Datasets:
Dataset Card for Music Genre
The Default dataset comprises approximately 1,700 musical pieces in .mp3 format, sourced from the NetEase music. The lengths of these pieces range from 270 to 300 seconds. All are sampled at the rate of 22,050 Hz. As the website providing the audio music includes style labels for the downloaded music, there are no specific annotators involved. Validation is achieved concurrently with the downloading process. They are categorized into a total of 16 genres.
Viewer
https://www.modelscope.cn/datasets/ccmusic-database/music_genre/dataPeview
Dataset Structure
Default Subset
audio | mel (spectrogram) | fst_level_label (2-class) | sec_level_label (9-class) | thr_level_label (16-class) |
---|---|---|---|---|
.wav, 22050Hz | .jpg, 22050Hz | 1_Classic / 2_Non_classic | 3_Symphony / 4_Opera / 5_Solo / 6_Chamber / 7_Pop / 8_Dance_and_house / 9_Indie / 10_Soul_or_r_and_b / 11_Rock | 3_Symphony / 4_Opera / 5_Solo / 6_Chamber / 12_Pop_vocal_ballad / 13_Adult_contemporary / 14_Teen_pop / 15_Contemporary_dance_pop / 16_Dance_pop / 17_Classic_indie_pop / 18_Chamber_cabaret_and_art_pop / 10_Soul_or_r_and_b / 19_Adult_alternative_rock / 20_Uplifting_anthemic_rock / 21_Soft_rock / 22_Acoustic_pop |
... | ... | ... | ... | ... |
Eval Subset
mel | cqt | chroma | fst_level_label (2-class) | sec_level_label (9-class) | thr_level_label (16-class) |
---|---|---|---|---|---|
.jpg, 11.4s, 48000Hz | .jpg, 11.4s, 48000Hz | .jpg, 11.4s, 48000Hz | 1_Classic / 2_Non_classic | 3_Symphony / 4_Opera / 5_Solo / 6_Chamber / 7_Pop / 8_Dance_and_house / 9_Indie / 10_Soul_or_r_and_b / 11_Rock | 3_Symphony / 4_Opera / 5_Solo / 6_Chamber / 12_Pop_vocal_ballad / 13_Adult_contemporary / 14_Teen_pop / 15_Contemporary_dance_pop / 16_Dance_pop / 17_Classic_indie_pop / 18_Chamber_cabaret_and_art_pop / 10_Soul_or_r_and_b / 19_Adult_alternative_rock / 20_Uplifting_anthemic_rock / 21_Soft_rock / 22_Acoustic_pop |
... | ... | ... | ... | ... | ... |
Data Instances
.zip(.jpg)
Data Fields
1_Classic
3_Symphony
4_Opera
5_Solo
6_Chamber
2_Non_classic
7_Pop
12_Pop_vocal_ballad
13_Adult_contemporary
14_Teen_pop
8_Dance_and_house
15_Contemporary_dance_pop
16_Dance_pop
9_Indie
17_Classic_indie_pop
18_Chamber_cabaret_and_art_pop
10_Soul_or_RnB
11_Rock
19_Adult_alternative_rock
20_Uplifting_anthemic_rock
21_Soft_rock
22_Acoustic_pop
Data Splits
Split | Default | Eval |
---|---|---|
total | 1713 | 36375 |
train(80%) | 1370 | 29100 |
validation(10%) | 171 | 3637 |
test(10%) | 172 | 3638 |
Dataset Summary
This database contains about 1700 musical pieces (.mp3 format) with lengths of 270-300s that are divided into 17 genres in total.
Supported Tasks and Leaderboards
Audio classification
Languages
Multilingual
Maintenance
git clone [email protected]:datasets/ccmusic-database/music_genre
cd music_genre
Usage
Default Subset
from datasets import load_dataset
ds = load_dataset("ccmusic-database/music_genre", name="default")
for item in ds["train"]:
print(item)
for item in ds["validation"]:
print(item)
for item in ds["test"]:
print(item)
Eval Subset
from datasets import load_dataset
ds = load_dataset("ccmusic-database/music_genre", name="eval")
for item in ds["train"]:
print(item)
for item in ds["validation"]:
print(item)
for item in ds["test"]:
print(item)
Dataset Creation
Curation Rationale
Promoting the development of AI in the music industry
Source Data
Initial Data Collection and Normalization
Zhaorui Liu, Monan Zhou
Who are the source language producers?
Composers of the songs in the dataset
Annotations
Annotation process
Students collected about 1700 musical pieces (.mp3 format) with lengths of 270-300s divided into 17 genres in total.
Who are the annotators?
Students from CCMUSIC
Personal and Sensitive Information
Due to copyright issues with the original music, only spectrograms are provided in the dataset.
Considerations for Using the Data
Social Impact of Dataset
Promoting the development of AI in the music industry
Discussion of Biases
Most are English songs
Other Known Limitations
Samples are not balanced enough
Additional Information
Dataset Curators
Zijin Li
Evaluation
https://huggingface.co/ccmusic-database/music_genre
Citation Information
@dataset{zhaorui_liu_2021_5676893,
author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
title = {CCMusic: an Open and Diverse Database for Chinese and General Music Information Retrieval Research},
month = {mar},
year = {2024},
publisher = {HuggingFace},
version = {1.2},
url = {https://huggingface.co/ccmusic-database}
}
Contributions
Provide a dataset for music genre classification
- Downloads last month
- 93