Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
Danish
ArXiv:
Libraries:
Datasets
Dask
word
stringlengths
1
2.4k
top_level_domain
stringclasses
8 values
freq
float64
0.43
13.5M
log_prob
float64
-21.75
-4.49
log_prob_smoothed
float64
-20.56
-4.5
Social Media
1,721,348.74734
-6.550506
-6.561969
Social Media
1,643.462516
-13.504564
-13.515419
Social Media
1.14807
-20.771043
-20.156018
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
21.239299
-17.853272
-17.818727
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
1.14807
-20.771043
-20.156018
 
Social Media
0.574035
-21.46419
-20.466946
Social Media
12,748.745726
-11.455937
-11.467322
Social Media
4,856.337018
-12.421085
-12.432343
Social Media
1.14807
-20.771043
-20.156018
Social Media
52.81123
-16.942401
-16.935106
Social Media
127.435794
-16.061512
-16.065159
Social Media
4.018246
-19.51828
-19.307508
Social Media
2.29614
-20.077895
-19.727836
Social Media
0.574035
-21.46419
-20.466946
Social Media
2.29614
-20.077895
-19.727836
Social Media
20.665264
-17.880671
-17.844878
Social Media
0.574035
-21.46419
-20.466946
Social Media
6.888421
-18.979283
-18.855192
Social Media
2.870176
-19.854752
-19.567288
Social Media
1.14807
-20.771043
-20.156018
Social Media
0.574035
-21.46419
-20.466946
Social Media
2.29614
-20.077895
-19.727836
Social Media
1.14807
-20.771043
-20.156018
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
6.314386
-19.066294
-18.930745
Social Media
2.870176
-19.854752
-19.567288
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
1.14807
-20.771043
-20.156018
Social Media
1.14807
-20.771043
-20.156018
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
70.032283
-16.660169
-16.657454
Social Media
30.997896
-17.475206
-17.454918
Social Media
18.369123
-17.998454
-17.956908
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
1.14807
-20.771043
-20.156018
Social Media
0.574035
-21.46419
-20.466946
Social Media
7.462456
-18.89924
-18.784949
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
2.29614
-20.077895
-19.727836
Social Media
5.740351
-19.161605
-19.012476
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
5.740351
-19.161605
-19.012476
Social Media
1.14807
-20.771043
-20.156018
Social Media
2.870176
-19.854752
-19.567288
Social Media
0.574035
-21.46419
-20.466946
Social Media
1.722105
-20.365577
-19.919183
Social Media
0.574035
-21.46419
-20.466946
Social Media
2.29614
-20.077895
-19.727836
Social Media
1.722105
-20.365577
-19.919183
Social Media
2.29614
-20.077895
-19.727836
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
1.14807
-20.771043
-20.156018
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
Social Media
0.574035
-21.46419
-20.466946
 
Social Media
0.574035
-21.46419
-20.466946
Social Media
5,776.515297
-12.247569
-12.258859

Dataset Card for DAGW Word Frequencies (normalized)

  • Paper: Derczynski, L., Ciosici, M. R., Baglini, R., Christiansen, M. H., Dalsgaard, J. A., Fusaroli, R., ... & Varab, D. (2021). The Danish Gigaword Corpus. In Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa) (pp. 413-421).
  • Point of Contact: Kenneth Enevoldsen (Kennethcenevoldsen (at) gmail (dot) com )

This is a list of word frequencies derived from the Danish Gigaword (collected before 2022-22-01). These word frequencies are derived from tokens from the Danish Gigaword Corpus, which have been tokenized using the spacy pipeline for Danish "da_core_news_lg" using spacy>=3.0.0,<3.4.0. See the notebook "convert_to_hf_dataset.ipynb" and wordfreq.py for more information about how it was created.

Dataset formats

This dataset have been created in four formats:

Dataset Creation

Curation Rationale

Word frequencies of large domains har often used to calculate metrics such as text entropy or word surprise. Word frequencies can also be used to to create stopword lists and similar.

Source Data

The frequencies are derived from the Danish Gigaword. To read more about the Danish Gigaword and its content please check out the entry on Danish language resources, which also links to latest publications.

Discussion of Biases

This dataset contains notably different distributions of the original domains; for instance, the legal domain is highly overrepresented within this corpus. Please see the normalized version of this dataset if you wish to see word frequencies which normalized across domains.

Other Known Limitations

The news data within this corpus ("danavis") have altered the text, this is described further in the original version (v1) of paper.

Licensing Information

Below follows a brief overview of the sources in the corpus along with their individual license.

Source License
adl Creative Commons Legal Code 1.0 Universal
botxt Creative Commons Legal Code 1.0 Universal
cc Creative Commons Legal Code 1.0 Universal
danavis Creative Commons Legal Code 1.0 Universal
dannet dannet license
depbank Attribution-ShareAlike 4.0 International
ep Creative Commons Legal Code 1.0 Universal
ft Creative Commons Legal Code 1.0 Universal
gutenberg gutenberg license
hest Creative Commons Legal Code 1.0 Universal
jvj Attribution-ShareAlike 4.0 International
naat Creative Commons Legal Code 1.0 Universal
opensub The data set comes with the same license as the original sources. Please, check the information about the source that is given on http://opus.nlpl.eu/OpenSubtitles-v2018.php
relig Creative Commons Legal Code 1.0 Universal
retsinformationdk Danish Copyright law at https://www.retsinformation.dk/forms/r0710.aspx?id=164796 states "§ 9. Love, administrative forskrifter, retsafgørelser og lignende offentlige aktstykker er ikke genstand for ophavsret. Stk. 2. Bestemmelsen i stk. 1 gælder ikke for værker, der fremtræder som selvstændige bidrag i de i stk. 1 nævnte aktstykker. Sådanne værker må dog gengives i forbindelse med aktstykket. Retten til videre udnyttelse afhænger af de i øvrigt gældende regler."
retspraksis Creative Commons Legal Code 1.0 Universal
skat Creative Commons Legal Code 1.0 Universal
spont Creative Commons Legal Code 1.0 Universal
synne Creative Commons Legal Code 1.0 Universal
tv2r The owner of this content is TV2 Regionerne, Denmark. Creative Commons Attribution 4.0 International
wiki Creative Commons Legal Code 1.0 Universal
wikibooks Creative Commons Legal Code 1.0 Universal
wikisource Creative Commons Legal Code 1.0 Universal

Contributions

Thanks to @KennethEnevoldsen for adding this dataset.

Downloads last month
11