carlosdanielhernandezmena commited on
Commit
d3a5f5f
·
verified ·
1 Parent(s): c0b3d0b

Delete loading script

Browse files
Files changed (1) hide show
  1. ciempiess_fem.py +0 -124
ciempiess_fem.py DELETED
@@ -1,124 +0,0 @@
1
- from collections import defaultdict
2
- import os
3
- import json
4
- import csv
5
-
6
- import datasets
7
-
8
- _NAME="ciempiess_fem"
9
- _VERSION="1.0.0"
10
- _AUDIO_EXTENSIONS=".flac"
11
-
12
- _DESCRIPTION = """
13
- The CIEMPIESS FEM Corpus was created by recordings and human transcripts of 21 different women. 16 of these women are mexican. The other ones come from Latin American countries.
14
- """
15
-
16
- _CITATION = """
17
- @misc{carlosmenaciempiessfem2019,
18
- title={CIEMPIESS FEM CORPUS: Audio and Transcripts of Female Speakers in Spanish.},
19
- ldc_catalog_no={LDC2019S07},
20
- DOI={https://doi.org/10.35111/xdx5-n815},
21
- author={Hernandez Mena, Carlos Daniel},
22
- journal={Linguistic Data Consortium, Philadelphia},
23
- year={2019},
24
- url={https://catalog.ldc.upenn.edu/LDC2019S07},
25
- }
26
- """
27
-
28
- _HOMEPAGE = "https://catalog.ldc.upenn.edu/LDC2019S07"
29
-
30
- _LICENSE = "CC-BY-SA-4.0, See https://creativecommons.org/licenses/by-sa/4.0/"
31
-
32
- _BASE_DATA_DIR = "corpus/"
33
- _METADATA_TRAIN = os.path.join(_BASE_DATA_DIR,"files", "metadata_train.tsv")
34
-
35
- _TARS_TRAIN = os.path.join(_BASE_DATA_DIR,"files", "tars_train.paths")
36
-
37
- class CiempiessFemConfig(datasets.BuilderConfig):
38
- """BuilderConfig for CIEMPIESS FEM Corpus"""
39
-
40
- def __init__(self, name, **kwargs):
41
- name=_NAME
42
- super().__init__(name=name, **kwargs)
43
-
44
- class CiempiessFem(datasets.GeneratorBasedBuilder):
45
- """CIEMPIESS Fem Corpus"""
46
-
47
- VERSION = datasets.Version(_VERSION)
48
- BUILDER_CONFIGS = [
49
- CiempiessFemConfig(
50
- name=_NAME,
51
- version=datasets.Version(_VERSION),
52
- )
53
- ]
54
-
55
- def _info(self):
56
- features = datasets.Features(
57
- {
58
- "audio_id": datasets.Value("string"),
59
- "audio": datasets.Audio(sampling_rate=16000),
60
- "speaker_id": datasets.Value("string"),
61
- "gender": datasets.Value("string"),
62
- "duration": datasets.Value("float32"),
63
- "country": datasets.Value("string"),
64
- "normalized_text": datasets.Value("string"),
65
- }
66
- )
67
- return datasets.DatasetInfo(
68
- description=_DESCRIPTION,
69
- features=features,
70
- homepage=_HOMEPAGE,
71
- license=_LICENSE,
72
- citation=_CITATION,
73
- )
74
-
75
- def _split_generators(self, dl_manager):
76
-
77
- metadata_train=dl_manager.download_and_extract(_METADATA_TRAIN)
78
-
79
- tars_train=dl_manager.download_and_extract(_TARS_TRAIN)
80
-
81
- hash_tar_files=defaultdict(dict)
82
-
83
- with open(tars_train,'r') as f:
84
- hash_tar_files['train']=[path.replace('\n','') for path in f]
85
-
86
- hash_meta_paths={"train":metadata_train}
87
- audio_paths = dl_manager.download(hash_tar_files)
88
-
89
- splits=["train"]
90
- local_extracted_audio_paths = (
91
- dl_manager.extract(audio_paths) if not dl_manager.is_streaming else
92
- {
93
- split:[None] * len(audio_paths[split]) for split in splits
94
- }
95
- )
96
-
97
- return [
98
- datasets.SplitGenerator(
99
- name=datasets.Split.TRAIN,
100
- gen_kwargs={
101
- "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["train"]],
102
- "local_extracted_archives_paths": local_extracted_audio_paths["train"],
103
- "metadata_paths": hash_meta_paths["train"],
104
- }
105
- ),
106
- ]
107
-
108
- def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths):
109
-
110
- features = ["speaker_id","gender","duration","country","normalized_text"]
111
-
112
- with open(metadata_paths) as f:
113
- metadata = {x["audio_id"]: x for x in csv.DictReader(f, delimiter="\t")}
114
-
115
- for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths):
116
- for audio_filename, audio_file in audio_archive:
117
- audio_id = audio_filename.split(os.sep)[-1].split(_AUDIO_EXTENSIONS)[0]
118
- path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename
119
-
120
- yield audio_id, {
121
- "audio_id": audio_id,
122
- **{feature: metadata[audio_id][feature] for feature in features},
123
- "audio": {"path": path, "bytes": audio_file.read()},
124
- }