File size: 4,811 Bytes
6f50cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b42580d
6f50cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""NKJP-POS tagging dataset."""

import csv
from typing import List, Tuple, Dict, Generator

import datasets

_DESCRIPTION = """NKJP-POS tagging dataset."""

_URLS = {
    "train": "https://huggingface.co/datasets/clarin-pl/nkjp-pos/resolve/main/data/train.tsv",
    "validation": "https://huggingface.co/datasets/clarin-pl/nkjp-pos/resolve/main/data/valid.tsv",
    "test": "https://huggingface.co/datasets/clarin-pl/nkjp-pos/resolve/main/data/test.tsv",
}

_HOMEPAGE = "http://clip.ipipan.waw.pl/NationalCorpusOfPolish"

_POS_TAGS = [
    'adj',
    'adja',
    'adjc',
    'adjp',
    'adv',
    'aglt',
    'bedzie',
    'brev',
    'burk',
    'comp',
    'conj',
    'depr',
    'fin',
    'ger',
    'imps',
    'impt',
    'inf',
    'interj',
    'interp',
    'num',
    'numcol',
    'pact',
    'pant',
    'pcon',
    'ppas',
    'ppron12',
    'ppron3',
    'praet',
    'pred',
    'prep',
    'qub',
    'siebie',
    'subst',
    'winien',
    'xxx'
]


class NKJPPOS(datasets.GeneratorBasedBuilder):

    def _info(self) -> datasets.DatasetInfo:
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "morph": datasets.Sequence(datasets.Value("string")),
                    "lemmas": datasets.Sequence(datasets.Value("string")),
                    "pos_tags": datasets.Sequence(datasets.features.ClassLabel(
                        names=_POS_TAGS,
                        num_classes=len(_POS_TAGS)
                    )),
                    "full_pos_tags": datasets.Sequence(
                        datasets.Value("string")),
                    "nps": datasets.Sequence(datasets.Value("string")),
                }
            ),
            homepage=_HOMEPAGE,
        )

    def _split_generators(
            self, dl_manager: datasets.DownloadManager
    ) -> List[datasets.SplitGenerator]:
        urls_to_download = _URLS
        downloaded_files = dl_manager.download_and_extract(urls_to_download)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": downloaded_files["train"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": downloaded_files["validation"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": downloaded_files["test"]},
            ),
        ]

    @staticmethod
    def _parse_tag(
            tag: str
    ) -> Tuple[str, str]:
        full_tag = tag
        pos_tag = tag.split(':')[0]

        return pos_tag, full_tag

    def _generate_examples(
            self, filepath: str
    ) -> Generator[Tuple[int, Dict[str, str]], None, None]:
        with open(filepath, 'r', encoding="utf-8") as f:
            reader = csv.reader(f, delimiter='\t', quoting=csv.QUOTE_NONE)

            tokens = []
            morph = []
            tags = []
            full_tags = []
            lemma = []
            nps = []
            gid = 0

            for line in reader:
                if not line:
                    yield gid, {
                        'tokens': tokens,
                        'morph': morph,
                        'pos_tags': tags,
                        'full_pos_tags': full_tags,
                        'lemmas': lemma,
                        'nps': nps
                    }
                    gid += 1
                    tokens = []
                    morph = []
                    tags = []
                    full_tags = []
                    lemma = []
                    nps = []

                else:
                    tokens.append(line[0])
                    morph.append(line[1])
                    lemma.append(line[3])
                    nps.append(line[4])
                    tag, full_tag = self._parse_tag(line[2])

                    tags.append(tag)
                    full_tags.append(full_tag)