Datasets:
annotations_creators:
- expert-generated
language:
- pl
language_creators:
- expert-generated
- found
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: wsd-polish-datasets
size_categories:
- 1M<n<10M
source_datasets:
- original
tags: []
task_categories:
- token-classification
task_ids:
- word-sense-disambiguation
Word Sense Disambiguation Corpora for Polish
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage:
- Repository:
- Paper: https://link.springer.com/chapter/10.1007/978-3-031-08754-7_70
- Point of Contact: [email protected]
Dataset Summary
WSD Polish Datasets
is a comprehensive benchmark for word sense disambiguation (WSD) classification task in Polish language.
It consists of 7 distinct datasets, manually annotated with senses from plWordNet-4.5 sense inventory. The following datasets
were annotated and included into our benchmark:
- KPWr
- KPWr-100
- Sherlock (SPEC)
- Skladnica
- WikiGlex (a subset of GLEX corpus)
- EmoGlex (a subset of GLEX corpus)
- Walenty
For more details, please check the following publication:
@InProceedings{10.1007/978-3-031-08754-7_70,
author="Janz, Arkadiusz
and Dziob, Agnieszka
and Oleksy, Marcin
and Baran, Joanna",
editor="Groen, Derek
and de Mulatier, Cl{\'e}llia
and Paszynski, Maciej
and Krzhizhanovskaya, Valeria V.
and Dongarra, Jack J.
and Sloot, Peter M. A.",
title="A Unified Sense Inventory for Word Sense Disambiguation in Polish",
booktitle="Computational Science -- ICCS 2022",
year="2022",
publisher="Springer International Publishing",
address="Cham",
pages="682--689",
isbn="978-3-031-08754-7"
}
A new publication on Polish WSD corpora will be available soon
Supported Tasks and Leaderboards
Word sense disambiguation task. We do not provide a leaderboard. However, we provide an example evaluation script for evaluating WSD models.
Languages
Polish language, PL
Dataset Structure
Data Instances
Data are structured in JSONL format, each single text sample is divided by sentence.
{
"text": "Wpierw pani Hudson została zerwana z łóżka, po czym odegrała się na mnie, a ja - na tobie.",
"tokens": [
{
"index": 0,
"position": [ 0, 6 ],
"orth": "Wpierw",
"lemma": "wpierw",
"pos": "adv",
"ctag": "adv"
},
{
"index": 1,
"position": [ 7, 11 ],
"orth": "pani",
"lemma": "pani",
"pos": "noun",
"ctag": "subst:nom:f:sg"
},
{
"index": 2,
"position": [ 12, 18 ],
"orth": "Hudson",
"lemma": "Hudson",
"pos": "noun",
"ctag": "subst:nom:f:sg"
},
{
"index": 3,
"position": [ 19, 26 ],
"orth": "została",
"lemma": "zostać",
"pos": "verb",
"ctag": "praet:perf:f:sg"
},
{
"index": 4,
"position": [ 27, 34 ],
"orth": "zerwana",
"lemma": "zerwać",
"pos": "verb",
"ctag": "ppas:perf:nom:f:aff:sg"
},
<...>
],
"phrases": [
{
"indices": [ 10, 11 ],
"head": 10,
"lemma": "odegrać się"
}
],
"wsd": [
{
"index": 0,
"pl_sense": "wpierw.1.r",
"plWN_syn_id": "01a4a067-aac5-11ed-aae5-0242ac130002",
"plWN_lex_id": "f2757c30-aac4-11ed-aae5-0242ac130002",
"plWN_syn_legacy_id": "477654",
"plWN_lex_legacy_id": "718454",
"PWN_syn_id": "00102736-r",
"bn_syn_id": "bn:00115376r",
"mapping_relation": "synonymy"
},
{
"index": 1,
"pl_sense": "pani.2.n",
"plWN_syn_id": "f35fb1ed-aac4-11ed-aae5-0242ac130002",
"plWN_lex_id": "d5145565-aac4-11ed-aae5-0242ac130002",
"plWN_syn_legacy_id": "129",
"plWN_lex_legacy_id": "20695",
"PWN_syn_id": "10787470-n",
"bn_syn_id": "bn:00001530n",
"mapping_relation": "synonymy"
},
<...>
]
}
Data Fields
Description of json keys:
text
: text of the sentencetokens
: list of tokens made by tokenization processindex
: token order index in sentenceposition
: token chars span indices <included, excluded>orth
: wordlemma
: lemmatised wordpos
: part of speechctag
: morphosyntactic tag
phrases
: list of multi-wordwsd
: annotation labels for the WSD task
Data Splits
We do not specify an exact data split for training and evaluation. However, we suggest to use GLEX and Składnica for training and other datasets for testing.
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection, Normalization and Post-processing
Source corpora were initially pre-processed using morphosyntactic tagging and multi-word expression recognition tools. To tokenize and tag the datasets we used MorphoDiTa adapted to Polish language. To recognize multi-word expressions we applied pattern-based matching tool Corpus2-MWE - only MWEs from plWordNet were included. After manual annotation, sense indices of plWordNet 4.5 were mapped automatically to Princeton WordNet 3.0 and BabelNet 4.0 indices using plWordNet's interlingual mapping.
Annotations
Annotation process
- 2+1 annotation process with inter-annotator agreement score over 0.6 PSA
- annotated with plWordNet 4.5
- software: WordNet-Loom and Inforex
- both single-word and multi-word expressions annotated
- full-text sense annotation (excluding KPWr)
Who are the annotators?
- professional linguists from CLARIN-PL project
Personal and Sensitive Information
The datasets do not contain any personal or sensitive information.
Considerations for Using the Data
Discussion of Biases
Some datasets are biased towards most frequent senses. No information about other biases - needs further analysis.
Other Known Limitations
- sense inventories are usually incomplete therefore some word senses might be missing in plWordNet
- single-word and multi-word terms expressing novel senses (missing in plWordNet) were not marked
Additional Information
Dataset Curators
Arkadiusz Janz ([email protected])
Licensing Information
KPWR-100 CC-BY-SA 4.0
KPWR CC-BY-SA 4.0
Walenty CC-BY-SA 4.0
Sherlock CC-BY 4.0
Skladnica GNU GPL 3
GLEX plWordNet License
Citation Information
Main source (all corpora as a unified benchmark) and published here on HuggingFace:
@InProceedings{10.1007/978-3-031-08754-7_70,
author="Janz, Arkadiusz
and Dziob, Agnieszka
and Oleksy, Marcin
and Baran, Joanna",
editor="Groen, Derek
and de Mulatier, Cl{\'e}llia
and Paszynski, Maciej
and Krzhizhanovskaya, Valeria V.
and Dongarra, Jack J.
and Sloot, Peter M. A.",
title="A Unified Sense Inventory for Word Sense Disambiguation in Polish",
booktitle="Computational Science -- ICCS 2022",
year="2022",
publisher="Springer International Publishing",
address="Cham",
pages="682--689",
isbn="978-3-031-08754-7"
}
Related work
KPWr-100, Składnica, SPEC
@article{janzresults,
title={Results of the PolEval 2020 Shared Task 3: Word Sense Disambiguation},
author={Janz, Arkadiusz and Chlebus, Joanna and Dziob, Agnieszka and Piasecki, Maciej},
journal={Proceedings of the PolEval 2020 Workshop},
pages={65--77},
year={2020}
}
GLEX (EmoGLEX)
@article{janz2017plwordnet,
title={{plWordNet} as a basis for large emotive lexicons of Polish},
author={Janz, Arkadiusz and Kocon, Jan and Piasecki, Maciej and Zasko-Zielinska, Monika},
journal={Proceedings of Human Language Technologies as a Challenge for Computer Science and Linguistics Poznan: Fundacja Uniwersytetu im. Adama Mickiewicza w Poznaniu},
pages={189--193},
year={2017}
}
KPWr
@conference{broda2012,
address = {Istanbul, Turkey},
author = {Bartosz Broda and Micha{\l} Marci{\'n}czuk and Marek Maziarz and Adam Radziszewski and Adam Wardy{\'n}ski},
booktitle = {Proceedings of LREC'12},
owner = {Marlena},
publisher = {ELRA},
timestamp = {2014.06.20},
title = {KPWr: Towards a Free Corpus of Polish},
year = {2012}
}
Składnica
@inproceedings{hajnicz-2014-lexico,
title = "Lexico-Semantic Annotation of Sk{\l}adnica Treebank by means of {PLWN} Lexical Units",
author = "Hajnicz, El{\.z}bieta",
booktitle = "Proceedings of the Seventh Global {W}ordnet Conference",
month = jan,
year = "2014",
address = "Tartu, Estonia",
publisher = "University of Tartu Press",
url = "https://aclanthology.org/W14-0104",
pages = "23--31",
}
Walenty
@inproceedings{haj:and:bar:lrec16,
author = {Hajnicz, El{\.z}bieta and Andrzejczuk, Anna and Bartosiak, Tomasz},
crossref = {lrec:16},
pages = {2625--2632},
pdf = {http://www.lrec-conf.org/proceedings/lrec2016/pdf/382_Paper.pdf},
title = {Semantic Layer of the Valence Dictionary of {P}olish \emph{{W}alenty}}
}
Mapping plWordNet onto Princeton WordNet
@inproceedings{rudnicka-etal-2021-non,
title = "A (Non)-Perfect Match: Mapping pl{W}ord{N}et onto {P}rinceton{W}ord{N}et",
author = "Rudnicka, Ewa and
Witkowski, Wojciech and
Piasecki, Maciej",
booktitle = "Proceedings of the 11th Global Wordnet Conference",
month = jan,
year = "2021",
address = "University of South Africa (UNISA)",
publisher = "Global Wordnet Association",
url = "https://aclanthology.org/2021.gwc-1.16",
pages = "137--146"
}