Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Languages:
Polish
Size:
1K - 10K
License:
File size: 4,011 Bytes
e35dccf 4796b54 e35dccf 4796b54 e35dccf 4796b54 e35dccf 4796b54 05116b0 e35dccf 4796b54 e35dccf 4796b54 e35dccf 4796b54 e35dccf 4796b54 e35dccf 4796b54 e35dccf 4796b54 e35dccf 4796b54 e35dccf 4796b54 e35dccf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from typing import Generator, Tuple, Dict, List
import datasets
from datasets import DownloadManager
from datasets.info import SupervisedKeysData
_CITATION = """@misc{11321/849,
title = {{AspectEmo} 1.0: Multi-Domain Corpus of Consumer Reviews for Aspect-Based Sentiment Analysis},
author = {Koco{\'n}, Jan and Radom, Jarema and Kaczmarz-Wawryk, Ewa and Wabnic, Kamil and Zaj{\c a}czkowska, Ada and Za{\'s}ko-Zieli{\'n}ska, Monika},
url = {http://hdl.handle.net/11321/849},
note = {{CLARIN}-{PL} digital repository},
copyright = {The {MIT} License},
year = {2021}
}"""
_DESCRIPTION = """AspectEmo dataset: Multi-Domain Corpus of Consumer Reviews for Aspect-Based
Sentiment Analysis"""
_HOMEPAGE = "https://clarin-pl.eu/dspace/handle/11321/849"
_LICENSE = "The MIT License"
_URLs = {
"1.0": "https://huggingface.co/datasets/clarin-pl/aspectemo/resolve/main/data/aspectemo1.zip",
# '2.0': "",
}
_CLASSES = ["O", "a_minus_m", "a_minus_s", "a_zero", "a_plus_s", "a_plus_m", "a_amb"]
class AspectEmo(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="1.0",
version=VERSION,
description="AspectEmo 1.0 Corpus, used in the original paper.",
),
# datasets.BuilderConfig(
# name="2.0",
# version=VERSION,
# description="",
# ),
]
DEFAULT_CONFIG_NAME = "1.0"
def _info(self) -> datasets.DatasetInfo:
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string")),
"labels": datasets.Sequence(
datasets.features.ClassLabel(
names=_CLASSES, num_classes=len(_CLASSES)
)
),
}
),
supervised_keys=SupervisedKeysData(input="tokens", output="labels"),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(
self, dl_manager: DownloadManager
) -> List[datasets.SplitGenerator]:
my_urls = _URLs[self.config.name]
data_dir = dl_manager.download_and_extract(my_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "data.json"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "data.json"),
"split": "test",
},
),
]
def _generate_examples(
self,
filepath: str,
split: str,
) -> Generator[Tuple[int, Dict[str, str]], None, None]:
with open(filepath, encoding="utf-8") as f:
data = json.load(f)[split]
for id_, row in data.items():
yield id_, {
"tokens": row["tokens"],
"labels": row["labels"],
}
|