Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Languages:
Polish
Size:
1K - 10K
License:
Albert Sawczyn
commited on
Commit
·
4796b54
1
Parent(s):
9183b66
add data and loader
Browse files- aspectemo.py +104 -0
- data/test.tsv +0 -0
- data/train.tsv +0 -0
- data/val.tsv +0 -0
aspectemo.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
from typing import List, Generator, Tuple, Dict
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
from datasets import DownloadManager
|
6 |
+
from datasets.info import SupervisedKeysData
|
7 |
+
|
8 |
+
_DESCRIPTION = """AspectEmo 1.0 dataset: Multi-Domain Corpus of Consumer Reviews for Aspect-Based
|
9 |
+
Sentiment Analysis"""
|
10 |
+
|
11 |
+
_CLASSES = ['O',
|
12 |
+
'B-a_plus_m',
|
13 |
+
'B-a_minus_m',
|
14 |
+
'B-a_zero',
|
15 |
+
'B-a_minus_s',
|
16 |
+
'B-a_plus_s',
|
17 |
+
'B-a_amb',
|
18 |
+
'B-a_minus_m:B-a_minus_m',
|
19 |
+
'B-a_minus_m:B-a_minus_m:B-a_minus_m',
|
20 |
+
'B-a_plus_m:B-a_plus_m',
|
21 |
+
'B-a_plus_m:B-a_plus_m:B-a_plus_m',
|
22 |
+
'B-a_zero:B-a_zero:B-a_zero',
|
23 |
+
'B-a_zero:B-a_zero',
|
24 |
+
'I-a_plus_m',
|
25 |
+
'B-a_zero:B-a_plus_m',
|
26 |
+
'B-a_minus_m:B-a_zero',
|
27 |
+
'B-a_minus_s:B-a_minus_s:B-a_minus_s',
|
28 |
+
'B-a_amb:B-a_amb',
|
29 |
+
'I-a_minus_m',
|
30 |
+
'B-a_minus_s:B-a_minus_s',
|
31 |
+
'B-a_plus_s:B-a_plus_s:B-a_plus_s',
|
32 |
+
'B-a_plus_m:B-a_plus_m:B-a_plus_m:B-a_plus_m:B-a_plus_m:B-a_plus_m',
|
33 |
+
'B-a_plus_m:B-a_amb',
|
34 |
+
'B-a_minus_m:B-a_plus_m',
|
35 |
+
'B-a_amb:B-a_amb:B-a_amb',
|
36 |
+
'I-a_zero',
|
37 |
+
'B-a_plus_s:B-a_plus_s',
|
38 |
+
'B-a_plus_m:B-a_plus_s',
|
39 |
+
'B-a_plus_m:B-a_zero',
|
40 |
+
'B-a_zero:B-a_zero:B-a_zero:B-a_zero:B-a_zero:B-a_zero',
|
41 |
+
'B-a_zero:B-a_minus_m',
|
42 |
+
'B-a_amb:B-a_plus_s',
|
43 |
+
'B-a_zero:B-a_minus_s']
|
44 |
+
|
45 |
+
_URLS = {
|
46 |
+
"train": "https://huggingface.co/datasets/clarin-pl/aspectemo/resolve/main/data/train.tsv",
|
47 |
+
"validation": "https://huggingface.co/datasets/clarin-pl/aspectemo/resolve/main/data/val.tsv",
|
48 |
+
"test": "https://huggingface.co/datasets/clarin-pl/aspectemo/resolve/main/data/test.tsv",
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
class AspectEmo(datasets.GeneratorBasedBuilder):
|
53 |
+
def _info(self) -> datasets.DatasetInfo:
|
54 |
+
return datasets.DatasetInfo(
|
55 |
+
description=_DESCRIPTION,
|
56 |
+
features=datasets.Features(
|
57 |
+
{
|
58 |
+
"orth": datasets.Sequence(datasets.Value("string")),
|
59 |
+
"ctag": datasets.Sequence(datasets.Value("string")),
|
60 |
+
"sentiment": datasets.Sequence(datasets.features.ClassLabel(
|
61 |
+
names=_CLASSES,
|
62 |
+
num_classes=len(_CLASSES)
|
63 |
+
)),
|
64 |
+
}
|
65 |
+
),
|
66 |
+
supervised_keys=SupervisedKeysData(input="orth", output="sentiment"),
|
67 |
+
homepage="https://clarin-pl.eu/dspace/handle/11321/849",
|
68 |
+
)
|
69 |
+
|
70 |
+
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
|
71 |
+
urls_to_download = _URLS
|
72 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
73 |
+
return [
|
74 |
+
datasets.SplitGenerator(
|
75 |
+
name=datasets.Split.TRAIN,
|
76 |
+
gen_kwargs={"filepath": downloaded_files["train"]},
|
77 |
+
),
|
78 |
+
datasets.SplitGenerator(
|
79 |
+
name=datasets.Split.VALIDATION,
|
80 |
+
gen_kwargs={"filepath": downloaded_files["validation"]},
|
81 |
+
),
|
82 |
+
datasets.SplitGenerator(
|
83 |
+
name=datasets.Split.TEST,
|
84 |
+
gen_kwargs={"filepath": downloaded_files["test"]},
|
85 |
+
),
|
86 |
+
]
|
87 |
+
|
88 |
+
def _generate_examples(
|
89 |
+
self, filepath: str
|
90 |
+
) -> Generator[Tuple[int, Dict[str, str]], None, None]:
|
91 |
+
with open(filepath, "r", encoding="utf-8") as f:
|
92 |
+
reader = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
93 |
+
next(reader, None) # skip header
|
94 |
+
id_, orth, ctag, sentiment = set(), [], [], []
|
95 |
+
for line in reader:
|
96 |
+
if not line:
|
97 |
+
assert len(id_) == 1
|
98 |
+
yield id_.pop(), {"orth": orth, "ctag": ctag, "sentiment": sentiment, }
|
99 |
+
id_, orth, ctag, sentiment = set(), [], [], []
|
100 |
+
else:
|
101 |
+
id_.add(line[0])
|
102 |
+
orth.append(line[1])
|
103 |
+
ctag.append(line[2])
|
104 |
+
sentiment.append(line[3])
|
data/test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/train.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/val.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|