system HF staff commited on
Commit
2f687f5
·
0 Parent(s):

Update files from the datasets library (from 1.4.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.4.0

Files changed (5) hide show
  1. .gitattributes +27 -0
  2. README.md +268 -0
  3. dataset_infos.json +1 -0
  4. dummy/all/1.1.0/dummy_data.zip +3 -0
  5. m_lama.py +241 -0
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,268 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ - expert-generated
5
+ - machine-generated
6
+ language_creators:
7
+ - crowdsourced
8
+ - expert-generated
9
+ - machine-generated
10
+ languages:
11
+ - af
12
+ - ar
13
+ - az
14
+ - be
15
+ - bg
16
+ - bn
17
+ - ca
18
+ - ceb
19
+ - cs
20
+ - cy
21
+ - da
22
+ - de
23
+ - el
24
+ - en
25
+ - es
26
+ - et
27
+ - eu
28
+ - fa
29
+ - fi
30
+ - fr
31
+ - ga
32
+ - gl
33
+ - he
34
+ - hi
35
+ - hr
36
+ - hu
37
+ - hy
38
+ - id
39
+ - it
40
+ - ja
41
+ - ka
42
+ - ko
43
+ - la
44
+ - lt
45
+ - lv
46
+ - ms
47
+ - nl
48
+ - pl
49
+ - pt
50
+ - ro
51
+ - ru
52
+ - sk
53
+ - sl
54
+ - sq
55
+ - sr
56
+ - sv
57
+ - ta
58
+ - th
59
+ - tr
60
+ - uk
61
+ - ur
62
+ - vi
63
+ - zh
64
+ licenses:
65
+ - cc-by-nc-sa-4-0
66
+ multilinguality:
67
+ - translation
68
+ size_categories:
69
+ - 1M>n>100K
70
+ source_datasets:
71
+ - extended|lama
72
+ task_categories:
73
+ - question-answering
74
+ - text-scoring
75
+ task_ids:
76
+ - open-domain-qa
77
+ - text-scoring-other-probing
78
+ ---
79
+
80
+ # Dataset Card for [Dataset Name]
81
+
82
+ ## Table of Contents
83
+ - [Dataset Card for [Dataset Name]](#dataset-card-for-dataset-name)
84
+ - [Table of Contents](#table-of-contents)
85
+ - [Dataset Description](#dataset-description)
86
+ - [Dataset Summary](#dataset-summary)
87
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
88
+ - [Languages](#languages)
89
+ - [Dataset Structure](#dataset-structure)
90
+ - [Data Instances](#data-instances)
91
+ - [Data Fields](#data-fields)
92
+ - [Data Splits](#data-splits)
93
+ - [Dataset Creation](#dataset-creation)
94
+ - [Curation Rationale](#curation-rationale)
95
+ - [Source Data](#source-data)
96
+ - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
97
+ - [Who are the source language producers?](#who-are-the-source-language-producers)
98
+ - [Annotations](#annotations)
99
+ - [Annotation process](#annotation-process)
100
+ - [Who are the annotators?](#who-are-the-annotators)
101
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
102
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
103
+ - [Social Impact of Dataset](#social-impact-of-dataset)
104
+ - [Discussion of Biases](#discussion-of-biases)
105
+ - [Other Known Limitations](#other-known-limitations)
106
+ - [Additional Information](#additional-information)
107
+ - [Dataset Curators](#dataset-curators)
108
+ - [Licensing Information](#licensing-information)
109
+ - [Citation Information](#citation-information)
110
+ - [Contributions](#contributions)
111
+
112
+ ## Dataset Description
113
+
114
+ - **Homepage:** [Multilingual LAMA](http://cistern.cis.lmu.de/mlama/)
115
+ - **Repository:** [Github](https://github.com/norakassner/mlama)
116
+ - **Paper:** [Arxiv](https://arxiv.org/abs/2102.00894)
117
+ - **Point of Contact:** [Contact section](http://cistern.cis.lmu.de/mlama/)
118
+
119
+
120
+
121
+ ### Dataset Summary
122
+
123
+ This dataset provides the data for mLAMA, a multilingual version of LAMA.
124
+ Regarding LAMA see https://github.com/facebookresearch/LAMA. For mLAMA
125
+ the TREx and GoogleRE part of LAMA was considered and machine translated using
126
+ Google Translate, and the Wikidata and Google Knowledge Graph API. The machine
127
+ translated templates were checked for validity, i.e., whether they contain
128
+ exactly one '[X]' and one '[Y]'.
129
+
130
+ This data can be used for creating fill-in-the-blank queries like
131
+ "Paris is the capital of [MASK]" across 53 languages. For more details see
132
+ the website http://cistern.cis.lmu.de/mlama/ or the github repo https://github.com/norakassner/mlama.
133
+
134
+ ### Supported Tasks and Leaderboards
135
+
136
+ Language model knowledge probing.
137
+
138
+ ### Languages
139
+
140
+ This dataset contains data in 53 languages:
141
+ af,ar,az,be,bg,bn,ca,ceb,cs,cy,da,de,el,en,es,et,eu,fa,fi,fr,ga,gl,he,hi,hr,hu,hy,id,it,ja,ka,ko,la,lt,lv,ms,nl,pl,pt,ro,ru,sk,sl,sq,sr,sv,ta,th,tr,uk,ur,vi,zh
142
+
143
+ ## Dataset Structure
144
+ For each of the 53 languages and each of the 43 relations/predicates there is a set of triples.
145
+
146
+ ### Data Instances
147
+ For each language and relation there are triples, that consists of an object, a predicate and a subject. For each predicate there is a template available. An example for `dataset["test"][0]` is given here:
148
+ ```python
149
+ {
150
+ 'language': 'af',
151
+ 'lineid': 0,
152
+ 'obj_label': 'Frankryk',
153
+ 'obj_uri': 'Q142',
154
+ 'predicate_id': 'P1001',
155
+ 'sub_label': 'President van Frankryk',
156
+ 'sub_uri': 'Q191954',
157
+ 'template': "[X] is 'n wettige term in [Y].",
158
+ 'uuid': '3fe3d4da-9df9-45ba-8109-784ce5fba38a'
159
+ }
160
+ ```
161
+
162
+
163
+ ### Data Fields
164
+
165
+ Each instance has the following fields
166
+ * "uuid": a unique identifier
167
+ * "lineid": a identifier unique to mlama
168
+ * "obj_id": knowledge graph id of the object
169
+ * "obj_label": surface form of the object
170
+ * "sub_id": knowledge graph id of the subject
171
+ * "sub_label": surface form of the subject
172
+ * "template": template
173
+ * "language": language code
174
+ * "predicate_id": relation id
175
+
176
+
177
+ ### Data Splits
178
+
179
+ There is only one partition that is labelled as 'test data'.
180
+
181
+ ## Dataset Creation
182
+
183
+ ### Curation Rationale
184
+
185
+ The dataset was translated into 53 languages to investigate knowledge in pretrained language models
186
+ multilingually.
187
+
188
+ ### Source Data
189
+
190
+ #### Initial Data Collection and Normalization
191
+
192
+ The data has several sources:
193
+
194
+ LAMA (https://github.com/facebookresearch/LAMA) licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
195
+ T-REx (https://hadyelsahar.github.io/t-rex/) licensed under Creative Commons Attribution-ShareAlike 4.0 International License
196
+ Google-RE (https://github.com/google-research-datasets/relation-extraction-corpus)
197
+ Wikidata (https://www.wikidata.org/) licensed under Creative Commons CC0 License and Creative Commons Attribution-ShareAlike License
198
+
199
+ #### Who are the source language producers?
200
+
201
+ See links above.
202
+
203
+ ### Annotations
204
+
205
+ #### Annotation process
206
+
207
+ Crowdsourced (wikidata) and machine translated.
208
+
209
+ #### Who are the annotators?
210
+
211
+ Unknown.
212
+
213
+ ### Personal and Sensitive Information
214
+
215
+ Names of (most likely) famous people who have entries in Google Knowledge Graph or Wikidata.
216
+
217
+ ## Considerations for Using the Data
218
+
219
+ Data was created through machine translation and automatic processes.
220
+
221
+ ### Social Impact of Dataset
222
+
223
+ [More Information Needed]
224
+
225
+ ### Discussion of Biases
226
+
227
+ [More Information Needed]
228
+
229
+ ### Other Known Limitations
230
+
231
+ Not all triples are available in all languages.
232
+
233
+
234
+ ## Additional Information
235
+
236
+ ### Dataset Curators
237
+
238
+ The authors of the mLAMA paper and the authors of the original datasets.
239
+
240
+ ### Licensing Information
241
+
242
+ The Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). https://creativecommons.org/licenses/by-nc-sa/4.0/
243
+
244
+ ### Citation Information
245
+
246
+ ```
247
+ @article{kassner2021multilingual,
248
+ author = {Nora Kassner and
249
+ Philipp Dufter and
250
+ Hinrich Sch{\"{u}}tze},
251
+ title = {Multilingual {LAMA:} Investigating Knowledge in Multilingual Pretrained
252
+ Language Models},
253
+ journal = {CoRR},
254
+ volume = {abs/2102.00894},
255
+ year = {2021},
256
+ url = {https://arxiv.org/abs/2102.00894},
257
+ archivePrefix = {arXiv},
258
+ eprint = {2102.00894},
259
+ timestamp = {Tue, 09 Feb 2021 13:35:56 +0100},
260
+ biburl = {https://dblp.org/rec/journals/corr/abs-2102-00894.bib},
261
+ bibsource = {dblp computer science bibliography, https://dblp.org},
262
+ note = {to appear in EACL2021}
263
+ }
264
+ ```
265
+
266
+ ### Contributions
267
+
268
+ Thanks to [@pdufter](https://github.com/pdufter) for adding this dataset.
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"all": {"description": "mLAMA: a multilingual version of the LAMA benchmark (T-REx and GoogleRE) covering 53 languages.", "citation": "\n@article{kassner2021multilingual,\n author = {Nora Kassner and\n Philipp Dufter and\n Hinrich Sch{\"{u}}tze},\n title = {Multilingual {LAMA:} Investigating Knowledge in Multilingual Pretrained\n Language Models},\n journal = {CoRR},\n volume = {abs/2102.00894},\n year = {2021},\n url = {https://arxiv.org/abs/2102.00894},\n archivePrefix = {arXiv},\n eprint = {2102.00894},\n timestamp = {Tue, 09 Feb 2021 13:35:56 +0100},\n biburl = {https://dblp.org/rec/journals/corr/abs-2102-00894.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org},\n note = {to appear in EACL2021}\n}\n", "homepage": "http://cistern.cis.lmu.de/mlama/", "license": "The Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). https://creativecommons.org/licenses/by-nc-sa/4.0/", "features": {"uuid": {"dtype": "string", "id": null, "_type": "Value"}, "lineid": {"dtype": "uint32", "id": null, "_type": "Value"}, "obj_uri": {"dtype": "string", "id": null, "_type": "Value"}, "obj_label": {"dtype": "string", "id": null, "_type": "Value"}, "sub_uri": {"dtype": "string", "id": null, "_type": "Value"}, "sub_label": {"dtype": "string", "id": null, "_type": "Value"}, "template": {"dtype": "string", "id": null, "_type": "Value"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "predicate_id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "m_lama", "config_name": "all", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 125919995, "num_examples": 843143, "dataset_name": "m_lama"}}, "download_checksums": {"http://cistern.cis.lmu.de/mlama/mlama1.1.zip": {"num_bytes": 40772287, "checksum": "043dc82b1b4b72de10ec98fb3a75341af13a1b439f6ee8e769398f42bd6d5883"}}, "download_size": 40772287, "post_processing_size": null, "dataset_size": 125919995, "size_in_bytes": 166692282}}
dummy/all/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88f979f6051f015349ff51138ae78f590791c3f5a981129ed45b996b494aa4c0
3
+ size 699202
m_lama.py ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """The mLAMA Dataset"""
16
+
17
+ from __future__ import absolute_import, division, print_function
18
+
19
+ import json
20
+ import os
21
+
22
+ import datasets
23
+
24
+
25
+ _CITATION = """
26
+ @article{kassner2021multilingual,
27
+ author = {Nora Kassner and
28
+ Philipp Dufter and
29
+ Hinrich Sch{\"{u}}tze},
30
+ title = {Multilingual {LAMA:} Investigating Knowledge in Multilingual Pretrained
31
+ Language Models},
32
+ journal = {CoRR},
33
+ volume = {abs/2102.00894},
34
+ year = {2021},
35
+ url = {https://arxiv.org/abs/2102.00894},
36
+ archivePrefix = {arXiv},
37
+ eprint = {2102.00894},
38
+ timestamp = {Tue, 09 Feb 2021 13:35:56 +0100},
39
+ biburl = {https://dblp.org/rec/journals/corr/abs-2102-00894.bib},
40
+ bibsource = {dblp computer science bibliography, https://dblp.org},
41
+ note = {to appear in EACL2021}
42
+ }
43
+ """
44
+
45
+
46
+ _DESCRIPTION = """mLAMA: a multilingual version of the LAMA benchmark (T-REx and GoogleRE) covering 53 languages."""
47
+
48
+ _HOMEPAGE = "http://cistern.cis.lmu.de/mlama/"
49
+
50
+ _LICENSE = "The Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). https://creativecommons.org/licenses/by-nc-sa/4.0/"
51
+
52
+ _URL = "http://cistern.cis.lmu.de/mlama/mlama1.1.zip"
53
+
54
+ _LANGUAGES = (
55
+ "af",
56
+ "ar",
57
+ "az",
58
+ "be",
59
+ "bg",
60
+ "bn",
61
+ "ca",
62
+ "ceb",
63
+ "cs",
64
+ "cy",
65
+ "da",
66
+ "de",
67
+ "el",
68
+ "en",
69
+ "es",
70
+ "et",
71
+ "eu",
72
+ "fa",
73
+ "fi",
74
+ "fr",
75
+ "ga",
76
+ "gl",
77
+ "he",
78
+ "hi",
79
+ "hr",
80
+ "hu",
81
+ "hy",
82
+ "id",
83
+ "it",
84
+ "ja",
85
+ "ka",
86
+ "ko",
87
+ "la",
88
+ "lt",
89
+ "lv",
90
+ "ms",
91
+ "nl",
92
+ "pl",
93
+ "pt",
94
+ "ro",
95
+ "ru",
96
+ "sk",
97
+ "sl",
98
+ "sq",
99
+ "sr",
100
+ "sv",
101
+ "ta",
102
+ "th",
103
+ "tr",
104
+ "uk",
105
+ "ur",
106
+ "vi",
107
+ "zh",
108
+ )
109
+ _RELATIONS = (
110
+ "place_of_birth",
111
+ "place_of_death",
112
+ "P1001",
113
+ "P101",
114
+ "P103",
115
+ "P106",
116
+ "P108",
117
+ "P127",
118
+ "P1303",
119
+ "P131",
120
+ "P136",
121
+ "P1376",
122
+ "P138",
123
+ "P140",
124
+ "P1412",
125
+ "P159",
126
+ "P17",
127
+ "P176",
128
+ "P178",
129
+ "P19",
130
+ "P190",
131
+ "P20",
132
+ "P264",
133
+ "P27",
134
+ "P276",
135
+ "P279",
136
+ "P30",
137
+ "P31",
138
+ "P36",
139
+ "P361",
140
+ "P364",
141
+ "P37",
142
+ "P39",
143
+ "P407",
144
+ "P413",
145
+ "P449",
146
+ "P463",
147
+ "P47",
148
+ "P495",
149
+ "P527",
150
+ "P530",
151
+ "P740",
152
+ "P937",
153
+ )
154
+
155
+
156
+ class MLamaConfig(datasets.BuilderConfig):
157
+ """BuilderConfig for mLAMA."""
158
+
159
+ def __init__(self, languages=None, relations=None, **kwargs):
160
+ """BuilderConfig for mLAMA.
161
+ Args:
162
+ languages: A subset of af,ar,az,be,bg,bn,ca,ceb,cs,cy,da,de,el,en,es,et,eu,fa,fi,fr,ga,gl,he,hi,hr,hu,hy,id,it,ja,ka,ko,la,lt,lv,ms,nl,pl,pt,ro,ru,sk,sl,sq,sr,sv,ta,th,tr,uk,ur,vi,zh
163
+ relations: A subset of place_of_birth,place_of_death,P1001,P101,P103,P106,P108,P127,P1303,P131,P136,P1376,P138,P140,P1412,P159,P17,P176,P178,P19,P190,P20,P264,P27,P276,P279,P30,P31,P36,P361,P364,P37,P39,P407,P413,P449,P463,P47,P495,P527,P530,P740,P937
164
+ **kwargs: keyword arguments forwarded to super.
165
+ """
166
+ super(MLamaConfig, self).__init__(**kwargs)
167
+ self.languages = languages if languages is not None else _LANGUAGES
168
+ self.relations = relations if relations is not None else _RELATIONS
169
+
170
+
171
+ class MLama(datasets.GeneratorBasedBuilder):
172
+ """multilingual LAMA Dataset (mLAMA)"""
173
+
174
+ VERSION = datasets.Version("1.1.0")
175
+ BUILDER_CONFIG_CLASS = MLamaConfig
176
+ BUILDER_CONFIGS = [
177
+ MLamaConfig(
178
+ name="all",
179
+ languages=None,
180
+ relations=None,
181
+ version=datasets.Version("1.1.0"),
182
+ description="Import of mLAMA for all languages and all relations.",
183
+ )
184
+ ]
185
+
186
+ def _info(self):
187
+ features = datasets.Features(
188
+ {
189
+ "uuid": datasets.Value("string"),
190
+ "lineid": datasets.Value("uint32"),
191
+ "obj_uri": datasets.Value("string"),
192
+ "obj_label": datasets.Value("string"),
193
+ "sub_uri": datasets.Value("string"),
194
+ "sub_label": datasets.Value("string"),
195
+ "template": datasets.Value("string"),
196
+ "language": datasets.Value("string"),
197
+ "predicate_id": datasets.Value("string"),
198
+ }
199
+ )
200
+ return datasets.DatasetInfo(
201
+ description=_DESCRIPTION,
202
+ features=features,
203
+ supervised_keys=None,
204
+ homepage=_HOMEPAGE,
205
+ license=_LICENSE,
206
+ citation=_CITATION,
207
+ )
208
+
209
+ def _split_generators(self, dl_manager):
210
+ """Returns SplitGenerators."""
211
+ data_dir = dl_manager.download_and_extract(_URL)
212
+ return [
213
+ datasets.SplitGenerator(
214
+ name=datasets.Split.TEST,
215
+ gen_kwargs={
216
+ "filepath": os.path.join(data_dir, "mlama1.1"),
217
+ "split": "test",
218
+ },
219
+ ),
220
+ ]
221
+
222
+ def _generate_examples(self, filepath, split):
223
+ """ Yields examples from the mLAMA dataset. """
224
+ id_ = -1
225
+ for language in self.config.languages:
226
+ # load templates
227
+ templates = {}
228
+ with open(os.path.join(filepath, language, "templates.jsonl"), encoding="utf-8") as fp:
229
+ for line in fp:
230
+ line = json.loads(line)
231
+ templates[line["relation"]] = line["template"]
232
+ for relation in self.config.relations:
233
+ # load triples
234
+ with open(os.path.join(filepath, language, f"{relation}.jsonl"), encoding="utf-8") as fp:
235
+ for line in fp:
236
+ triple = json.loads(line)
237
+ triple["language"] = language
238
+ triple["predicate_id"] = relation
239
+ triple["template"] = templates.get(relation, "")
240
+ id_ += 1
241
+ yield id_, triple