = 0 for i in range(0, len(num)): if num[i] in primes: total += 1 return total
candidate = hex_key def test1(): assert candidate("AB") == 1, "First test error: " + str(candidate("AB")) def test2(): assert candidate("1077E") == 2, "Second test error: " + str(candidate("1077E")) def test3(): assert candidate("ABED1A33") == 4, "Third test error: " + str(candidate("ABED1A33")) def test4(): assert candidate("2020") == 2, "Fourth test error: " + str(candidate("2020")) def test5(): assert candidate("123456789ABCDEF0") == 6, "Fifth test error: " + str(candidate("123456789ABCDEF0")) def test6(): assert candidate("112233445566778899AABBCCDDEEFF00") == 12, "Sixth test error: " + str(candidate("112233445566778899AABBCCDDEEFF00")) def test7(): assert candidate([]) == 0
HumanEval/79
def decimal_to_binary(decimal): """You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1'. There will be an extra couple of characters 'db' at the beginning and at the end of the string. The extra characters are there to help with the format. Examples: decimal_to_binary(15) # returns "db1111db" decimal_to_binary(32) # returns "db100000db" """
return "db" + bin(decimal)[2:] + "db"
candidate = decimal_to_binary def test1(): assert candidate(0) == "db0db" def test2(): assert candidate(32) == "db100000db" def test3(): assert candidate(103) == "db1100111db" def test4(): assert candidate(15) == "db1111db", "This prints if this assert fails 1 (good for debugging!)" def test5(): assert True, "This prints if this assert fails 2 (also good for debugging!)"
HumanEval/80
def is_happy(s): """You are given a string s. Your task is to check if the string is happy or not. A string is happy if its length is at least 3 and every 3 consecutive letters are distinct For example: is_happy(a) => False is_happy(aa) => False is_happy(abcd) => True is_happy(aabb) => False is_happy(adb) => True is_happy(xyy) => False """
if len(s) < 3: return False for i in range(len(s) - 2): if s[i] == s[i+1] or s[i+1] == s[i+2] or s[i] == s[i+2]: return False return True
candidate = is_happy def test1(): assert candidate("a") == False , "a" def test2(): assert candidate("aa") == False , "aa" def test3(): assert candidate("abcd") == True , "abcd" def test4(): assert candidate("aabb") == False , "aabb" def test5(): assert candidate("adb") == True , "adb" def test6(): assert candidate("xyy") == False , "xyy" def test7(): assert candidate("iopaxpoi") == True , "iopaxpoi" def test8(): assert candidate("iopaxioi") == False , "iopaxioi"
HumanEval/81
def numerical_letter_grade(grades): """It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of letter grades using the following table: GPA | Letter grade 4.0 A+ > 3.7 A > 3.3 A- > 3.0 B+ > 2.7 B > 2.3 B- > 2.0 C+ > 1.7 C > 1.3 C- > 1.0 D+ > 0.7 D > 0.0 D- 0.0 E Example: grade_equation([4.0, 3, 1.7, 2, 3.5]) ==> ['A+', 'B', 'C-', 'C', 'A-'] """
letter_grade = [] for gpa in grades: if gpa == 4.0: letter_grade.append("A+") elif gpa > 3.7: letter_grade.append("A") elif gpa > 3.3: letter_grade.append("A-") elif gpa > 3.0: letter_grade.append("B+") elif gpa > 2.7: letter_grade.append("B") elif gpa > 2.3: letter_grade.append("B-") elif gpa > 2.0: letter_grade.append("C+") elif gpa > 1.7: letter_grade.append("C") elif gpa > 1.3: letter_grade.append("C-") elif gpa > 1.0: letter_grade.append("D+") elif gpa > 0.7: letter_grade.append("D") elif gpa > 0.0: letter_grade.append("D-") else: letter_grade.append("E") return letter_grade
candidate = numerical_letter_grade def test1(): assert candidate([4.0, 3, 1.7, 2, 3.5]) == ['A+', 'B', 'C-', 'C', 'A-'] def test2(): assert candidate([1.2]) == ['D+'] def test3(): assert candidate([0.5]) == ['D-'] def test4(): assert candidate([0.0]) == ['E'] def test5(): assert candidate([1, 0.3, 1.5, 2.8, 3.3]) == ['D', 'D-', 'C-', 'B', 'B+'] def test6(): assert candidate([0, 0.7]) == ['E', 'D-'] def test7(): assert True
HumanEval/82
def prime_length(string): """Write a function that takes a string and returns True if the string length is a prime number or False otherwise Examples prime_length('Hello') == True prime_length('abcdcba') == True prime_length('kittens') == True prime_length('orange') == False """
l = len(string) if l == 0 or l == 1: return False for i in range(2, l): if l % i == 0: return False return True
candidate = prime_length def test1(): assert candidate('Hello') == True def test2(): assert candidate('abcdcba') == True def test3(): assert candidate('kittens') == True def test4(): assert candidate('orange') == False def test5(): assert candidate('wow') == True def test6(): assert candidate('world') == True def test7(): assert candidate('MadaM') == True def test8(): assert candidate('Wow') == True def test9(): assert candidate('') == False def test10(): assert candidate('HI') == True def test11(): assert candidate('go') == True def test12(): assert candidate('gogo') == False def test13(): assert candidate('aaaaaaaaaaaaaaa') == False def test14(): assert candidate('Madam') == True def test15(): assert candidate('M') == False def test16(): assert candidate('0') == False
HumanEval/83
def starts_one_ends(n): """ Given a positive integer n, return the count of the numbers of n-digit positive integers that start or end with 1. """
if n == 1: return 1 return 18 * (10 ** (n - 2))
candidate = starts_one_ends def test1(): assert True, "This prints if this assert fails 1 (good for debugging!)" def test2(): assert candidate(1) == 1 def test3(): assert candidate(2) == 18 def test4(): assert candidate(3) == 180 def test5(): assert candidate(4) == 1800 def test6(): assert candidate(5) == 18000 def test7(): assert True, "This prints if this assert fails 2 (also good for debugging!)"
HumanEval/84
def solve(N): """Given a positive integer N, return the total sum of its digits in binary. Example For N = 1000, the sum of digits will be 1 the output should be "1". For N = 150, the sum of digits will be 6 the output should be "110". For N = 147, the sum of digits will be 12 the output should be "1100". Variables: @N integer Constraints: 0 ≤ N ≤ 10000. Output: a string of binary number """
return bin(sum(int(i) for i in str(N)))[2:]
candidate = solve def test1(): assert True, "This prints if this assert fails 1 (good for debugging!)" def test2(): assert candidate(1000) == "1", "Error" def test3(): assert candidate(150) == "110", "Error" def test4(): assert candidate(147) == "1100", "Error" def test5(): assert True, "This prints if this assert fails 2 (also good for debugging!)" def test6(): assert candidate(333) == "1001", "Error" def test7(): assert candidate(963) == "10010", "Error"
HumanEval/85
def add(lst): """Given a non-empty list of integers lst. add the even elements that are at odd indices.. Examples: add([4, 2, 6, 7]) ==> 2 """
return sum([lst[i] for i in range(1, len(lst), 2) if lst[i]%2 == 0])
candidate = add def test1(): assert candidate([4, 88]) == 88 def test2(): assert candidate([4, 5, 6, 7, 2, 122]) == 122 def test3(): assert candidate([4, 0, 6, 7]) == 0 def test4(): assert candidate([4, 4, 6, 8]) == 12
HumanEval/86
def anti_shuffle(s): """ Write a function that takes a string and returns an ordered version of it. Ordered version of string, is a string where all words (separated by space) are replaced by a new word where all the characters arranged in ascending order based on ascii value. Note: You should keep the order of words and blank spaces in the sentence. For example: anti_shuffle('Hi') returns 'Hi' anti_shuffle('hello') returns 'ehllo' anti_shuffle('Hello World!!!') returns 'Hello !!!Wdlor' """
return ' '.join([''.join(sorted(list(i))) for i in s.split(' ')])
candidate = anti_shuffle def test1(): assert candidate('Hi') == 'Hi' def test2(): assert candidate('hello') == 'ehllo' def test3(): assert candidate('number') == 'bemnru' def test4(): assert candidate('abcd') == 'abcd' def test5(): assert candidate('Hello World!!!') == 'Hello !!!Wdlor' def test6(): assert candidate('') == '' def test7(): assert candidate('Hi. My name is Mister Robot. How are you?') == '.Hi My aemn is Meirst .Rboot How aer ?ouy' def test8(): assert True
HumanEval/87
def get_row(lst, x): """ You are given a 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list, and return list of tuples, [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate - (row, columns), starting with 0. Sort coordinates initially by rows in ascending order. Also, sort coordinates of the row by columns in descending order. Examples: get_row([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)] get_row([], 1) == [] get_row([[], [1], [1, 2, 3]], 3) == [(2, 2)] """
coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x] return sorted(sorted(coords, key=lambda x: x[1], reverse=True), key=lambda x: x[0])
candidate = get_row def test1(): assert candidate([ def test2(): assert candidate([ def test3(): assert candidate([ def test4(): assert candidate([], 1) == [] def test5(): assert candidate([[1]], 2) == [] def test6(): assert candidate([[], [1], [1, 2, 3]], 3) == [(2, 2)] def test7(): assert True
HumanEval/88
def sort_array(array): """ Given an array of non-negative integers, return a copy of the given array after sorting, you will sort the given array in ascending order if the sum( first index value, last index value) is odd, or sort it in descending order if the sum( first index value, last index value) is even. Note: * don't change the given array. Examples: * sort_array([]) => [] * sort_array([5]) => [5] * sort_array([2, 4, 3, 0, 1, 5]) => [0, 1, 2, 3, 4, 5] * sort_array([2, 4, 3, 0, 1, 5, 6]) => [6, 5, 4, 3, 2, 1, 0] """
return [] if len(array) == 0 else sorted(array, reverse= (array[0]+array[-1]) % 2 == 0)
candidate = sort_array def test1(): assert True, "This prints if this assert fails 1 (good for debugging!)" def test2(): assert candidate([]) == [], "Error" def test3(): assert candidate([5]) == [5], "Error" def test4(): assert candidate([2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5], "Error" def test5(): assert candidate([2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0], "Error" def test6(): assert True, "This prints if this assert fails 2 (also good for debugging!)" def test7(): assert candidate([2, 1]) == [1, 2], "Error" def test8(): assert candidate([15, 42, 87, 32 ,11, 0]) == [0, 11, 15, 32, 42, 87], "Error" def test9(): assert candidate([21, 14, 23, 11]) == [23, 21, 14, 11], "Error"
HumanEval/89
def encrypt(s): """Create a function encrypt that takes a string as an argument and returns a string encrypted with the alphabet being rotated. The alphabet should be rotated in a manner such that the letters shift down by two multiplied to two places. For example: encrypt('hi') returns 'lm' encrypt('asdfghjkl') returns 'ewhjklnop' encrypt('gf') returns 'kj' encrypt('et') returns 'ix' """
d = 'abcdefghijklmnopqrstuvwxyz' out = '' for c in s: if c in d: out += d[(d.index(c)+2*2) % 26] else: out += c return out
candidate = encrypt def test1(): assert candidate('hi') == 'lm', "This prints if this assert fails 1 (good for debugging!)" def test2(): assert candidate('asdfghjkl') == 'ewhjklnop', "This prints if this assert fails 1 (good for debugging!)" def test3(): assert candidate('gf') == 'kj', "This prints if this assert fails 1 (good for debugging!)" def test4(): assert candidate('et') == 'ix', "This prints if this assert fails 1 (good for debugging!)" def test5(): assert candidate('faewfawefaewg')=='jeiajeaijeiak', "This prints if this assert fails 1 (good for debugging!)" def test6(): assert candidate('hellomyfriend')=='lippsqcjvmirh', "This prints if this assert fails 2 (good for debugging!)" def test7(): assert candidate('dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh')=='hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl', "This prints if this assert fails 3 (good for debugging!)" def test8(): assert candidate('a')=='e', "This prints if this assert fails 2 (also good for debugging!)"
HumanEval/90
def next_smallest(lst): """ You are given a list of integers. Write a function next_smallest() that returns the 2nd smallest element of the list. Return None if there is no such element. next_smallest([1, 2, 3, 4, 5]) == 2 next_smallest([5, 1, 4, 3, 2]) == 2 next_smallest([]) == None next_smallest([1, 1]) == None """
lst = sorted(set(lst)) return None if len(lst) < 2 else lst[1]
candidate = next_smallest def test1(): assert candidate([1, 2, 3, 4, 5]) == 2 def test2(): assert candidate([5, 1, 4, 3, 2]) == 2 def test3(): assert candidate([]) == None def test4(): assert candidate([1, 1]) == None def test5(): assert candidate([1,1,1,1,0]) == 1 def test6(): assert candidate([1, 0**0]) == None def test7(): assert candidate([-35, 34, 12, -45]) == -35 def test8(): assert True
HumanEval/91
def is_bored(S): """ You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with the word "I". Sentences are delimited by '.', '?' or '!'. For example: >>> is_bored("Hello world") 0 >>> is_bored("The sky is blue. The sun is shining. I love this weather") 1 """
import re sentences = re.split(r'[.?!]\s*', S) return sum(sentence[0:2] == 'I ' for sentence in sentences)
candidate = is_bored def test1(): assert candidate("Hello world") == 0, "Test 1" def test2(): assert candidate("Is the sky blue?") == 0, "Test 2" def test3(): assert candidate("I love It !") == 1, "Test 3" def test4(): assert candidate("bIt") == 0, "Test 4" def test5(): assert candidate("I feel good today. I will be productive. will kill It") == 2, "Test 5" def test6(): assert candidate("You and I are going for a walk") == 0, "Test 6" def test7(): assert True, "This prints if this assert fails 2 (also good for debugging!)"
HumanEval/92
def any_int(x, y, z): ''' Create a function that takes 3 numbers. Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers. Returns false in any other cases. Examples any_int(5, 2, 7) âžž True any_int(3, 2, 2) âžž False any_int(3, -2, 1) âžž True any_int(3.6, -2.2, 2) âžž False '''
if isinstance(x,int) and isinstance(y,int) and isinstance(z,int): if (x+y==z) or (x+z==y) or (y+z==x): return True return False return False
candidate = any_int def test1(): assert candidate(2, 3, 1)==True, "This prints if this assert fails 1 (good for debugging!)" def test2(): assert candidate(2.5, 2, 3)==False, "This prints if this assert fails 2 (good for debugging!)" def test3(): assert candidate(1.5, 5, 3.5)==False, "This prints if this assert fails 3 (good for debugging!)" def test4(): assert candidate(2, 6, 2)==False, "This prints if this assert fails 4 (good for debugging!)" def test5(): assert candidate(4, 2, 2)==True, "This prints if this assert fails 5 (good for debugging!)" def test6(): assert candidate(2.2, 2.2, 2.2)==False, "This prints if this assert fails 6 (good for debugging!)" def test7(): assert candidate(-4, 6, 2)==True, "This prints if this assert fails 7 (good for debugging!)" def test8(): assert candidate(2,1,1)==True, "This prints if this assert fails 8 (also good for debugging!)" def test9(): assert candidate(3,4,7)==True, "This prints if this assert fails 9 (also good for debugging!)" def test10(): assert candidate(3.0,4,7)==False, "This prints if this assert fails 10 (also good for debugging!)"
HumanEval/93
def encode(message): """ Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears 2 places ahead of that vowel in the english alphabet. Assume only letters. Examples: >>> encode('test') 'TGST' >>> encode('This is a message') 'tHKS KS C MGSSCGG' """
vowels = "aeiouAEIOU" vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels]) message = message.swapcase() return ''.join([vowels_replace[i] if i in vowels else i for i in message])
candidate = encode def test1(): assert candidate('TEST') == 'tgst', "This prints if this assert fails 1 (good for debugging!)" def test2(): assert candidate('Mudasir') == 'mWDCSKR', "This prints if this assert fails 2 (good for debugging!)" def test3(): assert candidate('YES') == 'ygs', "This prints if this assert fails 3 (good for debugging!)" def test4(): assert candidate('This is a message') == 'tHKS KS C MGSSCGG', "This prints if this assert fails 2 (also good for debugging!)" def test5(): assert candidate("I DoNt KnOw WhAt tO WrItE") == 'k dQnT kNqW wHcT Tq wRkTg', "This prints if this assert fails 2 (also good for debugging!)"
HumanEval/94
def skjkasdkd(lst): """You are given a list of integers. You need to find the largest prime value and return the sum of its digits. Examples: For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 10 For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 25 For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 13 For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 11 For lst = [0,81,12,3,1,21] the output should be 3 For lst = [0,8,1,2,1,7] the output should be 7 """
def isPrime(n): for i in range(2,int(n**0.5)+1): if n%i==0: return False return True maxx = 0 i = 0 while i < len(lst): if(lst[i] > maxx and isPrime(lst[i])): maxx = lst[i] i+=1 result = sum(int(digit) for digit in str(maxx)) return result
candidate = skjkasdkd def test1(): assert candidate([0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3]) == 10, "This prints if this assert fails 1 (good for debugging!)" def test2(): assert candidate([1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1]) == 25, "This prints if this assert fails 2 (also good for debugging!)" def test3(): assert candidate([1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3]) == 13, "This prints if this assert fails 3 (also good for debugging!)" def test4(): assert candidate([0,724,32,71,99,32,6,0,5,91,83,0,5,6]) == 11, "This prints if this assert fails 4 (also good for debugging!)" def test5(): assert candidate([0,81,12,3,1,21]) == 3, "This prints if this assert fails 5 (also good for debugging!)" def test6(): assert candidate([0,8,1,2,1,7]) == 7, "This prints if this assert fails 6 (also good for debugging!)" def test7(): assert candidate([8191]) == 19, "This prints if this assert fails 7 (also good for debugging!)" def test8(): assert candidate([8191, 123456, 127, 7]) == 19, "This prints if this assert fails 8 (also good for debugging!)" def test9(): assert candidate([127, 97, 8192]) == 10, "This prints if this assert fails 9 (also good for debugging!)"
HumanEval/95
def check_dict_case(dict): """ Given a dictionary, return True if all keys are strings in lower case or all keys are strings in upper case, else return False. The function should return False is the given dictionary is empty. Examples: check_dict_case({"a":"apple", "b":"banana"}) should return True. check_dict_case({"a":"apple", "A":"banana", "B":"banana"}) should return False. check_dict_case({"a":"apple", 8:"banana", "a":"apple"}) should return False. check_dict_case({"Name":"John", "Age":"36", "City":"Houston"}) should return False. check_dict_case({"STATE":"NC", "ZIP":"12345" }) should return True. """
if len(dict.keys()) == 0: return False else: state = "start" for key in dict.keys(): if isinstance(key, str) == False: state = "mixed" break if state == "start": if key.isupper(): state = "upper" elif key.islower(): state = "lower" else: break elif (state == "upper" and not key.isupper()) or (state == "lower" and not key.islower()): state = "mixed" break else: break return state == "upper" or state == "lower"
candidate = check_dict_case def test1(): assert candidate({"p":"pineapple", "b":"banana"}) == True, "First test error: " + str(candidate({"p":"pineapple", "b":"banana"})) def test2(): assert candidate({"p":"pineapple", "A":"banana", "B":"banana"}) == False, "Second test error: " + str(candidate({"p":"pineapple", "A":"banana", "B":"banana"})) def test3(): assert candidate({"p":"pineapple", 5:"banana", "a":"apple"}) == False, "Third test error: " + str(candidate({"p":"pineapple", 5:"banana", "a":"apple"})) def test4(): assert candidate({"Name":"John", "Age":"36", "City":"Houston"}) == False, "Fourth test error: " + str(candidate({"Name":"John", "Age":"36", "City":"Houston"})) def test5(): assert candidate({"STATE":"NC", "ZIP":"12345" }) == True, "Fifth test error: " + str(candidate({"STATE":"NC", "ZIP":"12345" })) def test6(): assert candidate({"fruit":"Orange", "taste":"Sweet" }) == True, "Fourth test error: " + str(candidate({"fruit":"Orange", "taste":"Sweet" })) def test7(): assert candidate({}) == False, "1st edge test error: " + str(candidate({}))
HumanEval/96
def count_up_to(n): """Implement a function that takes an non-negative integer and returns an array of the first n integers that are prime numbers and less than n. for example: count_up_to(5) => [2,3] count_up_to(11) => [2,3,5,7] count_up_to(0) => [] count_up_to(20) => [2,3,5,7,11,13,17,19] count_up_to(1) => [] count_up_to(18) => [2,3,5,7,11,13,17] """
primes = [] for i in range(2, n): is_prime = True for j in range(2, i): if i % j == 0: is_prime = False break if is_prime: primes.append(i) return primes
candidate = count_up_to def test1(): assert candidate(5) == [2,3] def test2(): assert candidate(6) == [2,3,5] def test3(): assert candidate(7) == [2,3,5] def test4(): assert candidate(10) == [2,3,5,7] def test5(): assert candidate(0) == [] def test6(): assert candidate(22) == [2,3,5,7,11,13,17,19] def test7(): assert candidate(1) == [] def test8(): assert candidate(18) == [2,3,5,7,11,13,17] def test9(): assert candidate(47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43] def test10(): assert candidate(101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
HumanEval/97
def multiply(a, b): """Complete the function that takes two integers and returns the product of their unit digits. Assume the input is always valid. Examples: multiply(148, 412) should return 16. multiply(19, 28) should return 72. multiply(2020, 1851) should return 0. multiply(14,-15) should return 20. """
return abs(a % 10) * abs(b % 10)
candidate = multiply def test1(): assert candidate(148, 412) == 16, "First test error: " + str(candidate(148, 412)) def test2(): assert candidate(19, 28) == 72, "Second test error: " + str(candidate(19, 28)) def test3(): assert candidate(2020, 1851) == 0, "Third test error: " + str(candidate(2020, 1851)) def test4(): assert candidate(14,-15) == 20, "Fourth test error: " + str(candidate(14,-15)) def test5(): assert candidate(76, 67) == 42, "Fifth test error: " + str(candidate(76, 67)) def test6(): assert candidate(17, 27) == 49, "Sixth test error: " + str(candidate(17, 27)) def test7(): assert candidate(0, 1) == 0, "1st edge test error: " + str(candidate(0, 1)) def test8(): assert candidate(0, 0) == 0, "2nd edge test error: " + str(candidate(0, 0))
HumanEval/98
def count_upper(s): """ Given a string s, count the number of uppercase vowels in even indices. For example: count_upper('aBCdEf') returns 1 count_upper('abcdefg') returns 0 count_upper('dBBE') returns 0 """
count = 0 for i in range(0,len(s),2): if s[i] in "AEIOU": count += 1 return count
candidate = count_upper def test1(): assert candidate('aBCdEf') == 1 def test2(): assert candidate('abcdefg') == 0 def test3(): assert candidate('dBBE') == 0 def test4(): assert candidate('B') == 0 def test5(): assert candidate('U') == 1 def test6(): assert candidate('') == 0 def test7(): assert candidate('EEEE') == 2 def test8(): assert True
HumanEval/99
def closest_integer(value): ''' Create a function that takes a value (string) representing a number and returns the closest integer to it. If the number is equidistant from two integers, round it away from zero. Examples >>> closest_integer("10") 10 >>> closest_integer("15.3") 15 Note: Rounding away from zero means that if the given number is equidistant from two integers, the one you should return is the one that is the farthest from zero. For example closest_integer("14.5") should return 15 and closest_integer("-14.5") should return -15. '''
from math import floor, ceil if value.count('.') == 1: # remove trailing zeros while (value[-1] == '0'): value = value[:-1] num = float(value) if value[-2:] == '.5': if num > 0: res = ceil(num) else: res = floor(num) elif len(value) > 0: res = int(round(num)) else: res = 0 return res
candidate = closest_integer def test1(): assert candidate("10") == 10, "Test 1" def test2(): assert candidate("14.5") == 15, "Test 2" def test3(): assert candidate("-15.5") == -16, "Test 3" def test4(): assert candidate("15.3") == 15, "Test 3" def test5(): assert candidate("0") == 0, "Test 0"
README.md exists but content is empty.
Downloads last month
67