|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The mLAMA Dataset""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
@article{kassner2021multilingual, |
|
author = {Nora Kassner and |
|
Philipp Dufter and |
|
Hinrich Sch{\"{u}}tze}, |
|
title = {Multilingual {LAMA:} Investigating Knowledge in Multilingual Pretrained |
|
Language Models}, |
|
journal = {CoRR}, |
|
volume = {abs/2102.00894}, |
|
year = {2021}, |
|
url = {https://arxiv.org/abs/2102.00894}, |
|
archivePrefix = {arXiv}, |
|
eprint = {2102.00894}, |
|
timestamp = {Tue, 09 Feb 2021 13:35:56 +0100}, |
|
biburl = {https://dblp.org/rec/journals/corr/abs-2102-00894.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org}, |
|
note = {to appear in EACL2021} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """mLAMA: a multilingual version of the LAMA benchmark (T-REx and GoogleRE) covering 53 languages.""" |
|
|
|
_HOMEPAGE = "http://cistern.cis.lmu.de/mlama/" |
|
|
|
_LICENSE = "The Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). https://creativecommons.org/licenses/by-nc-sa/4.0/" |
|
|
|
_URL = "http://cistern.cis.lmu.de/mlama/mlama1.1.zip" |
|
|
|
_LANGUAGES = ( |
|
"af", |
|
"ar", |
|
"az", |
|
"be", |
|
"bg", |
|
"bn", |
|
"ca", |
|
"ceb", |
|
"cs", |
|
"cy", |
|
"da", |
|
"de", |
|
"el", |
|
"en", |
|
"es", |
|
"et", |
|
"eu", |
|
"fa", |
|
"fi", |
|
"fr", |
|
"ga", |
|
"gl", |
|
"he", |
|
"hi", |
|
"hr", |
|
"hu", |
|
"hy", |
|
"id", |
|
"it", |
|
"ja", |
|
"ka", |
|
"ko", |
|
"la", |
|
"lt", |
|
"lv", |
|
"ms", |
|
"nl", |
|
"pl", |
|
"pt", |
|
"ro", |
|
"ru", |
|
"sk", |
|
"sl", |
|
"sq", |
|
"sr", |
|
"sv", |
|
"ta", |
|
"th", |
|
"tr", |
|
"uk", |
|
"ur", |
|
"vi", |
|
"zh", |
|
) |
|
_RELATIONS = ( |
|
"place_of_birth", |
|
"place_of_death", |
|
"P1001", |
|
"P101", |
|
"P103", |
|
"P106", |
|
"P108", |
|
"P127", |
|
"P1303", |
|
"P131", |
|
"P136", |
|
"P1376", |
|
"P138", |
|
"P140", |
|
"P1412", |
|
"P159", |
|
"P17", |
|
"P176", |
|
"P178", |
|
"P19", |
|
"P190", |
|
"P20", |
|
"P264", |
|
"P27", |
|
"P276", |
|
"P279", |
|
"P30", |
|
"P31", |
|
"P36", |
|
"P361", |
|
"P364", |
|
"P37", |
|
"P39", |
|
"P407", |
|
"P413", |
|
"P449", |
|
"P463", |
|
"P47", |
|
"P495", |
|
"P527", |
|
"P530", |
|
"P740", |
|
"P937", |
|
) |
|
|
|
|
|
class MLamaConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for mLAMA.""" |
|
|
|
def __init__(self, languages=None, relations=None, **kwargs): |
|
"""BuilderConfig for mLAMA. |
|
Args: |
|
languages: A subset of af,ar,az,be,bg,bn,ca,ceb,cs,cy,da,de,el,en,es,et,eu,fa,fi,fr,ga,gl,he,hi,hr,hu,hy,id,it,ja,ka,ko,la,lt,lv,ms,nl,pl,pt,ro,ru,sk,sl,sq,sr,sv,ta,th,tr,uk,ur,vi,zh |
|
relations: A subset of place_of_birth,place_of_death,P1001,P101,P103,P106,P108,P127,P1303,P131,P136,P1376,P138,P140,P1412,P159,P17,P176,P178,P19,P190,P20,P264,P27,P276,P279,P30,P31,P36,P361,P364,P37,P39,P407,P413,P449,P463,P47,P495,P527,P530,P740,P937 |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(MLamaConfig, self).__init__(**kwargs) |
|
self.languages = languages if languages is not None else _LANGUAGES |
|
self.relations = relations if relations is not None else _RELATIONS |
|
|
|
|
|
class MLama(datasets.GeneratorBasedBuilder): |
|
"""multilingual LAMA Dataset (mLAMA)""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
BUILDER_CONFIG_CLASS = MLamaConfig |
|
BUILDER_CONFIGS = [ |
|
MLamaConfig( |
|
name="all", |
|
languages=None, |
|
relations=None, |
|
version=datasets.Version("1.1.0"), |
|
description="Import of mLAMA for all languages and all relations.", |
|
) |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"uuid": datasets.Value("string"), |
|
"lineid": datasets.Value("uint32"), |
|
"obj_uri": datasets.Value("string"), |
|
"obj_label": datasets.Value("string"), |
|
"sub_uri": datasets.Value("string"), |
|
"sub_label": datasets.Value("string"), |
|
"template": datasets.Value("string"), |
|
"language": datasets.Value("string"), |
|
"predicate_id": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "mlama1.1"), |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
""" Yields examples from the mLAMA dataset. """ |
|
id_ = -1 |
|
for language in self.config.languages: |
|
|
|
templates = {} |
|
with open(os.path.join(filepath, language, "templates.jsonl"), encoding="utf-8") as fp: |
|
for line in fp: |
|
line = json.loads(line) |
|
templates[line["relation"]] = line["template"] |
|
for relation in self.config.relations: |
|
|
|
with open(os.path.join(filepath, language, f"{relation}.jsonl"), encoding="utf-8") as fp: |
|
for line in fp: |
|
triple = json.loads(line) |
|
triple["language"] = language |
|
triple["predicate_id"] = relation |
|
triple["template"] = templates.get(relation, "") |
|
id_ += 1 |
|
yield id_, triple |
|
|