Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
Danish
ArXiv:
Libraries:
Datasets
Dask
KennethEnevoldsen commited on
Commit
c7e1b0a
1 Parent(s): b06eca1

Upload 2 files

Browse files
Files changed (2) hide show
  1. convert_to_hf_dataset.ipynb +2140 -0
  2. wordfreq.py +119 -0
convert_to_hf_dataset.ipynb ADDED
@@ -0,0 +1,2140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "attachments": {},
5
+ "cell_type": "markdown",
6
+ "metadata": {},
7
+ "source": [
8
+ "# Create HF Dataset\n",
9
+ "Create a huggingface dataset from the word frequencies from Danish Gigaword \n",
10
+ "(collected before 2022-22-01).\n",
11
+ "These word frequencies are from the Danish Gigaword Corpus which are tokenized using\n",
12
+ "the spacy pipeline for Danish `\"da_core_news_lg\"` using `spacy>=3.0.0,<3.4.0`.\n",
13
+ "See the script \"word_freq.py\" for more details.\n",
14
+ "\n"
15
+ ]
16
+ },
17
+ {
18
+ "attachments": {},
19
+ "cell_type": "markdown",
20
+ "metadata": {},
21
+ "source": [
22
+ "## Setup"
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "code",
27
+ "execution_count": 1,
28
+ "metadata": {},
29
+ "outputs": [],
30
+ "source": [
31
+ "# !pip install datasets==2.8.0"
32
+ ]
33
+ },
34
+ {
35
+ "cell_type": "code",
36
+ "execution_count": 2,
37
+ "metadata": {},
38
+ "outputs": [
39
+ {
40
+ "name": "stderr",
41
+ "output_type": "stream",
42
+ "text": [
43
+ "/home/kenneth/.Envs/word_freq/lib/python3.8/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
44
+ " from .autonotebook import tqdm as notebook_tqdm\n"
45
+ ]
46
+ }
47
+ ],
48
+ "source": [
49
+ "import json\n",
50
+ "import os\n",
51
+ "from pathlib import Path\n",
52
+ "import pandas as pd\n",
53
+ "from datasets import Dataset, DatasetInfo, DatasetDict\n",
54
+ "import numpy as np"
55
+ ]
56
+ },
57
+ {
58
+ "cell_type": "code",
59
+ "execution_count": 3,
60
+ "metadata": {},
61
+ "outputs": [],
62
+ "source": [
63
+ "# mapping from domain to top-level domain\n",
64
+ "domain_mapping_dict = {\n",
65
+ " \"retsinformationdk\": \"Legal\",\n",
66
+ " \"skat\": \"Legal\",\n",
67
+ " \"retspraksis\": \"Legal\",\n",
68
+ " \"hest\": \"Social Media\",\n",
69
+ " \"cc\": \"Web\",\n",
70
+ " \"adl\": \"Wiki & Books\",\n",
71
+ " \"botxt\": \"Other\",\n",
72
+ " \"danavis\": \"News\",\n",
73
+ " \"dannet\": \"dannet\",\n",
74
+ " \"depbank\": \"Other\",\n",
75
+ " \"ep\": \"Conversation\",\n",
76
+ " \"ft\": \"Conversation\",\n",
77
+ " \"gutenberg\": \"Wiki & Books\",\n",
78
+ " \"jvj\": \"Wiki & Books\",\n",
79
+ " \"naat\": \"Conversation\",\n",
80
+ " \"opensub\": \"Conversation\",\n",
81
+ " \"relig\": \"Wiki & Books\",\n",
82
+ " \"spont\": \"Conversation\",\n",
83
+ " \"synne\": \"Other\",\n",
84
+ " \"tv2r\": \"News\",\n",
85
+ " \"wiki\": \"Wiki & Books\",\n",
86
+ " \"wikibooks\": \"Wiki & Books\",\n",
87
+ " \"wikisource\": \"Wiki & Books\",\n",
88
+ " \"twfv19\": \"Social Media\",\n",
89
+ "}\n",
90
+ "\n",
91
+ "# mapping from domain to its long name format\n",
92
+ "longname_mapping_dict = {\n",
93
+ " \"retsinformationdk\": \"retsinformation.dk (Danish legal information)\",\n",
94
+ " \"skat\": \"Skat (Danish tax authority)\",\n",
95
+ " \"retspraksis\": \"retspraksis (Danish legal information)\",\n",
96
+ " \"hest\": \"Hestenettet (Danish debate forum)\",\n",
97
+ " \"cc\": \"Common Crawl\",\n",
98
+ " \"adl\": \" Archive for Danish Literature\",\n",
99
+ " \"botxt\": \"Bornholmsk (Danish dialect)\",\n",
100
+ " \"danavis\": \"Danish daily newspapers\",\n",
101
+ " \"dannet\": \"DanNet (Danish WordNet)\",\n",
102
+ " \"depbank\": \"Danish Dependency Treebank\",\n",
103
+ " \"ep\": \"European Parliament\",\n",
104
+ " \"ft\": \"Folketinget (Danish Parliament)\",\n",
105
+ " \"gutenberg\": \"Gutenberg\",\n",
106
+ " \"jvj\": \"Johannes V. Jensen (Danish poet)\",\n",
107
+ " \"naat\": \"NAAT\",\n",
108
+ " \"opensub\": \"Open Subtitles\",\n",
109
+ " \"relig\": \"Religious texts\",\n",
110
+ " \"spont\": \"Spontaneous speech\",\n",
111
+ " \"synne\": \"Synderjysk (Danish dialect)\",\n",
112
+ " \"tv2r\": \"TV 2 Radio (Danish news)\",\n",
113
+ " \"wiki\": \"Wikipedia\",\n",
114
+ " \"wikibooks\": \"Wikibooks\",\n",
115
+ " \"wikisource\": \"Wikisource\",\n",
116
+ " \"twfv19\": \"Twitter Folketingsvalget 2019 (Danish election tweets)\",\n",
117
+ "}\n"
118
+ ]
119
+ },
120
+ {
121
+ "attachments": {},
122
+ "cell_type": "markdown",
123
+ "metadata": {},
124
+ "source": [
125
+ "## The Data"
126
+ ]
127
+ },
128
+ {
129
+ "cell_type": "code",
130
+ "execution_count": 4,
131
+ "metadata": {},
132
+ "outputs": [
133
+ {
134
+ "name": "stdout",
135
+ "output_type": "stream",
136
+ "text": [
137
+ "teder {'NOUN': 1}\n",
138
+ "i {'ADP': 81002, 'ADV': 708, 'CCONJ': 1, 'PRON': 5, 'X': 2}\n",
139
+ "Marbæk {'PROPN': 3}\n",
140
+ "? {'PUNCT': 31558}\n",
141
+ "ville {'AUX': 9184, 'VERB': 177}\n",
142
+ "jo {'ADV': 15825, 'SCONJ': 227, 'INTJ': 88}\n",
143
+ "være {'AUX': 12805, 'VERB': 3773, 'X': 1, 'ADJ': 3, 'NOUN': 1, 'PRON': 1}\n"
144
+ ]
145
+ }
146
+ ],
147
+ "source": [
148
+ "path = Path(\"/data/DAGW/word_freqs\")\n",
149
+ "json_files = [str(path / f) for f in os.listdir(path) if f.endswith(\".json\")]\n",
150
+ "\n",
151
+ "\n",
152
+ "with open(json_files[0]) as f:\n",
153
+ " data = json.load(f)\n",
154
+ "\n",
155
+ "# inspect\n",
156
+ "for i, (k, v) in enumerate(data.items()):\n",
157
+ " print(k, v)\n",
158
+ " if i > 5:\n",
159
+ " break"
160
+ ]
161
+ },
162
+ {
163
+ "cell_type": "code",
164
+ "execution_count": 5,
165
+ "metadata": {},
166
+ "outputs": [
167
+ {
168
+ "name": "stdout",
169
+ "output_type": "stream",
170
+ "text": [
171
+ "{'dannet', 'adl', 'hest', 'wiki', 'relig', 'botxt', 'synne', 'depbank', 'cc', 'tv2r', 'opensub', 'twfv19', 'retsinformationdk', 'wikibooks', 'jvj', 'ft', 'gutenberg', 'retspraksis', 'ep', 'skat', 'spont', 'wikisource', 'naat'}\n"
172
+ ]
173
+ }
174
+ ],
175
+ "source": [
176
+ "def get_subdomain(json_file):\n",
177
+ " return json_file.split(\"/\")[-1].split(\".\")[0].split(\"_\")[1]\n",
178
+ "\n",
179
+ "\n",
180
+ "domains = set([get_subdomain(json_file) for json_file in json_files])\n",
181
+ "print(domains)\n"
182
+ ]
183
+ },
184
+ {
185
+ "attachments": {},
186
+ "cell_type": "markdown",
187
+ "metadata": {},
188
+ "source": [
189
+ "## Create the Datasets\n",
190
+ "We will here create 4 different datasets:\n",
191
+ "\n",
192
+ "- `word_frequencies` - Danish word frequencies from Danish Gigaword.\n",
193
+ "- `by_domain` - word frequencies pr. domain.\n",
194
+ "- `with_pos ` - word frequencies pr. domain with their part-of-speech tags derived from the spacy pipeline for Danish `\"da_core_news_lg\"`.\n",
195
+ "- `normalized` - word frequencies pr. domain normalized by the top-level domain.\n",
196
+ "\n",
197
+ "> Note: This notebook is not very efficient, it is mainly here for documentation of the process.\n"
198
+ ]
199
+ },
200
+ {
201
+ "cell_type": "code",
202
+ "execution_count": 6,
203
+ "metadata": {},
204
+ "outputs": [],
205
+ "source": [
206
+ "def convert_to_dataset_format(json_file):\n",
207
+ " with open(json_file) as f:\n",
208
+ " data = json.load(f)\n",
209
+ "\n",
210
+ " domain_origin = get_subdomain(json_file)\n",
211
+ " domain = domain_mapping_dict[domain_origin]\n",
212
+ "\n",
213
+ " return [\n",
214
+ " {\n",
215
+ " \"word\": word,\n",
216
+ " \"pos\": pos,\n",
217
+ " \"freq\": freq,\n",
218
+ " \"domain\": longname_mapping_dict[domain_origin],\n",
219
+ " \"domain_short\": domain_origin,\n",
220
+ " \"top_level_domain\": domain,\n",
221
+ " }\n",
222
+ " for word, posdict in data.items()\n",
223
+ " for pos, freq in posdict.items()\n",
224
+ " ]\n",
225
+ "\n",
226
+ "\n",
227
+ "# load and convert all dataset\n",
228
+ "def load_and_convert_gen(n=None):\n",
229
+ " for i, json_file in enumerate(json_files[:n]):\n",
230
+ " print(f\"Loading {json_file} ({i+1}/{len(json_files)})\")\n",
231
+ " samples = convert_to_dataset_format(json_file)\n",
232
+ " for sample in samples:\n",
233
+ " yield sample\n"
234
+ ]
235
+ },
236
+ {
237
+ "cell_type": "code",
238
+ "execution_count": 7,
239
+ "metadata": {},
240
+ "outputs": [],
241
+ "source": [
242
+ "# add dataset info for each of the datasets\n",
243
+ "info = DatasetInfo(\n",
244
+ " description=\"Danish word frequencies\",\n",
245
+ " citation=\"Derczynski, L., Ciosici, M. R., Baglini, R., Christiansen, M. H., Dalsgaard, J. A., Fusaroli, R., ... & Varab, D. (2021). The Danish Gigaword Corpus. In Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa) (pp. 413-421).\",\n",
246
+ " homepage=\"https://huggingface.co/datasets/DDSC/partial-danish-gigaword-no-twitter\",\n",
247
+ " version=\"1.0.0\",\n",
248
+ " license=\"\",\n",
249
+ ")"
250
+ ]
251
+ },
252
+ {
253
+ "cell_type": "code",
254
+ "execution_count": 8,
255
+ "metadata": {},
256
+ "outputs": [
257
+ {
258
+ "name": "stdout",
259
+ "output_type": "stream",
260
+ "text": [
261
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_11.json (1/294)\n",
262
+ "Loading /data/DAGW/word_freqs/wordfreq_ep_12.json (2/294)\n",
263
+ "Loading /data/DAGW/word_freqs/wordfreq_skat_1.json (3/294)\n",
264
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_12.json (4/294)\n",
265
+ "Loading /data/DAGW/word_freqs/wordfreq_adl_2.json (5/294)\n",
266
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_46.json (6/294)\n",
267
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_24.json (7/294)\n",
268
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_20.json (8/294)\n",
269
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_18.json (9/294)\n",
270
+ "Loading /data/DAGW/word_freqs/wordfreq_relig_0.json (10/294)\n",
271
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_12.json (11/294)\n",
272
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_59.json (12/294)\n",
273
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_42.json (13/294)\n",
274
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_22.json (14/294)\n",
275
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_2.json (15/294)\n",
276
+ "Loading /data/DAGW/word_freqs/wordfreq_ft_11.json (16/294)\n",
277
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_28.json (17/294)\n",
278
+ "Loading /data/DAGW/word_freqs/wordfreq_adl_3.json (18/294)\n",
279
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_33.json (19/294)\n",
280
+ "Loading /data/DAGW/word_freqs/wordfreq_ft_7.json (20/294)\n",
281
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_48.json (21/294)\n",
282
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_4.json (22/294)\n",
283
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_13.json (23/294)\n",
284
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_4.json (24/294)\n",
285
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_46.json (25/294)\n",
286
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_28.json (26/294)\n",
287
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_22.json (27/294)\n",
288
+ "Loading /data/DAGW/word_freqs/wordfreq_ep_2.json (28/294)\n",
289
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_53.json (29/294)\n",
290
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_7.json (30/294)\n",
291
+ "Loading /data/DAGW/word_freqs/wordfreq_skat_12.json (31/294)\n",
292
+ "Loading /data/DAGW/word_freqs/wordfreq_tv2r_4.json (32/294)\n",
293
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_10.json (33/294)\n",
294
+ "Loading /data/DAGW/word_freqs/wordfreq_tv2r_2.json (34/294)\n",
295
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_40.json (35/294)\n",
296
+ "Loading /data/DAGW/word_freqs/wordfreq_adl_6.json (36/294)\n",
297
+ "Loading /data/DAGW/word_freqs/wordfreq_ft_10.json (37/294)\n",
298
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_27.json (38/294)\n",
299
+ "Loading /data/DAGW/word_freqs/wordfreq_dannet_2.json (39/294)\n",
300
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_26.json (40/294)\n",
301
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_30.json (41/294)\n",
302
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_11.json (42/294)\n",
303
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_2.json (43/294)\n",
304
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_21.json (44/294)\n",
305
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_16.json (45/294)\n",
306
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_37.json (46/294)\n",
307
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_0.json (47/294)\n",
308
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_29.json (48/294)\n",
309
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_33.json (49/294)\n",
310
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_49.json (50/294)\n",
311
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_47.json (51/294)\n",
312
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_18.json (52/294)\n",
313
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_20.json (53/294)\n",
314
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_13.json (54/294)\n",
315
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_39.json (55/294)\n",
316
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_4.json (56/294)\n",
317
+ "Loading /data/DAGW/word_freqs/wordfreq_adl_0.json (57/294)\n",
318
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_3.json (58/294)\n",
319
+ "Loading /data/DAGW/word_freqs/wordfreq_ft_9.json (59/294)\n",
320
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_17.json (60/294)\n",
321
+ "Loading /data/DAGW/word_freqs/wordfreq_ft_4.json (61/294)\n",
322
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_5.json (62/294)\n",
323
+ "Loading /data/DAGW/word_freqs/wordfreq_retspraksis_7.json (63/294)\n",
324
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_47.json (64/294)\n",
325
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_22.json (65/294)\n",
326
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_29.json (66/294)\n",
327
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_55.json (67/294)\n",
328
+ "Loading /data/DAGW/word_freqs/wordfreq_ft_6.json (68/294)\n",
329
+ "Loading /data/DAGW/word_freqs/wordfreq_skat_8.json (69/294)\n",
330
+ "Loading /data/DAGW/word_freqs/wordfreq_ep_7.json (70/294)\n",
331
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_41.json (71/294)\n",
332
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_9.json (72/294)\n",
333
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_15.json (73/294)\n",
334
+ "Loading /data/DAGW/word_freqs/wordfreq_retspraksis_4.json (74/294)\n",
335
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_26.json (75/294)\n",
336
+ "Loading /data/DAGW/word_freqs/wordfreq_skat_14.json (76/294)\n",
337
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_2.json (77/294)\n",
338
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_0.json (78/294)\n",
339
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_20.json (79/294)\n",
340
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_4.json (80/294)\n",
341
+ "Loading /data/DAGW/word_freqs/wordfreq_retspraksis_5.json (81/294)\n",
342
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_24.json (82/294)\n",
343
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_10.json (83/294)\n",
344
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_9.json (84/294)\n",
345
+ "Loading /data/DAGW/word_freqs/wordfreq_skat_11.json (85/294)\n",
346
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_6.json (86/294)\n",
347
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_19.json (87/294)\n",
348
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_6.json (88/294)\n",
349
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_5.json (89/294)\n",
350
+ "Loading /data/DAGW/word_freqs/wordfreq_retspraksis_8.json (90/294)\n",
351
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_26.json (91/294)\n",
352
+ "Loading /data/DAGW/word_freqs/wordfreq_ft_12.json (92/294)\n",
353
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_21.json (93/294)\n",
354
+ "Loading /data/DAGW/word_freqs/wordfreq_ep_13.json (94/294)\n",
355
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_13.json (95/294)\n",
356
+ "Loading /data/DAGW/word_freqs/wordfreq_retspraksis_2.json (96/294)\n",
357
+ "Loading /data/DAGW/word_freqs/wordfreq_skat_6.json (97/294)\n",
358
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_1.json (98/294)\n",
359
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_5.json (99/294)\n",
360
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_2.json (100/294)\n",
361
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_17.json (101/294)\n",
362
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_54.json (102/294)\n",
363
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_34.json (103/294)\n",
364
+ "Loading /data/DAGW/word_freqs/wordfreq_jvj_0.json (104/294)\n",
365
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_1.json (105/294)\n",
366
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_29.json (106/294)\n",
367
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_18.json (107/294)\n",
368
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_13.json (108/294)\n",
369
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_4.json (109/294)\n",
370
+ "Loading /data/DAGW/word_freqs/wordfreq_dannet_4.json (110/294)\n",
371
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_17.json (111/294)\n",
372
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_7.json (112/294)\n",
373
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_6.json (113/294)\n",
374
+ "Loading /data/DAGW/word_freqs/wordfreq_retspraksis_0.json (114/294)\n",
375
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_5.json (115/294)\n",
376
+ "Loading /data/DAGW/word_freqs/wordfreq_skat_13.json (116/294)\n",
377
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_24.json (117/294)\n",
378
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_32.json (118/294)\n",
379
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_14.json (119/294)\n",
380
+ "Loading /data/DAGW/word_freqs/wordfreq_skat_15.json (120/294)\n",
381
+ "Loading /data/DAGW/word_freqs/wordfreq_ft_0.json (121/294)\n",
382
+ "Loading /data/DAGW/word_freqs/wordfreq_ft_8.json (122/294)\n",
383
+ "Loading /data/DAGW/word_freqs/wordfreq_ep_1.json (123/294)\n",
384
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_13.json (124/294)\n",
385
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_21.json (125/294)\n",
386
+ "Loading /data/DAGW/word_freqs/wordfreq_ep_11.json (126/294)\n",
387
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_25.json (127/294)\n",
388
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_28.json (128/294)\n",
389
+ "Loading /data/DAGW/word_freqs/wordfreq_dannet_3.json (129/294)\n",
390
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_28.json (130/294)\n",
391
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_21.json (131/294)\n",
392
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_60.json (132/294)\n",
393
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_8.json (133/294)\n",
394
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_22.json (134/294)\n",
395
+ "Loading /data/DAGW/word_freqs/wordfreq_skat_0.json (135/294)\n",
396
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_19.json (136/294)\n",
397
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_11.json (137/294)\n",
398
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_12.json (138/294)\n",
399
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_32.json (139/294)\n",
400
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_23.json (140/294)\n",
401
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_52.json (141/294)\n",
402
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_17.json (142/294)\n",
403
+ "Loading /data/DAGW/word_freqs/wordfreq_botxt_0.json (143/294)\n",
404
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_2.json (144/294)\n",
405
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_35.json (145/294)\n",
406
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_27.json (146/294)\n",
407
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_23.json (147/294)\n",
408
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_10.json (148/294)\n",
409
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_9.json (149/294)\n",
410
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_20.json (150/294)\n",
411
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_14.json (151/294)\n",
412
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_15.json (152/294)\n",
413
+ "Loading /data/DAGW/word_freqs/wordfreq_skat_4.json (153/294)\n",
414
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_0.json (154/294)\n",
415
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_19.json (155/294)\n",
416
+ "Loading /data/DAGW/word_freqs/wordfreq_tv2r_1.json (156/294)\n",
417
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_37.json (157/294)\n",
418
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_58.json (158/294)\n",
419
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_31.json (159/294)\n",
420
+ "Loading /data/DAGW/word_freqs/wordfreq_skat_9.json (160/294)\n",
421
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_43.json (161/294)\n",
422
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_17.json (162/294)\n",
423
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_22.json (163/294)\n",
424
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_34.json (164/294)\n",
425
+ "Loading /data/DAGW/word_freqs/wordfreq_depbank_0.json (165/294)\n",
426
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_23.json (166/294)\n",
427
+ "Loading /data/DAGW/word_freqs/wordfreq_retspraksis_1.json (167/294)\n",
428
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_1.json (168/294)\n",
429
+ "Loading /data/DAGW/word_freqs/wordfreq_ep_5.json (169/294)\n",
430
+ "Loading /data/DAGW/word_freqs/wordfreq_skat_7.json (170/294)\n",
431
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_40.json (171/294)\n",
432
+ "Loading /data/DAGW/word_freqs/wordfreq_tv2r_5.json (172/294)\n",
433
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_0.json (173/294)\n",
434
+ "Loading /data/DAGW/word_freqs/wordfreq_gutenberg_0.json (174/294)\n",
435
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_6.json (175/294)\n",
436
+ "Loading /data/DAGW/word_freqs/wordfreq_adl_4.json (176/294)\n",
437
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_44.json (177/294)\n",
438
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_11.json (178/294)\n",
439
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_16.json (179/294)\n",
440
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_26.json (180/294)\n",
441
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_30.json (181/294)\n",
442
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_7.json (182/294)\n",
443
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_36.json (183/294)\n",
444
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_1.json (184/294)\n",
445
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_23.json (185/294)\n",
446
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_25.json (186/294)\n",
447
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_18.json (187/294)\n",
448
+ "Loading /data/DAGW/word_freqs/wordfreq_ep_10.json (188/294)\n",
449
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_15.json (189/294)\n",
450
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_28.json (190/294)\n",
451
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_27.json (191/294)\n",
452
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_3.json (192/294)\n",
453
+ "Loading /data/DAGW/word_freqs/wordfreq_ft_3.json (193/294)\n",
454
+ "Loading /data/DAGW/word_freqs/wordfreq_wikibooks_0.json (194/294)\n",
455
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_6.json (195/294)\n",
456
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_8.json (196/294)\n",
457
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_16.json (197/294)\n",
458
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_15.json (198/294)\n",
459
+ "Loading /data/DAGW/word_freqs/wordfreq_ep_6.json (199/294)\n",
460
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_8.json (200/294)\n",
461
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_11.json (201/294)\n",
462
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_34.json (202/294)\n",
463
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_36.json (203/294)\n",
464
+ "Loading /data/DAGW/word_freqs/wordfreq_twfv19_0.json (204/294)\n",
465
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_12.json (205/294)\n",
466
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_50.json (206/294)\n",
467
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_21.json (207/294)\n",
468
+ "Loading /data/DAGW/word_freqs/wordfreq_ep_4.json (208/294)\n",
469
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_25.json (209/294)\n",
470
+ "Loading /data/DAGW/word_freqs/wordfreq_spont_0.json (210/294)\n",
471
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_23.json (211/294)\n",
472
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_50.json (212/294)\n",
473
+ "Loading /data/DAGW/word_freqs/wordfreq_ep_3.json (213/294)\n",
474
+ "Loading /data/DAGW/word_freqs/wordfreq_naat_0.json (214/294)\n",
475
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_10.json (215/294)\n",
476
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_35.json (216/294)\n",
477
+ "Loading /data/DAGW/word_freqs/wordfreq_wikisource_0.json (217/294)\n",
478
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_30.json (218/294)\n",
479
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_12.json (219/294)\n",
480
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_27.json (220/294)\n",
481
+ "Loading /data/DAGW/word_freqs/wordfreq_ep_9.json (221/294)\n",
482
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_31.json (222/294)\n",
483
+ "Loading /data/DAGW/word_freqs/wordfreq_twfv19_2.json (223/294)\n",
484
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_8.json (224/294)\n",
485
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_38.json (225/294)\n",
486
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_24.json (226/294)\n",
487
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_3.json (227/294)\n",
488
+ "Loading /data/DAGW/word_freqs/wordfreq_ep_0.json (228/294)\n",
489
+ "Loading /data/DAGW/word_freqs/wordfreq_tv2r_0.json (229/294)\n",
490
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_62.json (230/294)\n",
491
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_25.json (231/294)\n",
492
+ "Loading /data/DAGW/word_freqs/wordfreq_dannet_1.json (232/294)\n",
493
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_9.json (233/294)\n",
494
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_26.json (234/294)\n",
495
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_45.json (235/294)\n",
496
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_14.json (236/294)\n",
497
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_42.json (237/294)\n",
498
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_18.json (238/294)\n",
499
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_5.json (239/294)\n",
500
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_16.json (240/294)\n",
501
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_15.json (241/294)\n",
502
+ "Loading /data/DAGW/word_freqs/wordfreq_skat_10.json (242/294)\n",
503
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_44.json (243/294)\n",
504
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_41.json (244/294)\n",
505
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_7.json (245/294)\n",
506
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_3.json (246/294)\n",
507
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_24.json (247/294)\n",
508
+ "Loading /data/DAGW/word_freqs/wordfreq_tv2r_3.json (248/294)\n",
509
+ "Loading /data/DAGW/word_freqs/wordfreq_skat_3.json (249/294)\n",
510
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_56.json (250/294)\n",
511
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_8.json (251/294)\n",
512
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_16.json (252/294)\n",
513
+ "Loading /data/DAGW/word_freqs/wordfreq_adl_5.json (253/294)\n",
514
+ "Loading /data/DAGW/word_freqs/wordfreq_cc_27.json (254/294)\n",
515
+ "Loading /data/DAGW/word_freqs/wordfreq_dannet_0.json (255/294)\n",
516
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_1.json (256/294)\n",
517
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_19.json (257/294)\n",
518
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_14.json (258/294)\n",
519
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_20.json (259/294)\n",
520
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_29.json (260/294)\n",
521
+ "Loading /data/DAGW/word_freqs/wordfreq_skat_5.json (261/294)\n",
522
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_10.json (262/294)\n",
523
+ "Loading /data/DAGW/word_freqs/wordfreq_ep_8.json (263/294)\n",
524
+ "Loading /data/DAGW/word_freqs/wordfreq_synne_0.json (264/294)\n",
525
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_57.json (265/294)\n",
526
+ "Loading /data/DAGW/word_freqs/wordfreq_ft_2.json (266/294)\n",
527
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_51.json (267/294)\n",
528
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_61.json (268/294)\n",
529
+ "Loading /data/DAGW/word_freqs/wordfreq_twfv19_1.json (269/294)\n",
530
+ "Loading /data/DAGW/word_freqs/wordfreq_ft_1.json (270/294)\n",
531
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_36.json (271/294)\n",
532
+ "Loading /data/DAGW/word_freqs/wordfreq_skat_2.json (272/294)\n",
533
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_25.json (273/294)\n",
534
+ "Loading /data/DAGW/word_freqs/wordfreq_retspraksis_3.json (274/294)\n",
535
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_48.json (275/294)\n",
536
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_49.json (276/294)\n",
537
+ "Loading /data/DAGW/word_freqs/wordfreq_ft_5.json (277/294)\n",
538
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_35.json (278/294)\n",
539
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_43.json (279/294)\n",
540
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_0.json (280/294)\n",
541
+ "Loading /data/DAGW/word_freqs/wordfreq_retspraksis_6.json (281/294)\n",
542
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_45.json (282/294)\n",
543
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_37.json (283/294)\n",
544
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_9.json (284/294)\n",
545
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_7.json (285/294)\n",
546
+ "Loading /data/DAGW/word_freqs/wordfreq_opensub_31.json (286/294)\n",
547
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_39.json (287/294)\n",
548
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_14.json (288/294)\n",
549
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_3.json (289/294)\n",
550
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_38.json (290/294)\n",
551
+ "Loading /data/DAGW/word_freqs/wordfreq_retsinformationdk_33.json (291/294)\n",
552
+ "Loading /data/DAGW/word_freqs/wordfreq_wiki_19.json (292/294)\n",
553
+ "Loading /data/DAGW/word_freqs/wordfreq_hest_32.json (293/294)\n",
554
+ "Loading /data/DAGW/word_freqs/wordfreq_adl_1.json (294/294)\n"
555
+ ]
556
+ }
557
+ ],
558
+ "source": [
559
+ "# convert to huggingface dataset\n",
560
+ "dataset = Dataset.from_list(list(load_and_convert_gen()), info=info)\n"
561
+ ]
562
+ },
563
+ {
564
+ "attachments": {},
565
+ "cell_type": "markdown",
566
+ "metadata": {},
567
+ "source": [
568
+ "### Create the word_frequencies dataset"
569
+ ]
570
+ },
571
+ {
572
+ "cell_type": "code",
573
+ "execution_count": 28,
574
+ "metadata": {},
575
+ "outputs": [],
576
+ "source": [
577
+ "df = dataset.to_pandas()\n"
578
+ ]
579
+ },
580
+ {
581
+ "cell_type": "code",
582
+ "execution_count": 10,
583
+ "metadata": {},
584
+ "outputs": [
585
+ {
586
+ "data": {
587
+ "text/html": [
588
+ "<div>\n",
589
+ "<style scoped>\n",
590
+ " .dataframe tbody tr th:only-of-type {\n",
591
+ " vertical-align: middle;\n",
592
+ " }\n",
593
+ "\n",
594
+ " .dataframe tbody tr th {\n",
595
+ " vertical-align: top;\n",
596
+ " }\n",
597
+ "\n",
598
+ " .dataframe thead th {\n",
599
+ " text-align: right;\n",
600
+ " }\n",
601
+ "</style>\n",
602
+ "<table border=\"1\" class=\"dataframe\">\n",
603
+ " <thead>\n",
604
+ " <tr style=\"text-align: right;\">\n",
605
+ " <th></th>\n",
606
+ " <th>word</th>\n",
607
+ " <th>pos</th>\n",
608
+ " <th>freq</th>\n",
609
+ " <th>domain</th>\n",
610
+ " <th>domain_short</th>\n",
611
+ " <th>top_level_domain</th>\n",
612
+ " </tr>\n",
613
+ " </thead>\n",
614
+ " <tbody>\n",
615
+ " <tr>\n",
616
+ " <th>0</th>\n",
617
+ " <td>teder</td>\n",
618
+ " <td>NOUN</td>\n",
619
+ " <td>1</td>\n",
620
+ " <td>Hestenettet (Danish debate forum)</td>\n",
621
+ " <td>hest</td>\n",
622
+ " <td>Social Media</td>\n",
623
+ " </tr>\n",
624
+ " <tr>\n",
625
+ " <th>1</th>\n",
626
+ " <td>i</td>\n",
627
+ " <td>ADP</td>\n",
628
+ " <td>81002</td>\n",
629
+ " <td>Hestenettet (Danish debate forum)</td>\n",
630
+ " <td>hest</td>\n",
631
+ " <td>Social Media</td>\n",
632
+ " </tr>\n",
633
+ " <tr>\n",
634
+ " <th>2</th>\n",
635
+ " <td>i</td>\n",
636
+ " <td>ADV</td>\n",
637
+ " <td>708</td>\n",
638
+ " <td>Hestenettet (Danish debate forum)</td>\n",
639
+ " <td>hest</td>\n",
640
+ " <td>Social Media</td>\n",
641
+ " </tr>\n",
642
+ " <tr>\n",
643
+ " <th>3</th>\n",
644
+ " <td>i</td>\n",
645
+ " <td>CCONJ</td>\n",
646
+ " <td>1</td>\n",
647
+ " <td>Hestenettet (Danish debate forum)</td>\n",
648
+ " <td>hest</td>\n",
649
+ " <td>Social Media</td>\n",
650
+ " </tr>\n",
651
+ " <tr>\n",
652
+ " <th>4</th>\n",
653
+ " <td>i</td>\n",
654
+ " <td>PRON</td>\n",
655
+ " <td>5</td>\n",
656
+ " <td>Hestenettet (Danish debate forum)</td>\n",
657
+ " <td>hest</td>\n",
658
+ " <td>Social Media</td>\n",
659
+ " </tr>\n",
660
+ " <tr>\n",
661
+ " <th>...</th>\n",
662
+ " <td>...</td>\n",
663
+ " <td>...</td>\n",
664
+ " <td>...</td>\n",
665
+ " <td>...</td>\n",
666
+ " <td>...</td>\n",
667
+ " <td>...</td>\n",
668
+ " </tr>\n",
669
+ " <tr>\n",
670
+ " <th>51035982</th>\n",
671
+ " <td>Leverandører</td>\n",
672
+ " <td>NOUN</td>\n",
673
+ " <td>1</td>\n",
674
+ " <td>Archive for Danish Literature</td>\n",
675
+ " <td>adl</td>\n",
676
+ " <td>Wiki &amp; Books</td>\n",
677
+ " </tr>\n",
678
+ " <tr>\n",
679
+ " <th>51035983</th>\n",
680
+ " <td>halvlé</td>\n",
681
+ " <td>NOUN</td>\n",
682
+ " <td>1</td>\n",
683
+ " <td>Archive for Danish Literature</td>\n",
684
+ " <td>adl</td>\n",
685
+ " <td>Wiki &amp; Books</td>\n",
686
+ " </tr>\n",
687
+ " <tr>\n",
688
+ " <th>51035984</th>\n",
689
+ " <td>Spejlruder</td>\n",
690
+ " <td>NOUN</td>\n",
691
+ " <td>1</td>\n",
692
+ " <td>Archive for Danish Literature</td>\n",
693
+ " <td>adl</td>\n",
694
+ " <td>Wiki &amp; Books</td>\n",
695
+ " </tr>\n",
696
+ " <tr>\n",
697
+ " <th>51035985</th>\n",
698
+ " <td>Restavrationssalen</td>\n",
699
+ " <td>PROPN</td>\n",
700
+ " <td>1</td>\n",
701
+ " <td>Archive for Danish Literature</td>\n",
702
+ " <td>adl</td>\n",
703
+ " <td>Wiki &amp; Books</td>\n",
704
+ " </tr>\n",
705
+ " <tr>\n",
706
+ " <th>51035986</th>\n",
707
+ " <td>Kølere</td>\n",
708
+ " <td>NOUN</td>\n",
709
+ " <td>1</td>\n",
710
+ " <td>Archive for Danish Literature</td>\n",
711
+ " <td>adl</td>\n",
712
+ " <td>Wiki &amp; Books</td>\n",
713
+ " </tr>\n",
714
+ " </tbody>\n",
715
+ "</table>\n",
716
+ "<p>51035987 rows × 6 columns</p>\n",
717
+ "</div>"
718
+ ],
719
+ "text/plain": [
720
+ " word pos freq domain \\\n",
721
+ "0 teder NOUN 1 Hestenettet (Danish debate forum) \n",
722
+ "1 i ADP 81002 Hestenettet (Danish debate forum) \n",
723
+ "2 i ADV 708 Hestenettet (Danish debate forum) \n",
724
+ "3 i CCONJ 1 Hestenettet (Danish debate forum) \n",
725
+ "4 i PRON 5 Hestenettet (Danish debate forum) \n",
726
+ "... ... ... ... ... \n",
727
+ "51035982 Leverandører NOUN 1 Archive for Danish Literature \n",
728
+ "51035983 halvlé NOUN 1 Archive for Danish Literature \n",
729
+ "51035984 Spejlruder NOUN 1 Archive for Danish Literature \n",
730
+ "51035985 Restavrationssalen PROPN 1 Archive for Danish Literature \n",
731
+ "51035986 Kølere NOUN 1 Archive for Danish Literature \n",
732
+ "\n",
733
+ " domain_short top_level_domain \n",
734
+ "0 hest Social Media \n",
735
+ "1 hest Social Media \n",
736
+ "2 hest Social Media \n",
737
+ "3 hest Social Media \n",
738
+ "4 hest Social Media \n",
739
+ "... ... ... \n",
740
+ "51035982 adl Wiki & Books \n",
741
+ "51035983 adl Wiki & Books \n",
742
+ "51035984 adl Wiki & Books \n",
743
+ "51035985 adl Wiki & Books \n",
744
+ "51035986 adl Wiki & Books \n",
745
+ "\n",
746
+ "[51035987 rows x 6 columns]"
747
+ ]
748
+ },
749
+ "execution_count": 10,
750
+ "metadata": {},
751
+ "output_type": "execute_result"
752
+ }
753
+ ],
754
+ "source": [
755
+ "df"
756
+ ]
757
+ },
758
+ {
759
+ "cell_type": "code",
760
+ "execution_count": 11,
761
+ "metadata": {},
762
+ "outputs": [
763
+ {
764
+ "name": "stderr",
765
+ "output_type": "stream",
766
+ "text": [
767
+ "/tmp/ipykernel_38251/3531764134.py:1: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n",
768
+ " df = df.groupby([\"word\"]).sum().reset_index()\n"
769
+ ]
770
+ }
771
+ ],
772
+ "source": [
773
+ "df = df.groupby([\"word\"]).sum().reset_index()\n",
774
+ "\n",
775
+ "# recalculate log prob\n",
776
+ "total_freq = df[\"freq\"].sum()\n",
777
+ "df[\"log_prob\"] = np.log(df[\"freq\"] / total_freq)\n",
778
+ "df[\"log_prob_smoothed\"] = np.log((df[\"freq\"] + 1) / (total_freq + len(df)))"
779
+ ]
780
+ },
781
+ {
782
+ "cell_type": "code",
783
+ "execution_count": 12,
784
+ "metadata": {},
785
+ "outputs": [
786
+ {
787
+ "data": {
788
+ "text/html": [
789
+ "<div>\n",
790
+ "<style scoped>\n",
791
+ " .dataframe tbody tr th:only-of-type {\n",
792
+ " vertical-align: middle;\n",
793
+ " }\n",
794
+ "\n",
795
+ " .dataframe tbody tr th {\n",
796
+ " vertical-align: top;\n",
797
+ " }\n",
798
+ "\n",
799
+ " .dataframe thead th {\n",
800
+ " text-align: right;\n",
801
+ " }\n",
802
+ "</style>\n",
803
+ "<table border=\"1\" class=\"dataframe\">\n",
804
+ " <thead>\n",
805
+ " <tr style=\"text-align: right;\">\n",
806
+ " <th></th>\n",
807
+ " <th>word</th>\n",
808
+ " <th>freq</th>\n",
809
+ " <th>log_prob</th>\n",
810
+ " <th>log_prob_smoothed</th>\n",
811
+ " </tr>\n",
812
+ " </thead>\n",
813
+ " <tbody>\n",
814
+ " <tr>\n",
815
+ " <th>0</th>\n",
816
+ " <td>\u0001</td>\n",
817
+ " <td>11523</td>\n",
818
+ " <td>-11.557025</td>\n",
819
+ " <td>-11.566130</td>\n",
820
+ " </tr>\n",
821
+ " <tr>\n",
822
+ " <th>1</th>\n",
823
+ " <td>\u0001generalforsamling</td>\n",
824
+ " <td>1</td>\n",
825
+ " <td>-20.909125</td>\n",
826
+ " <td>-20.225169</td>\n",
827
+ " </tr>\n",
828
+ " <tr>\n",
829
+ " <th>2</th>\n",
830
+ " <td>\u0002</td>\n",
831
+ " <td>25873</td>\n",
832
+ " <td>-10.748170</td>\n",
833
+ " <td>-10.757323</td>\n",
834
+ " </tr>\n",
835
+ " <tr>\n",
836
+ " <th>3</th>\n",
837
+ " <td>\u0003</td>\n",
838
+ " <td>32510</td>\n",
839
+ " <td>-10.519822</td>\n",
840
+ " <td>-10.528983</td>\n",
841
+ " </tr>\n",
842
+ " <tr>\n",
843
+ " <th>4</th>\n",
844
+ " <td>\u0003\u0003</td>\n",
845
+ " <td>7</td>\n",
846
+ " <td>-18.963215</td>\n",
847
+ " <td>-18.838875</td>\n",
848
+ " </tr>\n",
849
+ " <tr>\n",
850
+ " <th>...</th>\n",
851
+ " <td>...</td>\n",
852
+ " <td>...</td>\n",
853
+ " <td>...</td>\n",
854
+ " <td>...</td>\n",
855
+ " </tr>\n",
856
+ " <tr>\n",
857
+ " <th>11120014</th>\n",
858
+ " <td>󱤆Passer</td>\n",
859
+ " <td>3</td>\n",
860
+ " <td>-19.810513</td>\n",
861
+ " <td>-19.532022</td>\n",
862
+ " </tr>\n",
863
+ " <tr>\n",
864
+ " <th>11120015</th>\n",
865
+ " <td>󱤈Rygning</td>\n",
866
+ " <td>10</td>\n",
867
+ " <td>-18.606540</td>\n",
868
+ " <td>-18.520421</td>\n",
869
+ " </tr>\n",
870
+ " <tr>\n",
871
+ " <th>11120016</th>\n",
872
+ " <td>󾌵󾟛󾟛</td>\n",
873
+ " <td>1</td>\n",
874
+ " <td>-20.909125</td>\n",
875
+ " <td>-20.225169</td>\n",
876
+ " </tr>\n",
877
+ " <tr>\n",
878
+ " <th>11120017</th>\n",
879
+ " <td>􀁸</td>\n",
880
+ " <td>24</td>\n",
881
+ " <td>-17.731071</td>\n",
882
+ " <td>-17.699441</td>\n",
883
+ " </tr>\n",
884
+ " <tr>\n",
885
+ " <th>11120018</th>\n",
886
+ " <td>􀍴</td>\n",
887
+ " <td>3</td>\n",
888
+ " <td>-19.810513</td>\n",
889
+ " <td>-19.532022</td>\n",
890
+ " </tr>\n",
891
+ " </tbody>\n",
892
+ "</table>\n",
893
+ "<p>11120019 rows × 4 columns</p>\n",
894
+ "</div>"
895
+ ],
896
+ "text/plain": [
897
+ " word freq log_prob log_prob_smoothed\n",
898
+ "0 \u0001 11523 -11.557025 -11.566130\n",
899
+ "1 \u0001generalforsamling 1 -20.909125 -20.225169\n",
900
+ "2 \u0002 25873 -10.748170 -10.757323\n",
901
+ "3 \u0003 32510 -10.519822 -10.528983\n",
902
+ "4 \u0003\u0003 7 -18.963215 -18.838875\n",
903
+ "... ... ... ... ...\n",
904
+ "11120014 󱤆Passer 3 -19.810513 -19.532022\n",
905
+ "11120015 󱤈Rygning 10 -18.606540 -18.520421\n",
906
+ "11120016 󾌵󾟛󾟛 1 -20.909125 -20.225169\n",
907
+ "11120017 􀁸 24 -17.731071 -17.699441\n",
908
+ "11120018 􀍴 3 -19.810513 -19.532022\n",
909
+ "\n",
910
+ "[11120019 rows x 4 columns]"
911
+ ]
912
+ },
913
+ "execution_count": 12,
914
+ "metadata": {},
915
+ "output_type": "execute_result"
916
+ }
917
+ ],
918
+ "source": [
919
+ "df # inspect"
920
+ ]
921
+ },
922
+ {
923
+ "cell_type": "code",
924
+ "execution_count": 15,
925
+ "metadata": {},
926
+ "outputs": [
927
+ {
928
+ "name": "stderr",
929
+ "output_type": "stream",
930
+ "text": [
931
+ "Using custom data configuration default-db8b733866850efe\n",
932
+ "/home/kenneth/.Envs/word_freq/lib/python3.8/site-packages/datasets/builder.py:712: FutureWarning: 'use_auth_token' was deprecated in version 2.7.1 and will be removed in 3.0.0. Pass `use_auth_token` to the initializer/`load_dataset_builder` instead.\n",
933
+ " warnings.warn(\n"
934
+ ]
935
+ },
936
+ {
937
+ "name": "stdout",
938
+ "output_type": "stream",
939
+ "text": [
940
+ "Downloading and preparing dataset csv/default to /home/kenneth/.cache/huggingface/datasets/csv/default-db8b733866850efe/0.0.0...\n"
941
+ ]
942
+ },
943
+ {
944
+ "name": "stderr",
945
+ "output_type": "stream",
946
+ "text": [
947
+ "Downloading data files: 100%|██████████| 1/1 [00:00<00:00, 1030.29it/s]\n",
948
+ "Extracting data files: 100%|██████████| 1/1 [00:00<00:00, 839.70it/s]\n",
949
+ "Generating train split: 0 examples [00:00, ? examples/s]/home/kenneth/.Envs/word_freq/lib/python3.8/site-packages/datasets/download/streaming_download_manager.py:727: FutureWarning: the 'mangle_dupe_cols' keyword is deprecated and will be removed in a future version. Please take steps to stop the use of 'mangle_dupe_cols'\n",
950
+ " return pd.read_csv(xopen(filepath_or_buffer, \"rb\", use_auth_token=use_auth_token), **kwargs)\n",
951
+ " \r"
952
+ ]
953
+ },
954
+ {
955
+ "name": "stdout",
956
+ "output_type": "stream",
957
+ "text": [
958
+ "Dataset csv downloaded and prepared to /home/kenneth/.cache/huggingface/datasets/csv/default-db8b733866850efe/0.0.0. Subsequent calls will reuse this data.\n"
959
+ ]
960
+ }
961
+ ],
962
+ "source": [
963
+ "# save to csv\n",
964
+ "df.to_csv(\"danish_word_freqs.csv\", index=False)\n",
965
+ "\n",
966
+ "# load using huggingface datasets\n",
967
+ "word_frequencies = Dataset.from_csv(\"danish_word_freqs.csv\")"
968
+ ]
969
+ },
970
+ {
971
+ "attachments": {},
972
+ "cell_type": "markdown",
973
+ "metadata": {},
974
+ "source": [
975
+ "### Create the by_domain dataset\n"
976
+ ]
977
+ },
978
+ {
979
+ "cell_type": "code",
980
+ "execution_count": 49,
981
+ "metadata": {},
982
+ "outputs": [],
983
+ "source": [
984
+ "df = dataset.to_pandas()"
985
+ ]
986
+ },
987
+ {
988
+ "cell_type": "code",
989
+ "execution_count": 50,
990
+ "metadata": {},
991
+ "outputs": [
992
+ {
993
+ "data": {
994
+ "text/html": [
995
+ "<div>\n",
996
+ "<style scoped>\n",
997
+ " .dataframe tbody tr th:only-of-type {\n",
998
+ " vertical-align: middle;\n",
999
+ " }\n",
1000
+ "\n",
1001
+ " .dataframe tbody tr th {\n",
1002
+ " vertical-align: top;\n",
1003
+ " }\n",
1004
+ "\n",
1005
+ " .dataframe thead th {\n",
1006
+ " text-align: right;\n",
1007
+ " }\n",
1008
+ "</style>\n",
1009
+ "<table border=\"1\" class=\"dataframe\">\n",
1010
+ " <thead>\n",
1011
+ " <tr style=\"text-align: right;\">\n",
1012
+ " <th></th>\n",
1013
+ " <th>word</th>\n",
1014
+ " <th>pos</th>\n",
1015
+ " <th>freq</th>\n",
1016
+ " <th>domain</th>\n",
1017
+ " <th>domain_short</th>\n",
1018
+ " <th>top_level_domain</th>\n",
1019
+ " </tr>\n",
1020
+ " </thead>\n",
1021
+ " <tbody>\n",
1022
+ " <tr>\n",
1023
+ " <th>0</th>\n",
1024
+ " <td>teder</td>\n",
1025
+ " <td>NOUN</td>\n",
1026
+ " <td>1</td>\n",
1027
+ " <td>Hestenettet (Danish debate forum)</td>\n",
1028
+ " <td>hest</td>\n",
1029
+ " <td>Social Media</td>\n",
1030
+ " </tr>\n",
1031
+ " <tr>\n",
1032
+ " <th>1</th>\n",
1033
+ " <td>i</td>\n",
1034
+ " <td>ADP</td>\n",
1035
+ " <td>81002</td>\n",
1036
+ " <td>Hestenettet (Danish debate forum)</td>\n",
1037
+ " <td>hest</td>\n",
1038
+ " <td>Social Media</td>\n",
1039
+ " </tr>\n",
1040
+ " <tr>\n",
1041
+ " <th>2</th>\n",
1042
+ " <td>i</td>\n",
1043
+ " <td>ADV</td>\n",
1044
+ " <td>708</td>\n",
1045
+ " <td>Hestenettet (Danish debate forum)</td>\n",
1046
+ " <td>hest</td>\n",
1047
+ " <td>Social Media</td>\n",
1048
+ " </tr>\n",
1049
+ " <tr>\n",
1050
+ " <th>3</th>\n",
1051
+ " <td>i</td>\n",
1052
+ " <td>CCONJ</td>\n",
1053
+ " <td>1</td>\n",
1054
+ " <td>Hestenettet (Danish debate forum)</td>\n",
1055
+ " <td>hest</td>\n",
1056
+ " <td>Social Media</td>\n",
1057
+ " </tr>\n",
1058
+ " <tr>\n",
1059
+ " <th>4</th>\n",
1060
+ " <td>i</td>\n",
1061
+ " <td>PRON</td>\n",
1062
+ " <td>5</td>\n",
1063
+ " <td>Hestenettet (Danish debate forum)</td>\n",
1064
+ " <td>hest</td>\n",
1065
+ " <td>Social Media</td>\n",
1066
+ " </tr>\n",
1067
+ " <tr>\n",
1068
+ " <th>...</th>\n",
1069
+ " <td>...</td>\n",
1070
+ " <td>...</td>\n",
1071
+ " <td>...</td>\n",
1072
+ " <td>...</td>\n",
1073
+ " <td>...</td>\n",
1074
+ " <td>...</td>\n",
1075
+ " </tr>\n",
1076
+ " <tr>\n",
1077
+ " <th>51035982</th>\n",
1078
+ " <td>Leverandører</td>\n",
1079
+ " <td>NOUN</td>\n",
1080
+ " <td>1</td>\n",
1081
+ " <td>Archive for Danish Literature</td>\n",
1082
+ " <td>adl</td>\n",
1083
+ " <td>Wiki &amp; Books</td>\n",
1084
+ " </tr>\n",
1085
+ " <tr>\n",
1086
+ " <th>51035983</th>\n",
1087
+ " <td>halvlé</td>\n",
1088
+ " <td>NOUN</td>\n",
1089
+ " <td>1</td>\n",
1090
+ " <td>Archive for Danish Literature</td>\n",
1091
+ " <td>adl</td>\n",
1092
+ " <td>Wiki &amp; Books</td>\n",
1093
+ " </tr>\n",
1094
+ " <tr>\n",
1095
+ " <th>51035984</th>\n",
1096
+ " <td>Spejlruder</td>\n",
1097
+ " <td>NOUN</td>\n",
1098
+ " <td>1</td>\n",
1099
+ " <td>Archive for Danish Literature</td>\n",
1100
+ " <td>adl</td>\n",
1101
+ " <td>Wiki &amp; Books</td>\n",
1102
+ " </tr>\n",
1103
+ " <tr>\n",
1104
+ " <th>51035985</th>\n",
1105
+ " <td>Restavrationssalen</td>\n",
1106
+ " <td>PROPN</td>\n",
1107
+ " <td>1</td>\n",
1108
+ " <td>Archive for Danish Literature</td>\n",
1109
+ " <td>adl</td>\n",
1110
+ " <td>Wiki &amp; Books</td>\n",
1111
+ " </tr>\n",
1112
+ " <tr>\n",
1113
+ " <th>51035986</th>\n",
1114
+ " <td>Kølere</td>\n",
1115
+ " <td>NOUN</td>\n",
1116
+ " <td>1</td>\n",
1117
+ " <td>Archive for Danish Literature</td>\n",
1118
+ " <td>adl</td>\n",
1119
+ " <td>Wiki &amp; Books</td>\n",
1120
+ " </tr>\n",
1121
+ " </tbody>\n",
1122
+ "</table>\n",
1123
+ "<p>51035987 rows × 6 columns</p>\n",
1124
+ "</div>"
1125
+ ],
1126
+ "text/plain": [
1127
+ " word pos freq domain \\\n",
1128
+ "0 teder NOUN 1 Hestenettet (Danish debate forum) \n",
1129
+ "1 i ADP 81002 Hestenettet (Danish debate forum) \n",
1130
+ "2 i ADV 708 Hestenettet (Danish debate forum) \n",
1131
+ "3 i CCONJ 1 Hestenettet (Danish debate forum) \n",
1132
+ "4 i PRON 5 Hestenettet (Danish debate forum) \n",
1133
+ "... ... ... ... ... \n",
1134
+ "51035982 Leverandører NOUN 1 Archive for Danish Literature \n",
1135
+ "51035983 halvlé NOUN 1 Archive for Danish Literature \n",
1136
+ "51035984 Spejlruder NOUN 1 Archive for Danish Literature \n",
1137
+ "51035985 Restavrationssalen PROPN 1 Archive for Danish Literature \n",
1138
+ "51035986 Kølere NOUN 1 Archive for Danish Literature \n",
1139
+ "\n",
1140
+ " domain_short top_level_domain \n",
1141
+ "0 hest Social Media \n",
1142
+ "1 hest Social Media \n",
1143
+ "2 hest Social Media \n",
1144
+ "3 hest Social Media \n",
1145
+ "4 hest Social Media \n",
1146
+ "... ... ... \n",
1147
+ "51035982 adl Wiki & Books \n",
1148
+ "51035983 adl Wiki & Books \n",
1149
+ "51035984 adl Wiki & Books \n",
1150
+ "51035985 adl Wiki & Books \n",
1151
+ "51035986 adl Wiki & Books \n",
1152
+ "\n",
1153
+ "[51035987 rows x 6 columns]"
1154
+ ]
1155
+ },
1156
+ "execution_count": 50,
1157
+ "metadata": {},
1158
+ "output_type": "execute_result"
1159
+ }
1160
+ ],
1161
+ "source": [
1162
+ "df"
1163
+ ]
1164
+ },
1165
+ {
1166
+ "cell_type": "code",
1167
+ "execution_count": 51,
1168
+ "metadata": {},
1169
+ "outputs": [
1170
+ {
1171
+ "name": "stderr",
1172
+ "output_type": "stream",
1173
+ "text": [
1174
+ "/tmp/ipykernel_38251/2877160612.py:4: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n",
1175
+ " df = df.groupby([\"word\", \"domain\", \"domain_short\"]).sum().reset_index()\n"
1176
+ ]
1177
+ },
1178
+ {
1179
+ "name": "stdout",
1180
+ "output_type": "stream",
1181
+ "text": [
1182
+ "dannet\n",
1183
+ "adl\n",
1184
+ "hest\n",
1185
+ "wiki\n",
1186
+ "relig\n",
1187
+ "botxt\n",
1188
+ "synne\n",
1189
+ "depbank\n",
1190
+ "cc\n",
1191
+ "tv2r\n",
1192
+ "opensub\n",
1193
+ "twfv19\n",
1194
+ "retsinformationdk\n",
1195
+ "wikibooks\n",
1196
+ "jvj\n",
1197
+ "ft\n",
1198
+ "gutenberg\n",
1199
+ "retspraksis\n",
1200
+ "ep\n",
1201
+ "skat\n",
1202
+ "spont\n",
1203
+ "wikisource\n",
1204
+ "naat\n"
1205
+ ]
1206
+ }
1207
+ ],
1208
+ "source": [
1209
+ "# hide pandas warnings\n",
1210
+ "pd.options.mode.chained_assignment = None\n",
1211
+ "\n",
1212
+ "df = df.groupby([\"word\", \"domain\", \"domain_short\"]).sum().reset_index()\n",
1213
+ "\n",
1214
+ "# recalculate log prob\n",
1215
+ "def calc_log_prob_pr_domain(df, domains):\n",
1216
+ " dfs = []\n",
1217
+ " for domain in domains:\n",
1218
+ " print(domain)\n",
1219
+ " df_domains = df.loc[df[\"domain_short\"] == domain]\n",
1220
+ " total_freq = df_domains[\"freq\"].sum()\n",
1221
+ " df_domains[\"log_prob\"] = np.log(df_domains[\"freq\"] / total_freq)\n",
1222
+ " df_domains[\"log_prob_smoothed\"] = np.log((df_domains[\"freq\"] + 1) / (total_freq + len(df_domains)))\n",
1223
+ " dfs.append(df_domains)\n",
1224
+ " \n",
1225
+ " return pd.concat(dfs)\n",
1226
+ "\n",
1227
+ "df = calc_log_prob_pr_domain(df, domains)"
1228
+ ]
1229
+ },
1230
+ {
1231
+ "cell_type": "code",
1232
+ "execution_count": 52,
1233
+ "metadata": {},
1234
+ "outputs": [
1235
+ {
1236
+ "data": {
1237
+ "text/html": [
1238
+ "<div>\n",
1239
+ "<style scoped>\n",
1240
+ " .dataframe tbody tr th:only-of-type {\n",
1241
+ " vertical-align: middle;\n",
1242
+ " }\n",
1243
+ "\n",
1244
+ " .dataframe tbody tr th {\n",
1245
+ " vertical-align: top;\n",
1246
+ " }\n",
1247
+ "\n",
1248
+ " .dataframe thead th {\n",
1249
+ " text-align: right;\n",
1250
+ " }\n",
1251
+ "</style>\n",
1252
+ "<table border=\"1\" class=\"dataframe\">\n",
1253
+ " <thead>\n",
1254
+ " <tr style=\"text-align: right;\">\n",
1255
+ " <th></th>\n",
1256
+ " <th>word</th>\n",
1257
+ " <th>domain</th>\n",
1258
+ " <th>domain_short</th>\n",
1259
+ " <th>freq</th>\n",
1260
+ " <th>log_prob</th>\n",
1261
+ " <th>log_prob_smoothed</th>\n",
1262
+ " </tr>\n",
1263
+ " </thead>\n",
1264
+ " <tbody>\n",
1265
+ " <tr>\n",
1266
+ " <th>4486</th>\n",
1267
+ " <td></td>\n",
1268
+ " <td>DanNet (Danish WordNet)</td>\n",
1269
+ " <td>dannet</td>\n",
1270
+ " <td>38</td>\n",
1271
+ " <td>-9.948003</td>\n",
1272
+ " <td>-10.034464</td>\n",
1273
+ " </tr>\n",
1274
+ " <tr>\n",
1275
+ " <th>14344</th>\n",
1276
+ " <td>!</td>\n",
1277
+ " <td>DanNet (Danish WordNet)</td>\n",
1278
+ " <td>dannet</td>\n",
1279
+ " <td>686</td>\n",
1280
+ " <td>-7.054711</td>\n",
1281
+ " <td>-7.165691</td>\n",
1282
+ " </tr>\n",
1283
+ " <tr>\n",
1284
+ " <th>15182</th>\n",
1285
+ " <td>$</td>\n",
1286
+ " <td>DanNet (Danish WordNet)</td>\n",
1287
+ " <td>dannet</td>\n",
1288
+ " <td>2</td>\n",
1289
+ " <td>-12.892442</td>\n",
1290
+ " <td>-12.599413</td>\n",
1291
+ " </tr>\n",
1292
+ " <tr>\n",
1293
+ " <th>15231</th>\n",
1294
+ " <td>%</td>\n",
1295
+ " <td>DanNet (Danish WordNet)</td>\n",
1296
+ " <td>dannet</td>\n",
1297
+ " <td>104</td>\n",
1298
+ " <td>-8.941198</td>\n",
1299
+ " <td>-9.044065</td>\n",
1300
+ " </tr>\n",
1301
+ " <tr>\n",
1302
+ " <th>15272</th>\n",
1303
+ " <td>&amp;</td>\n",
1304
+ " <td>DanNet (Danish WordNet)</td>\n",
1305
+ " <td>dannet</td>\n",
1306
+ " <td>49</td>\n",
1307
+ " <td>-9.693769</td>\n",
1308
+ " <td>-9.786003</td>\n",
1309
+ " </tr>\n",
1310
+ " <tr>\n",
1311
+ " <th>...</th>\n",
1312
+ " <td>...</td>\n",
1313
+ " <td>...</td>\n",
1314
+ " <td>...</td>\n",
1315
+ " <td>...</td>\n",
1316
+ " <td>...</td>\n",
1317
+ " <td>...</td>\n",
1318
+ " </tr>\n",
1319
+ " <tr>\n",
1320
+ " <th>15308188</th>\n",
1321
+ " <td>’</td>\n",
1322
+ " <td>NAAT</td>\n",
1323
+ " <td>naat</td>\n",
1324
+ " <td>123</td>\n",
1325
+ " <td>-7.307371</td>\n",
1326
+ " <td>-7.369814</td>\n",
1327
+ " </tr>\n",
1328
+ " <tr>\n",
1329
+ " <th>15309280</th>\n",
1330
+ " <td>“</td>\n",
1331
+ " <td>NAAT</td>\n",
1332
+ " <td>naat</td>\n",
1333
+ " <td>47</td>\n",
1334
+ " <td>-8.269408</td>\n",
1335
+ " <td>-8.318895</td>\n",
1336
+ " </tr>\n",
1337
+ " <tr>\n",
1338
+ " <th>15309314</th>\n",
1339
+ " <td>”</td>\n",
1340
+ " <td>NAAT</td>\n",
1341
+ " <td>naat</td>\n",
1342
+ " <td>139</td>\n",
1343
+ " <td>-7.185082</td>\n",
1344
+ " <td>-7.248453</td>\n",
1345
+ " </tr>\n",
1346
+ " <tr>\n",
1347
+ " <th>15309694</th>\n",
1348
+ " <td>•</td>\n",
1349
+ " <td>NAAT</td>\n",
1350
+ " <td>naat</td>\n",
1351
+ " <td>5</td>\n",
1352
+ " <td>-10.510118</td>\n",
1353
+ " <td>-10.398336</td>\n",
1354
+ " </tr>\n",
1355
+ " <tr>\n",
1356
+ " <th>15310402</th>\n",
1357
+ " <td>…</td>\n",
1358
+ " <td>NAAT</td>\n",
1359
+ " <td>naat</td>\n",
1360
+ " <td>11</td>\n",
1361
+ " <td>-9.721660</td>\n",
1362
+ " <td>-9.705189</td>\n",
1363
+ " </tr>\n",
1364
+ " </tbody>\n",
1365
+ "</table>\n",
1366
+ "<p>15326084 rows × 6 columns</p>\n",
1367
+ "</div>"
1368
+ ],
1369
+ "text/plain": [
1370
+ " word domain domain_short freq log_prob \\\n",
1371
+ "4486 DanNet (Danish WordNet) dannet 38 -9.948003 \n",
1372
+ "14344 ! DanNet (Danish WordNet) dannet 686 -7.054711 \n",
1373
+ "15182 $ DanNet (Danish WordNet) dannet 2 -12.892442 \n",
1374
+ "15231 % DanNet (Danish WordNet) dannet 104 -8.941198 \n",
1375
+ "15272 & DanNet (Danish WordNet) dannet 49 -9.693769 \n",
1376
+ "... ... ... ... ... ... \n",
1377
+ "15308188 ’ NAAT naat 123 -7.307371 \n",
1378
+ "15309280 “ NAAT naat 47 -8.269408 \n",
1379
+ "15309314 ” NAAT naat 139 -7.185082 \n",
1380
+ "15309694 • NAAT naat 5 -10.510118 \n",
1381
+ "15310402 … NAAT naat 11 -9.721660 \n",
1382
+ "\n",
1383
+ " log_prob_smoothed \n",
1384
+ "4486 -10.034464 \n",
1385
+ "14344 -7.165691 \n",
1386
+ "15182 -12.599413 \n",
1387
+ "15231 -9.044065 \n",
1388
+ "15272 -9.786003 \n",
1389
+ "... ... \n",
1390
+ "15308188 -7.369814 \n",
1391
+ "15309280 -8.318895 \n",
1392
+ "15309314 -7.248453 \n",
1393
+ "15309694 -10.398336 \n",
1394
+ "15310402 -9.705189 \n",
1395
+ "\n",
1396
+ "[15326084 rows x 6 columns]"
1397
+ ]
1398
+ },
1399
+ "execution_count": 52,
1400
+ "metadata": {},
1401
+ "output_type": "execute_result"
1402
+ }
1403
+ ],
1404
+ "source": [
1405
+ "df"
1406
+ ]
1407
+ },
1408
+ {
1409
+ "cell_type": "code",
1410
+ "execution_count": 55,
1411
+ "metadata": {},
1412
+ "outputs": [
1413
+ {
1414
+ "name": "stderr",
1415
+ "output_type": "stream",
1416
+ "text": [
1417
+ "Using custom data configuration default-bcdefdf7aa1acd36\n",
1418
+ "/home/kenneth/.Envs/word_freq/lib/python3.8/site-packages/datasets/builder.py:712: FutureWarning: 'use_auth_token' was deprecated in version 2.7.1 and will be removed in 3.0.0. Pass `use_auth_token` to the initializer/`load_dataset_builder` instead.\n",
1419
+ " warnings.warn(\n"
1420
+ ]
1421
+ },
1422
+ {
1423
+ "name": "stdout",
1424
+ "output_type": "stream",
1425
+ "text": [
1426
+ "Downloading and preparing dataset csv/default to /home/kenneth/.cache/huggingface/datasets/csv/default-bcdefdf7aa1acd36/0.0.0...\n"
1427
+ ]
1428
+ },
1429
+ {
1430
+ "name": "stderr",
1431
+ "output_type": "stream",
1432
+ "text": [
1433
+ "Downloading data files: 100%|██████████| 1/1 [00:00<00:00, 1062.39it/s]\n",
1434
+ "Extracting data files: 100%|██████████| 1/1 [00:00<00:00, 565.04it/s]\n",
1435
+ "Generating train split: 0 examples [00:00, ? examples/s]/home/kenneth/.Envs/word_freq/lib/python3.8/site-packages/datasets/download/streaming_download_manager.py:727: FutureWarning: the 'mangle_dupe_cols' keyword is deprecated and will be removed in a future version. Please take steps to stop the use of 'mangle_dupe_cols'\n",
1436
+ " return pd.read_csv(xopen(filepath_or_buffer, \"rb\", use_auth_token=use_auth_token), **kwargs)\n",
1437
+ " \r"
1438
+ ]
1439
+ },
1440
+ {
1441
+ "name": "stdout",
1442
+ "output_type": "stream",
1443
+ "text": [
1444
+ "Dataset csv downloaded and prepared to /home/kenneth/.cache/huggingface/datasets/csv/default-bcdefdf7aa1acd36/0.0.0. Subsequent calls will reuse this data.\n"
1445
+ ]
1446
+ }
1447
+ ],
1448
+ "source": [
1449
+ "# save to csv\n",
1450
+ "df.to_csv(\"danish_word_freqs_by_domain.csv\", index=False)\n",
1451
+ "\n",
1452
+ "# load using huggingface datasets\n",
1453
+ "by_domain = Dataset.from_csv(\"danish_word_freqs_by_domain.csv\")"
1454
+ ]
1455
+ },
1456
+ {
1457
+ "attachments": {},
1458
+ "cell_type": "markdown",
1459
+ "metadata": {},
1460
+ "source": [
1461
+ "### Create the with_pos dataset"
1462
+ ]
1463
+ },
1464
+ {
1465
+ "cell_type": "code",
1466
+ "execution_count": 56,
1467
+ "metadata": {},
1468
+ "outputs": [
1469
+ {
1470
+ "name": "stderr",
1471
+ "output_type": "stream",
1472
+ "text": [
1473
+ "/tmp/ipykernel_38251/2868179020.py:2: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n",
1474
+ " df = df.groupby([\"word\", \"domain\", \"domain_short\"]).sum().reset_index()\n"
1475
+ ]
1476
+ },
1477
+ {
1478
+ "name": "stdout",
1479
+ "output_type": "stream",
1480
+ "text": [
1481
+ "dannet\n",
1482
+ "adl\n",
1483
+ "hest\n",
1484
+ "wiki\n",
1485
+ "relig\n",
1486
+ "botxt\n",
1487
+ "synne\n",
1488
+ "depbank\n",
1489
+ "cc\n",
1490
+ "tv2r\n",
1491
+ "opensub\n",
1492
+ "twfv19\n",
1493
+ "retsinformationdk\n",
1494
+ "wikibooks\n",
1495
+ "jvj\n",
1496
+ "ft\n",
1497
+ "gutenberg\n",
1498
+ "retspraksis\n",
1499
+ "ep\n",
1500
+ "skat\n",
1501
+ "spont\n",
1502
+ "wikisource\n",
1503
+ "naat\n"
1504
+ ]
1505
+ },
1506
+ {
1507
+ "data": {
1508
+ "text/html": [
1509
+ "<div>\n",
1510
+ "<style scoped>\n",
1511
+ " .dataframe tbody tr th:only-of-type {\n",
1512
+ " vertical-align: middle;\n",
1513
+ " }\n",
1514
+ "\n",
1515
+ " .dataframe tbody tr th {\n",
1516
+ " vertical-align: top;\n",
1517
+ " }\n",
1518
+ "\n",
1519
+ " .dataframe thead th {\n",
1520
+ " text-align: right;\n",
1521
+ " }\n",
1522
+ "</style>\n",
1523
+ "<table border=\"1\" class=\"dataframe\">\n",
1524
+ " <thead>\n",
1525
+ " <tr style=\"text-align: right;\">\n",
1526
+ " <th></th>\n",
1527
+ " <th>word</th>\n",
1528
+ " <th>domain</th>\n",
1529
+ " <th>domain_short</th>\n",
1530
+ " <th>freq</th>\n",
1531
+ " <th>log_prob</th>\n",
1532
+ " <th>log_prob_smoothed</th>\n",
1533
+ " </tr>\n",
1534
+ " </thead>\n",
1535
+ " <tbody>\n",
1536
+ " <tr>\n",
1537
+ " <th>4486</th>\n",
1538
+ " <td></td>\n",
1539
+ " <td>DanNet (Danish WordNet)</td>\n",
1540
+ " <td>dannet</td>\n",
1541
+ " <td>38</td>\n",
1542
+ " <td>-9.948003</td>\n",
1543
+ " <td>-10.034464</td>\n",
1544
+ " </tr>\n",
1545
+ " <tr>\n",
1546
+ " <th>14344</th>\n",
1547
+ " <td>!</td>\n",
1548
+ " <td>DanNet (Danish WordNet)</td>\n",
1549
+ " <td>dannet</td>\n",
1550
+ " <td>686</td>\n",
1551
+ " <td>-7.054711</td>\n",
1552
+ " <td>-7.165691</td>\n",
1553
+ " </tr>\n",
1554
+ " <tr>\n",
1555
+ " <th>15182</th>\n",
1556
+ " <td>$</td>\n",
1557
+ " <td>DanNet (Danish WordNet)</td>\n",
1558
+ " <td>dannet</td>\n",
1559
+ " <td>2</td>\n",
1560
+ " <td>-12.892442</td>\n",
1561
+ " <td>-12.599413</td>\n",
1562
+ " </tr>\n",
1563
+ " <tr>\n",
1564
+ " <th>15231</th>\n",
1565
+ " <td>%</td>\n",
1566
+ " <td>DanNet (Danish WordNet)</td>\n",
1567
+ " <td>dannet</td>\n",
1568
+ " <td>104</td>\n",
1569
+ " <td>-8.941198</td>\n",
1570
+ " <td>-9.044065</td>\n",
1571
+ " </tr>\n",
1572
+ " <tr>\n",
1573
+ " <th>15272</th>\n",
1574
+ " <td>&amp;</td>\n",
1575
+ " <td>DanNet (Danish WordNet)</td>\n",
1576
+ " <td>dannet</td>\n",
1577
+ " <td>49</td>\n",
1578
+ " <td>-9.693769</td>\n",
1579
+ " <td>-9.786003</td>\n",
1580
+ " </tr>\n",
1581
+ " <tr>\n",
1582
+ " <th>...</th>\n",
1583
+ " <td>...</td>\n",
1584
+ " <td>...</td>\n",
1585
+ " <td>...</td>\n",
1586
+ " <td>...</td>\n",
1587
+ " <td>...</td>\n",
1588
+ " <td>...</td>\n",
1589
+ " </tr>\n",
1590
+ " <tr>\n",
1591
+ " <th>15308188</th>\n",
1592
+ " <td>’</td>\n",
1593
+ " <td>NAAT</td>\n",
1594
+ " <td>naat</td>\n",
1595
+ " <td>123</td>\n",
1596
+ " <td>-7.307371</td>\n",
1597
+ " <td>-7.369814</td>\n",
1598
+ " </tr>\n",
1599
+ " <tr>\n",
1600
+ " <th>15309280</th>\n",
1601
+ " <td>“</td>\n",
1602
+ " <td>NAAT</td>\n",
1603
+ " <td>naat</td>\n",
1604
+ " <td>47</td>\n",
1605
+ " <td>-8.269408</td>\n",
1606
+ " <td>-8.318895</td>\n",
1607
+ " </tr>\n",
1608
+ " <tr>\n",
1609
+ " <th>15309314</th>\n",
1610
+ " <td>”</td>\n",
1611
+ " <td>NAAT</td>\n",
1612
+ " <td>naat</td>\n",
1613
+ " <td>139</td>\n",
1614
+ " <td>-7.185082</td>\n",
1615
+ " <td>-7.248453</td>\n",
1616
+ " </tr>\n",
1617
+ " <tr>\n",
1618
+ " <th>15309694</th>\n",
1619
+ " <td>•</td>\n",
1620
+ " <td>NAAT</td>\n",
1621
+ " <td>naat</td>\n",
1622
+ " <td>5</td>\n",
1623
+ " <td>-10.510118</td>\n",
1624
+ " <td>-10.398336</td>\n",
1625
+ " </tr>\n",
1626
+ " <tr>\n",
1627
+ " <th>15310402</th>\n",
1628
+ " <td>…</td>\n",
1629
+ " <td>NAAT</td>\n",
1630
+ " <td>naat</td>\n",
1631
+ " <td>11</td>\n",
1632
+ " <td>-9.721660</td>\n",
1633
+ " <td>-9.705189</td>\n",
1634
+ " </tr>\n",
1635
+ " </tbody>\n",
1636
+ "</table>\n",
1637
+ "<p>15326084 rows × 6 columns</p>\n",
1638
+ "</div>"
1639
+ ],
1640
+ "text/plain": [
1641
+ " word domain domain_short freq log_prob \\\n",
1642
+ "4486 DanNet (Danish WordNet) dannet 38 -9.948003 \n",
1643
+ "14344 ! DanNet (Danish WordNet) dannet 686 -7.054711 \n",
1644
+ "15182 $ DanNet (Danish WordNet) dannet 2 -12.892442 \n",
1645
+ "15231 % DanNet (Danish WordNet) dannet 104 -8.941198 \n",
1646
+ "15272 & DanNet (Danish WordNet) dannet 49 -9.693769 \n",
1647
+ "... ... ... ... ... ... \n",
1648
+ "15308188 ’ NAAT naat 123 -7.307371 \n",
1649
+ "15309280 “ NAAT naat 47 -8.269408 \n",
1650
+ "15309314 ” NAAT naat 139 -7.185082 \n",
1651
+ "15309694 • NAAT naat 5 -10.510118 \n",
1652
+ "15310402 … NAAT naat 11 -9.721660 \n",
1653
+ "\n",
1654
+ " log_prob_smoothed \n",
1655
+ "4486 -10.034464 \n",
1656
+ "14344 -7.165691 \n",
1657
+ "15182 -12.599413 \n",
1658
+ "15231 -9.044065 \n",
1659
+ "15272 -9.786003 \n",
1660
+ "... ... \n",
1661
+ "15308188 -7.369814 \n",
1662
+ "15309280 -8.318895 \n",
1663
+ "15309314 -7.248453 \n",
1664
+ "15309694 -10.398336 \n",
1665
+ "15310402 -9.705189 \n",
1666
+ "\n",
1667
+ "[15326084 rows x 6 columns]"
1668
+ ]
1669
+ },
1670
+ "execution_count": 56,
1671
+ "metadata": {},
1672
+ "output_type": "execute_result"
1673
+ }
1674
+ ],
1675
+ "source": [
1676
+ "df = dataset.to_pandas()\n",
1677
+ "df = df.groupby([\"word\", \"domain\", \"domain_short\"]).sum().reset_index()\n",
1678
+ "\n",
1679
+ "# calculate without domains log prob\n",
1680
+ "df = calc_log_prob_pr_domain(df, domains)\n",
1681
+ "\n",
1682
+ "# inspect\n",
1683
+ "df"
1684
+ ]
1685
+ },
1686
+ {
1687
+ "cell_type": "code",
1688
+ "execution_count": 57,
1689
+ "metadata": {},
1690
+ "outputs": [
1691
+ {
1692
+ "name": "stderr",
1693
+ "output_type": "stream",
1694
+ "text": [
1695
+ "Using custom data configuration default-21900efb838e4bd8\n",
1696
+ "/home/kenneth/.Envs/word_freq/lib/python3.8/site-packages/datasets/builder.py:712: FutureWarning: 'use_auth_token' was deprecated in version 2.7.1 and will be removed in 3.0.0. Pass `use_auth_token` to the initializer/`load_dataset_builder` instead.\n",
1697
+ " warnings.warn(\n"
1698
+ ]
1699
+ },
1700
+ {
1701
+ "name": "stdout",
1702
+ "output_type": "stream",
1703
+ "text": [
1704
+ "Downloading and preparing dataset csv/default to /home/kenneth/.cache/huggingface/datasets/csv/default-21900efb838e4bd8/0.0.0...\n"
1705
+ ]
1706
+ },
1707
+ {
1708
+ "name": "stderr",
1709
+ "output_type": "stream",
1710
+ "text": [
1711
+ "Downloading data files: 100%|██████████| 1/1 [00:00<00:00, 1636.48it/s]\n",
1712
+ "Extracting data files: 100%|██���███████| 1/1 [00:00<00:00, 455.46it/s]\n",
1713
+ "Generating train split: 0 examples [00:00, ? examples/s]/home/kenneth/.Envs/word_freq/lib/python3.8/site-packages/datasets/download/streaming_download_manager.py:727: FutureWarning: the 'mangle_dupe_cols' keyword is deprecated and will be removed in a future version. Please take steps to stop the use of 'mangle_dupe_cols'\n",
1714
+ " return pd.read_csv(xopen(filepath_or_buffer, \"rb\", use_auth_token=use_auth_token), **kwargs)\n",
1715
+ " \r"
1716
+ ]
1717
+ },
1718
+ {
1719
+ "name": "stdout",
1720
+ "output_type": "stream",
1721
+ "text": [
1722
+ "Dataset csv downloaded and prepared to /home/kenneth/.cache/huggingface/datasets/csv/default-21900efb838e4bd8/0.0.0. Subsequent calls will reuse this data.\n"
1723
+ ]
1724
+ }
1725
+ ],
1726
+ "source": [
1727
+ "# with_pos = Dataset.from_pandas(df, info=info)\n",
1728
+ "\n",
1729
+ "# save to csv\n",
1730
+ "df.to_csv(\"danish_word_freqs_with_pos.csv\", index=False)\n",
1731
+ "with_pos = Dataset.from_csv(\"danish_word_freqs_with_pos.csv\")"
1732
+ ]
1733
+ },
1734
+ {
1735
+ "attachments": {},
1736
+ "cell_type": "markdown",
1737
+ "metadata": {},
1738
+ "source": [
1739
+ "### Create the normalized dataset\n"
1740
+ ]
1741
+ },
1742
+ {
1743
+ "cell_type": "code",
1744
+ "execution_count": 59,
1745
+ "metadata": {},
1746
+ "outputs": [
1747
+ {
1748
+ "name": "stderr",
1749
+ "output_type": "stream",
1750
+ "text": [
1751
+ "/tmp/ipykernel_38251/710725097.py:6: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n",
1752
+ " df = df.groupby([\"word\", \"top_level_domain\"]).sum().reset_index()\n"
1753
+ ]
1754
+ },
1755
+ {
1756
+ "name": "stdout",
1757
+ "output_type": "stream",
1758
+ "text": [
1759
+ "Social Media\n",
1760
+ "dannet\n",
1761
+ "Web\n",
1762
+ "News\n",
1763
+ "Legal\n",
1764
+ "Wiki & Books\n",
1765
+ "Conversation\n",
1766
+ "Other\n",
1767
+ "top_level_domain\n",
1768
+ "Conversation 150531583.5\n",
1769
+ "Legal 150531583.5\n",
1770
+ "News 150531583.5\n",
1771
+ "Other 150531583.5\n",
1772
+ "Social Media 150531583.5\n",
1773
+ "Web 150531583.5\n",
1774
+ "Wiki & Books 150531583.5\n",
1775
+ "dannet 150531583.5\n",
1776
+ "Name: freq, dtype: float64\n"
1777
+ ]
1778
+ },
1779
+ {
1780
+ "data": {
1781
+ "text/html": [
1782
+ "<div>\n",
1783
+ "<style scoped>\n",
1784
+ " .dataframe tbody tr th:only-of-type {\n",
1785
+ " vertical-align: middle;\n",
1786
+ " }\n",
1787
+ "\n",
1788
+ " .dataframe tbody tr th {\n",
1789
+ " vertical-align: top;\n",
1790
+ " }\n",
1791
+ "\n",
1792
+ " .dataframe thead th {\n",
1793
+ " text-align: right;\n",
1794
+ " }\n",
1795
+ "</style>\n",
1796
+ "<table border=\"1\" class=\"dataframe\">\n",
1797
+ " <thead>\n",
1798
+ " <tr style=\"text-align: right;\">\n",
1799
+ " <th></th>\n",
1800
+ " <th>word</th>\n",
1801
+ " <th>top_level_domain</th>\n",
1802
+ " <th>freq</th>\n",
1803
+ " <th>log_prob</th>\n",
1804
+ " <th>log_prob_smoothed</th>\n",
1805
+ " </tr>\n",
1806
+ " </thead>\n",
1807
+ " <tbody>\n",
1808
+ " <tr>\n",
1809
+ " <th>297</th>\n",
1810
+ " <td>\\n</td>\n",
1811
+ " <td>Social Media</td>\n",
1812
+ " <td>1.721349e+06</td>\n",
1813
+ " <td>-6.550506</td>\n",
1814
+ " <td>-6.561969</td>\n",
1815
+ " </tr>\n",
1816
+ " <tr>\n",
1817
+ " <th>359</th>\n",
1818
+ " <td>\\n\\n</td>\n",
1819
+ " <td>Social Media</td>\n",
1820
+ " <td>1.643463e+03</td>\n",
1821
+ " <td>-13.504564</td>\n",
1822
+ " <td>-13.515419</td>\n",
1823
+ " </tr>\n",
1824
+ " <tr>\n",
1825
+ " <th>370</th>\n",
1826
+ " <td>\\n\\n\\n\\n</td>\n",
1827
+ " <td>Social Media</td>\n",
1828
+ " <td>1.148070e+00</td>\n",
1829
+ " <td>-20.771043</td>\n",
1830
+ " <td>-20.156018</td>\n",
1831
+ " </tr>\n",
1832
+ " <tr>\n",
1833
+ " <th>507</th>\n",
1834
+ " <td>\\n\\n\\n\\n \\n \\n\\n\\n \\n \\n\\n\\n \\n \\n\\n\\n \\n \\n\\n...</td>\n",
1835
+ " <td>Social Media</td>\n",
1836
+ " <td>5.740351e-01</td>\n",
1837
+ " <td>-21.464190</td>\n",
1838
+ " <td>-20.466946</td>\n",
1839
+ " </tr>\n",
1840
+ " <tr>\n",
1841
+ " <th>508</th>\n",
1842
+ " <td>\\n\\n\\n\\n \\n \\n \\n \\n \\n \\n\\n\\n \\n \\n \\n \\n \\n ...</td>\n",
1843
+ " <td>Social Media</td>\n",
1844
+ " <td>5.740351e-01</td>\n",
1845
+ " <td>-21.464190</td>\n",
1846
+ " <td>-20.466946</td>\n",
1847
+ " </tr>\n",
1848
+ " <tr>\n",
1849
+ " <th>...</th>\n",
1850
+ " <td>...</td>\n",
1851
+ " <td>...</td>\n",
1852
+ " <td>...</td>\n",
1853
+ " <td>...</td>\n",
1854
+ " <td>...</td>\n",
1855
+ " </tr>\n",
1856
+ " <tr>\n",
1857
+ " <th>13869006</th>\n",
1858
+ " <td>…</td>\n",
1859
+ " <td>Other</td>\n",
1860
+ " <td>1.269625e+04</td>\n",
1861
+ " <td>-11.460063</td>\n",
1862
+ " <td>-11.471448</td>\n",
1863
+ " </tr>\n",
1864
+ " <tr>\n",
1865
+ " <th>13869011</th>\n",
1866
+ " <td>……</td>\n",
1867
+ " <td>Other</td>\n",
1868
+ " <td>6.925227e+02</td>\n",
1869
+ " <td>-14.368784</td>\n",
1870
+ " <td>-14.378804</td>\n",
1871
+ " </tr>\n",
1872
+ " <tr>\n",
1873
+ " <th>13871529</th>\n",
1874
+ " <td>⟨hanj⟩</td>\n",
1875
+ " <td>Other</td>\n",
1876
+ " <td>4.616818e+02</td>\n",
1877
+ " <td>-14.774249</td>\n",
1878
+ " <td>-14.783549</td>\n",
1879
+ " </tr>\n",
1880
+ " <tr>\n",
1881
+ " <th>13871552</th>\n",
1882
+ " <td>⟩Gånga</td>\n",
1883
+ " <td>Other</td>\n",
1884
+ " <td>2.308409e+02</td>\n",
1885
+ " <td>-15.467396</td>\n",
1886
+ " <td>-15.474537</td>\n",
1887
+ " </tr>\n",
1888
+ " <tr>\n",
1889
+ " <th>13882710</th>\n",
1890
+ " <td>Goa</td>\n",
1891
+ " <td>Other</td>\n",
1892
+ " <td>2.308409e+02</td>\n",
1893
+ " <td>-15.467396</td>\n",
1894
+ " <td>-15.474537</td>\n",
1895
+ " </tr>\n",
1896
+ " </tbody>\n",
1897
+ "</table>\n",
1898
+ "<p>13884033 rows × 5 columns</p>\n",
1899
+ "</div>"
1900
+ ],
1901
+ "text/plain": [
1902
+ " word top_level_domain \\\n",
1903
+ "297 \\n Social Media \n",
1904
+ "359 \\n\\n Social Media \n",
1905
+ "370 \\n\\n\\n\\n Social Media \n",
1906
+ "507 \\n\\n\\n\\n \\n \\n\\n\\n \\n \\n\\n\\n \\n \\n\\n\\n \\n \\n\\n... Social Media \n",
1907
+ "508 \\n\\n\\n\\n \\n \\n \\n \\n \\n \\n\\n\\n \\n \\n \\n \\n \\n ... Social Media \n",
1908
+ "... ... ... \n",
1909
+ "13869006 … Other \n",
1910
+ "13869011 …… Other \n",
1911
+ "13871529 ⟨hanj⟩ Other \n",
1912
+ "13871552 ⟩Gånga Other \n",
1913
+ "13882710 Goa Other \n",
1914
+ "\n",
1915
+ " freq log_prob log_prob_smoothed \n",
1916
+ "297 1.721349e+06 -6.550506 -6.561969 \n",
1917
+ "359 1.643463e+03 -13.504564 -13.515419 \n",
1918
+ "370 1.148070e+00 -20.771043 -20.156018 \n",
1919
+ "507 5.740351e-01 -21.464190 -20.466946 \n",
1920
+ "508 5.740351e-01 -21.464190 -20.466946 \n",
1921
+ "... ... ... ... \n",
1922
+ "13869006 1.269625e+04 -11.460063 -11.471448 \n",
1923
+ "13869011 6.925227e+02 -14.368784 -14.378804 \n",
1924
+ "13871529 4.616818e+02 -14.774249 -14.783549 \n",
1925
+ "13871552 2.308409e+02 -15.467396 -15.474537 \n",
1926
+ "13882710 2.308409e+02 -15.467396 -15.474537 \n",
1927
+ "\n",
1928
+ "[13884033 rows x 5 columns]"
1929
+ ]
1930
+ },
1931
+ "execution_count": 59,
1932
+ "metadata": {},
1933
+ "output_type": "execute_result"
1934
+ }
1935
+ ],
1936
+ "source": [
1937
+ "df = dataset.to_pandas()\n",
1938
+ "total_freq = df[\"freq\"].sum()\n",
1939
+ "tl_domains = set(df[\"top_level_domain\"])\n",
1940
+ "words_pr_domain = total_freq / len(tl_domains)\n",
1941
+ "\n",
1942
+ "df = df.groupby([\"word\", \"top_level_domain\"]).sum().reset_index()\n",
1943
+ "\n",
1944
+ "dfs = []\n",
1945
+ "for dom in tl_domains:\n",
1946
+ " print(dom)\n",
1947
+ " # break\n",
1948
+ " dom_df = df[df[\"top_level_domain\"] == dom]\n",
1949
+ " dom_total_freq = dom_df[\"freq\"].sum()\n",
1950
+ " dom_df[\"freq\"] = dom_df[\"freq\"] * words_pr_domain / dom_total_freq\n",
1951
+ " assert dom_df[\"freq\"].sum() - words_pr_domain < 1e-5\n",
1952
+ " dfs.append(dom_df)\n",
1953
+ "\n",
1954
+ "df = pd.concat(dfs)\n",
1955
+ "df[\"log_prob\"] = np.log(df[\"freq\"] / total_freq)\n",
1956
+ "df[\"log_prob_smoothed\"] = np.log((df[\"freq\"] + 1) / (total_freq + len(df)))\n",
1957
+ "\n",
1958
+ "# check that the total freq is the same\n",
1959
+ "assert df[\"freq\"].sum() - total_freq < 1e-5\n",
1960
+ "# check that the total freq is the same pr domain\n",
1961
+ "print(df.groupby(\"top_level_domain\")[\"freq\"].sum())\n",
1962
+ "\n",
1963
+ "# inspect\n",
1964
+ "df"
1965
+ ]
1966
+ },
1967
+ {
1968
+ "cell_type": "code",
1969
+ "execution_count": 60,
1970
+ "metadata": {},
1971
+ "outputs": [
1972
+ {
1973
+ "name": "stderr",
1974
+ "output_type": "stream",
1975
+ "text": [
1976
+ "Using custom data configuration default-dde703a9c875a737\n",
1977
+ "/home/kenneth/.Envs/word_freq/lib/python3.8/site-packages/datasets/builder.py:712: FutureWarning: 'use_auth_token' was deprecated in version 2.7.1 and will be removed in 3.0.0. Pass `use_auth_token` to the initializer/`load_dataset_builder` instead.\n",
1978
+ " warnings.warn(\n"
1979
+ ]
1980
+ },
1981
+ {
1982
+ "name": "stdout",
1983
+ "output_type": "stream",
1984
+ "text": [
1985
+ "Downloading and preparing dataset csv/default to /home/kenneth/.cache/huggingface/datasets/csv/default-dde703a9c875a737/0.0.0...\n"
1986
+ ]
1987
+ },
1988
+ {
1989
+ "name": "stderr",
1990
+ "output_type": "stream",
1991
+ "text": [
1992
+ "Downloading data files: 100%|██████████| 1/1 [00:00<00:00, 2280.75it/s]\n",
1993
+ "Extracting data files: 100%|██████████| 1/1 [00:00<00:00, 569.72it/s]\n",
1994
+ "Generating train split: 0 examples [00:00, ? examples/s]/home/kenneth/.Envs/word_freq/lib/python3.8/site-packages/datasets/download/streaming_download_manager.py:727: FutureWarning: the 'mangle_dupe_cols' keyword is deprecated and will be removed in a future version. Please take steps to stop the use of 'mangle_dupe_cols'\n",
1995
+ " return pd.read_csv(xopen(filepath_or_buffer, \"rb\", use_auth_token=use_auth_token), **kwargs)\n",
1996
+ " \r"
1997
+ ]
1998
+ },
1999
+ {
2000
+ "name": "stdout",
2001
+ "output_type": "stream",
2002
+ "text": [
2003
+ "Dataset csv downloaded and prepared to /home/kenneth/.cache/huggingface/datasets/csv/default-dde703a9c875a737/0.0.0. Subsequent calls will reuse this data.\n"
2004
+ ]
2005
+ }
2006
+ ],
2007
+ "source": [
2008
+ "# normalized = Dataset.from_pandas(df, info=info)\n",
2009
+ "\n",
2010
+ "# save to csv\n",
2011
+ "df.to_csv(\"danish_word_freqs_normalized.csv\", index=False)\n",
2012
+ "normalized = Dataset.from_csv(\"danish_word_freqs_normalized.csv\")"
2013
+ ]
2014
+ },
2015
+ {
2016
+ "attachments": {},
2017
+ "cell_type": "markdown",
2018
+ "metadata": {},
2019
+ "source": [
2020
+ "## Upload to Huggingface Hub"
2021
+ ]
2022
+ },
2023
+ {
2024
+ "cell_type": "code",
2025
+ "execution_count": 61,
2026
+ "metadata": {},
2027
+ "outputs": [],
2028
+ "source": [
2029
+ "ds_dict = DatasetDict({\n",
2030
+ " \"word_frequencies\": word_frequencies,\n",
2031
+ " \"by_domain\": by_domain,\n",
2032
+ " \"with_pos\": with_pos,\n",
2033
+ " \"normalized\": normalized,\n",
2034
+ "})"
2035
+ ]
2036
+ },
2037
+ {
2038
+ "cell_type": "code",
2039
+ "execution_count": 64,
2040
+ "metadata": {},
2041
+ "outputs": [
2042
+ {
2043
+ "name": "stderr",
2044
+ "output_type": "stream",
2045
+ "text": [
2046
+ "Pushing dataset shards to the dataset hub: 100%|██████████| 1/1 [00:18<00:00, 18.75s/it]\n"
2047
+ ]
2048
+ }
2049
+ ],
2050
+ "source": [
2051
+ "word_frequencies.push_to_hub(\"chcaa/dagw-word-frequencies\")"
2052
+ ]
2053
+ },
2054
+ {
2055
+ "cell_type": "code",
2056
+ "execution_count": 65,
2057
+ "metadata": {},
2058
+ "outputs": [
2059
+ {
2060
+ "name": "stderr",
2061
+ "output_type": "stream",
2062
+ "text": [
2063
+ "Pushing dataset shards to the dataset hub: 100%|██████████| 3/3 [00:36<00:00, 12.04s/it]\n"
2064
+ ]
2065
+ }
2066
+ ],
2067
+ "source": [
2068
+ "by_domain.push_to_hub(\"chcaa/dagw-word-frequencies-by-domain\")"
2069
+ ]
2070
+ },
2071
+ {
2072
+ "cell_type": "code",
2073
+ "execution_count": 66,
2074
+ "metadata": {},
2075
+ "outputs": [
2076
+ {
2077
+ "name": "stderr",
2078
+ "output_type": "stream",
2079
+ "text": [
2080
+ "Pushing dataset shards to the dataset hub: 100%|██████████| 3/3 [00:38<00:00, 12.80s/it]\n"
2081
+ ]
2082
+ }
2083
+ ],
2084
+ "source": [
2085
+ "with_pos.push_to_hub(\"chcaa/dagw-word-frequencies-by-domain-with-pos-tags\")"
2086
+ ]
2087
+ },
2088
+ {
2089
+ "cell_type": "code",
2090
+ "execution_count": 67,
2091
+ "metadata": {},
2092
+ "outputs": [
2093
+ {
2094
+ "name": "stderr",
2095
+ "output_type": "stream",
2096
+ "text": [
2097
+ "Pushing dataset shards to the dataset hub: 100%|██████████| 2/2 [00:27<00:00, 13.59s/it]\n"
2098
+ ]
2099
+ }
2100
+ ],
2101
+ "source": [
2102
+ "normalized.push_to_hub(\"chcaa/dagw-word-frequencies-normalized-by-domain\")"
2103
+ ]
2104
+ },
2105
+ {
2106
+ "cell_type": "code",
2107
+ "execution_count": null,
2108
+ "metadata": {},
2109
+ "outputs": [],
2110
+ "source": []
2111
+ }
2112
+ ],
2113
+ "metadata": {
2114
+ "kernelspec": {
2115
+ "display_name": "word_freq",
2116
+ "language": "python",
2117
+ "name": "python3"
2118
+ },
2119
+ "language_info": {
2120
+ "codemirror_mode": {
2121
+ "name": "ipython",
2122
+ "version": 3
2123
+ },
2124
+ "file_extension": ".py",
2125
+ "mimetype": "text/x-python",
2126
+ "name": "python",
2127
+ "nbconvert_exporter": "python",
2128
+ "pygments_lexer": "ipython3",
2129
+ "version": "3.8.13"
2130
+ },
2131
+ "orig_nbformat": 4,
2132
+ "vscode": {
2133
+ "interpreter": {
2134
+ "hash": "c10b2b53a6cd3acf03ed810a769e61720ca332994d31c08dc7197a28d260da6e"
2135
+ }
2136
+ }
2137
+ },
2138
+ "nbformat": 4,
2139
+ "nbformat_minor": 2
2140
+ }
wordfreq.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ a quick script for getting wordcounts of all danish words in gigaword
3
+ """
4
+ # import torch
5
+ # import torch.multiprocessing as mp
6
+ # mp.set_start_method('spawn', force=True)
7
+ # torch.set_num_threads(1)
8
+
9
+ import json
10
+ import os
11
+ from collections import Counter, defaultdict
12
+ from pathlib import Path
13
+
14
+ # from dacy.download import download_model, DEFAULT_CACHE_DIR
15
+ from typing import List, Optional, Tuple
16
+
17
+ import spacy
18
+
19
+ # model = "da_dacy_large_tft-0.0.0"
20
+ word_freq_path = "/data/DAGW/word_freqs"
21
+ dagw_sektioner = "/data/DAGW/dagw-master/sektioner"
22
+
23
+ # download_model(model, DEFAULT_CACHE_DIR)
24
+ # path = os.path.join(DEFAULT_CACHE_DIR, model)
25
+
26
+ nlp = spacy.load("da_core_news_lg", exclude=["parser", "ner"])
27
+ # nlp.get_pipe("transformer").model.attrs["flush_cache_chance"] = 0.1
28
+
29
+
30
+ Path(word_freq_path).mkdir(parents=True, exist_ok=True)
31
+
32
+ sections = os.listdir(dagw_sektioner)
33
+ filepaths = {}
34
+ for p in sections:
35
+ subpath = os.path.join(dagw_sektioner, p)
36
+ filepaths[p] = [
37
+ os.path.join(subpath, p)
38
+ for p in os.listdir(subpath)
39
+ if p != "LICENSE" and not p.endswith(".jsonl")
40
+ ]
41
+
42
+
43
+ def wordpiece_group_text(text, size=500):
44
+ from transformers import AutoTokenizer
45
+
46
+ tokenizer = AutoTokenizer.from_pretrained(
47
+ "Maltehb/-l-ctra-danish-electra-small-uncased", strip_accents=False
48
+ )
49
+ out = tokenizer.encode(text, add_special_tokens=False)
50
+
51
+ prv = 0
52
+ for i in range(size, len(out), size):
53
+ yield tokenizer.decode(out[prv:i])
54
+ prv = i
55
+ if prv < len(out):
56
+ yield tokenizer.decode(out[prv : len(out)])
57
+
58
+
59
+ def group_text(text, size=2400):
60
+ length = len(text)
61
+ prv = 0
62
+ for i in range(size, length, size):
63
+ yield text[prv:i]
64
+ prv = i
65
+ if prv < length:
66
+ yield text[prv:length]
67
+
68
+
69
+ def text_gen(filepaths):
70
+ for i, file in enumerate(filepaths):
71
+ if i % 10000 == 0:
72
+ print("\t", i, "/", len(filepaths))
73
+ with open(file, "r") as f:
74
+ text = f.read()
75
+ for t in group_text(text):
76
+ yield t
77
+
78
+
79
+ class WordCounter:
80
+ def __init__(self, l: Optional[List] = None):
81
+ self.dict = defaultdict(lambda: defaultdict(int))
82
+ if l is not None:
83
+ self.add(l)
84
+
85
+ def add(self, l: list):
86
+ for token, pos in l:
87
+ self.dict[token][pos] += 1
88
+
89
+ def __add__(self, other):
90
+ for k_tok in other.dict:
91
+ if k_tok in self.dict:
92
+ for pos, count in other.dict[k_tok].items():
93
+ self.dict[k_tok][pos] += count
94
+ else:
95
+ self.dict[k_tok] = other.dict[k_tok]
96
+ return self
97
+
98
+
99
+ for sec in filepaths:
100
+ print("Starting Section:", sec)
101
+ docs = nlp.pipe(texts=text_gen(filepaths[sec]), n_process=10, batch_size=8)
102
+
103
+ n = 0
104
+ word_counts = WordCounter()
105
+ for i, doc in enumerate(docs, start=1):
106
+ word_counts += WordCounter([(t.text, t.tag_) for t in doc])
107
+
108
+ if i % 10000 == 0:
109
+ with open(
110
+ os.path.join(word_freq_path, f"wordfreq_{sec}_{n}.json"), "w"
111
+ ) as f:
112
+ json_str = json.dumps(word_counts.dict)
113
+ f.write(json_str)
114
+ word_counts = WordCounter()
115
+ n += 1
116
+
117
+ with open(os.path.join(word_freq_path, f"wordfreq_{sec}_{n}.json"), "w") as f:
118
+ json_str = json.dumps(word_counts.dict)
119
+ f.write(json_str)