|
import json |
|
import gzip |
|
|
|
import datasets |
|
import numpy as np |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_DESCRIPTION = """\ |
|
Libriheavy is a labeled version of Librilight. |
|
This (unofficial) huggingface dataset contains the medium (4500 hours) split of the Libriheavy dataset with alignments and mel spectrograms. |
|
""" |
|
|
|
_URL = """\ |
|
https://github.com/k2-fsa/libriheavy |
|
""" |
|
|
|
_CITATION = """\ |
|
@article{kang2023libriheavy, |
|
title={Libriheavy: a 50,000 hours asr corpus with punctuation casing and context}, |
|
author={Kang, Wei and Yang, Xiaoyu and Yao, Zengwei and Kuang, Fangjun and Yang, Yifan and Guo, Liyong and Lin, Long and Povey, Daniel}, |
|
journal={arXiv preprint arXiv:2309.08105}, |
|
year={2023} |
|
} |
|
""" |
|
|
|
class LibriheavyConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Libriheavy.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for Libriheavy. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(LibriheavyConfig, self).__init__(**kwargs) |
|
|
|
|
|
class Libriheavy(datasets.GeneratorBasedBuilder): |
|
"""Libriheavy dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
LibriheavyConfig(name="libriheavy", version=datasets.Version("1.0.0"), description="Libriheavy dataset."), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"audio": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"word_segments": datasets.Sequence( |
|
{ |
|
"start": datasets.Value("int32"), |
|
"end": datasets.Value("int32"), |
|
"word": datasets.Value("string"), |
|
} |
|
), |
|
"mel_spectrogram": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
speaker_list = "medium_data/speaker_list.json" |
|
speaker_list = dl_manager.download_and_extract(speaker_list) |
|
with open(speaker_list, "r") as f: |
|
speaker_list = json.load(f) |
|
|
|
speaker_metadata = {} |
|
for speaker_id, metadata_path in speaker_list.items(): |
|
metadata_path = f"medium_data/{metadata_path}" |
|
metadata_path = dl_manager.download_and_extract(metadata_path) |
|
with open(metadata_path, "r") as f: |
|
speaker_metadata[speaker_id] = json.load(f) |
|
speaker_chunks = [] |
|
for speaker_id, metadata in speaker_metadata.items(): |
|
for chunk_id, chunk in metadata["chunks"].items(): |
|
speaker_chunks.append( |
|
{ |
|
"speaker_id": speaker_id, |
|
"id": f"{speaker_id}_{chunk_id}", |
|
"audio": dl_manager.download(f"medium_data/{chunk['npz'].replace('.gz', '')}"), |
|
"text": dl_manager.download(f"medium_data/{chunk['json']}"), |
|
} |
|
) |
|
|
|
np.random.seed(42) |
|
np.random.shuffle(speaker_chunks) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"speaker_chunks": speaker_chunks}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, speaker_chunks): |
|
"""Yields examples.""" |
|
for chunk in speaker_chunks: |
|
npz = dict(np.load(chunk["audio"], allow_pickle=True)) |
|
utterances = npz.keys() |
|
with gzip.open(chunk["text"], "rt") as f: |
|
text = json.load(f) |
|
for utterance_id, utterance in text.items(): |
|
result = { |
|
"id": chunk["speaker_id"] + "_" + utterance_id, |
|
"speaker_id": chunk["speaker_id"], |
|
"audio": chunk["audio"], |
|
"text": chunk["text"], |
|
"word_segments": [ |
|
{"start": segment[0], "end": segment[1], "word": segment[2]} for segment in utterance["word_segments"] |
|
], |
|
"mel_spectrogram": npz[str(utterance_id)].item()["mel"][0][0], |
|
} |
|
yield chunk["speaker_id"] + "_" + utterance_id, result |