Datasets:
Tasks:
Other
Modalities:
Text
Sub-tasks:
part-of-speech
Languages:
Polish
Size:
10K - 100K
Tags:
structure-prediction
License:
# coding=utf-8 | |
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""NKJP-POS tagging dataset.""" | |
import csv | |
from typing import List, Tuple, Dict, Generator | |
import datasets | |
_DESCRIPTION = """NKJP-POS tagging dataset.""" | |
_URLS = { | |
"train": "https://huggingface.co/datasets/clarin-pl/nkjp-pos/resolve/main/data/train.tsv", | |
"validation": "https://huggingface.co/datasets/clarin-pl/nkjp-pos/resolve/main/data/valid.tsv", | |
"test": "https://huggingface.co/datasets/clarin-pl/nkjp-pos/resolve/main/data/test.tsv", | |
} | |
_HOMEPAGE = "http://clip.ipipan.waw.pl/NationalCorpusOfPolish" | |
_POS_TAGS = [ | |
'adj', | |
'adja', | |
'adjc', | |
'adjp', | |
'adv', | |
'aglt', | |
'bedzie', | |
'brev', | |
'burk', | |
'comp', | |
'conj', | |
'depr', | |
'fin', | |
'ger', | |
'imps', | |
'impt', | |
'inf', | |
'interj', | |
'interp', | |
'num', | |
'numcol', | |
'pact', | |
'pant', | |
'pcon', | |
'ppas', | |
'ppron12', | |
'ppron3', | |
'praet', | |
'pred', | |
'prep', | |
'qub', | |
'siebie', | |
'subst', | |
'winien', | |
'xxx' | |
] | |
class NKJPPOS(datasets.GeneratorBasedBuilder): | |
def _info(self) -> datasets.DatasetInfo: | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"morph": datasets.Sequence(datasets.Value("string")), | |
"lemmas": datasets.Sequence(datasets.Value("string")), | |
"pos_tags": datasets.Sequence(datasets.features.ClassLabel( | |
names=_POS_TAGS, | |
num_classes=len(_POS_TAGS) | |
)), | |
"full_pos_tags": datasets.Sequence( | |
datasets.Value("string")), | |
"nps": datasets.Sequence(datasets.Value("string")), | |
} | |
), | |
homepage=_HOMEPAGE, | |
) | |
def _split_generators( | |
self, dl_manager: datasets.DownloadManager | |
) -> List[datasets.SplitGenerator]: | |
urls_to_download = _URLS | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": downloaded_files["train"]}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": downloaded_files["validation"]}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": downloaded_files["test"]}, | |
), | |
] | |
def _parse_tag( | |
tag: str | |
) -> Tuple[str, str]: | |
full_tag = tag | |
pos_tag = tag.split(':')[0] | |
return pos_tag, full_tag | |
def _generate_examples( | |
self, filepath: str | |
) -> Generator[Tuple[int, Dict[str, str]], None, None]: | |
with open(filepath, 'r', encoding="utf-8") as f: | |
reader = csv.reader(f, delimiter='\t', quoting=csv.QUOTE_NONE) | |
tokens = [] | |
morph = [] | |
tags = [] | |
full_tags = [] | |
lemma = [] | |
nps = [] | |
gid = 0 | |
for line in reader: | |
if not line: | |
yield gid, { | |
'tokens': tokens, | |
'morph': morph, | |
'pos_tags': tags, | |
'full_pos_tags': full_tags, | |
'lemmas': lemma, | |
'nps': nps | |
} | |
gid += 1 | |
tokens = [] | |
morph = [] | |
tags = [] | |
full_tags = [] | |
lemma = [] | |
nps = [] | |
else: | |
tokens.append(line[0]) | |
morph.append(line[1]) | |
lemma.append(line[3]) | |
nps.append(line[4]) | |
tag, full_tag = self._parse_tag(line[2]) | |
tags.append(tag) | |
full_tags.append(full_tag) | |