Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
language: | |
- en | |
license: | |
- other | |
multilinguality: | |
- monolingual | |
size_categories: | |
- 1k<10K | |
task_categories: | |
- text-classification | |
task_ids: | |
- sentiment-classification | |
pretty_name: TweetTopicSingle | |
# Dataset Card for "cardiff_nlp/tweet_topic_single" | |
## Dataset Description | |
- **Paper:** TBA | |
- **Dataset:** Tweet Topic Dataset | |
- **Domain:** Twitter | |
- **Number of Class:** 6 | |
### Dataset Summary | |
Topic classification dataset on Twitter with single label per tweet. See [cardiffnlp/tweet_topic_multi](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi) for multiple labels version of Tweet Topic. | |
## Dataset Structure | |
### Data Instances | |
An example of `train` looks as follows. | |
```python | |
{ | |
"text": "Game day for {{USERNAME}} U18\u2019s against {{USERNAME}} U18\u2019s. Even though it\u2019s a \u2018home\u2019 game for the people that have settled in Mid Wales it\u2019s still a 4 hour round trip for us up to Colwyn Bay. Still enjoy it though!", | |
"date": "2019-09-08", | |
"label": 4, | |
"id": "1170606779568463874", | |
"label_name": "sports_&_gaming" | |
} | |
``` | |
### Label ID | |
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/tweet_topic_single/raw/main/dataset/label.single.json). | |
```python | |
{ | |
"arts_&_culture": 0, | |
"business_&_entrepreneurs": 1, | |
"pop_culture": 2, | |
"daily_life": 3, | |
"sports_&_gaming": 4, | |
"science_&_technology": 5 | |
} | |
``` | |
### Data Splits | |
| split | number of texts | description | | |
|:----------------------------|-----:|:-----| | |
| `test` | 1693 | alias of `temporal_2021_test` | | |
| `train` | 2858 | alias of `temporal_2020_train` | | |
| `validation` | 352 | alias of `temporal_2020_validation` | | |
| `temporal_2020_test` | 376 | test set in 2020 period of temporal split | | |
| `temporal_2021_test` | 1693 | test set in 2021 period of temporal split | | |
| `temporal_2020_train` | 2858 | training set in 2020 period of temporal split | | |
| `temporal_2021_train` | 1516 | training set in 2021 period of temporal split | | |
| `temporal_2020_validation` | 352 | validation set in 2020 period of temporal split | | |
| `temporal_2021_validation` | 189 | validation set in 2021 period of temporal split | | |
| `random_train` | 2830 | training set of random split (mix of 2020 and 2021) | | |
| `random_validation` | 354 | validation set of random split (mix of 2020 and 2021) | | |
| `coling2022_random_test` | 3399 | test set of random split used in COLING 2022 Tweet Topic paper | | |
| `coling2022_random_train` | 3598 | training set of random split used in COLING 2022 Tweet Topic paper | | |
| `coling2022_temporal_test` | 3399 | test set of temporal split used in COLING 2022 Tweet Topic paper | | |
| `coling2022_temporal_train` | 3598 | training set of temporal split used in COLING 2022 Tweet Topic paper| | |
For the temporal-shift setting, we recommend to train models on `train` (an alias of `temporal_2020_train`) with `validation` (an alias of `temporal_2020_validation`) and evaluate on `test` (an alias of `temporal_2021_test`). | |
For the random split, we recommend to train models on `random_train` with `random_validation` and evaluate on `test` (`temporal_2021_test`). | |
**IMPORTANT NOTE:** To get a result that is comparable with the results of the COLING 2022 Tweet Topic paper, please use `coling2022_temporal_train` and `coling2022_temporal_test` for temporal-shift, and `coling2022_random_train` and `coling2022_temporal_test` fir random split (the coling2022 split does not have validation set). | |
### Citation Information | |
``` | |
TBA | |
``` |