Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Languages:
Polish
Size:
1K - 10K
License:
import csv | |
from typing import List, Generator, Tuple, Dict | |
import datasets | |
from datasets import DownloadManager | |
from datasets.info import SupervisedKeysData | |
_DESCRIPTION = """AspectEmo 1.0 dataset: Multi-Domain Corpus of Consumer Reviews for Aspect-Based | |
Sentiment Analysis""" | |
_CLASSES = ['O', | |
'B-a_plus_m', | |
'B-a_minus_m', | |
'B-a_zero', | |
'B-a_minus_s', | |
'B-a_plus_s', | |
'B-a_amb', | |
'B-a_minus_m:B-a_minus_m', | |
'B-a_minus_m:B-a_minus_m:B-a_minus_m', | |
'B-a_plus_m:B-a_plus_m', | |
'B-a_plus_m:B-a_plus_m:B-a_plus_m', | |
'B-a_zero:B-a_zero:B-a_zero', | |
'B-a_zero:B-a_zero', | |
'I-a_plus_m', | |
'B-a_zero:B-a_plus_m', | |
'B-a_minus_m:B-a_zero', | |
'B-a_minus_s:B-a_minus_s:B-a_minus_s', | |
'B-a_amb:B-a_amb', | |
'I-a_minus_m', | |
'B-a_minus_s:B-a_minus_s', | |
'B-a_plus_s:B-a_plus_s:B-a_plus_s', | |
'B-a_plus_m:B-a_plus_m:B-a_plus_m:B-a_plus_m:B-a_plus_m:B-a_plus_m', | |
'B-a_plus_m:B-a_amb', | |
'B-a_minus_m:B-a_plus_m', | |
'B-a_amb:B-a_amb:B-a_amb', | |
'I-a_zero', | |
'B-a_plus_s:B-a_plus_s', | |
'B-a_plus_m:B-a_plus_s', | |
'B-a_plus_m:B-a_zero', | |
'B-a_zero:B-a_zero:B-a_zero:B-a_zero:B-a_zero:B-a_zero', | |
'B-a_zero:B-a_minus_m', | |
'B-a_amb:B-a_plus_s', | |
'B-a_zero:B-a_minus_s'] | |
_URLS = { | |
"train": "https://huggingface.co/datasets/clarin-pl/aspectemo/resolve/main/data/train.tsv", | |
"validation": "https://huggingface.co/datasets/clarin-pl/aspectemo/resolve/main/data/val.tsv", | |
"test": "https://huggingface.co/datasets/clarin-pl/aspectemo/resolve/main/data/test.tsv", | |
} | |
class AspectEmo(datasets.GeneratorBasedBuilder): | |
def _info(self) -> datasets.DatasetInfo: | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"orth": datasets.Sequence(datasets.Value("string")), | |
"ctag": datasets.Sequence(datasets.Value("string")), | |
"sentiment": datasets.Sequence(datasets.features.ClassLabel( | |
names=_CLASSES, | |
num_classes=len(_CLASSES) | |
)), | |
} | |
), | |
supervised_keys=SupervisedKeysData(input="orth", output="sentiment"), | |
homepage="https://clarin-pl.eu/dspace/handle/11321/849", | |
) | |
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: | |
urls_to_download = _URLS | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": downloaded_files["train"]}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": downloaded_files["validation"]}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": downloaded_files["test"]}, | |
), | |
] | |
def _generate_examples( | |
self, filepath: str | |
) -> Generator[Tuple[int, Dict[str, str]], None, None]: | |
with open(filepath, "r", encoding="utf-8") as f: | |
reader = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE) | |
next(reader, None) # skip header | |
id_, orth, ctag, sentiment = set(), [], [], [] | |
for line in reader: | |
if not line: | |
assert len(id_) == 1 | |
yield id_.pop(), {"orth": orth, "ctag": ctag, "sentiment": sentiment, } | |
id_, orth, ctag, sentiment = set(), [], [], [] | |
else: | |
id_.add(line[0]) | |
orth.append(line[1]) | |
ctag.append(line[2]) | |
sentiment.append(line[3]) | |