File size: 13,953 Bytes
4d88e8a 3789adf 4d88e8a d13fe3a 3789adf 4d88e8a 348c52a 4d88e8a d13fe3a 4d88e8a 3789adf 4d88e8a 348c52a 4d88e8a 348c52a d9bd9cf 348c52a 4d88e8a 348c52a 3789adf 4d88e8a 348c52a 3789adf 4d88e8a 3789adf 4d88e8a 348c52a 3789adf d9bd9cf 3789adf 64f11ac 348c52a 64f11ac 348c52a d9bd9cf 348c52a 7db50a7 348c52a 64f11ac 348c52a 4d88e8a 9ec398b 7db50a7 eb17e47 9ec398b 3789adf eb17e47 348c52a 3789adf 348c52a d13fe3a 4d88e8a 348c52a 4d88e8a 348c52a 4d88e8a 348c52a 4d88e8a 348c52a 700e037 348c52a 4d88e8a 348c52a 4d88e8a 348c52a 4d88e8a 348c52a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
""" Fine-tune T5 on topic classification (multi-label multi-class classification)
```
python finetune_t5.py --dataset-name ja --model-alias mt5-small-tweet-topic-ja --model-organization cardiffnlp --low-cpu-mem-usage
```
"""
import json
import logging
import os
import argparse
import gc
from glob import glob
from typing import List, Set, Dict
from shutil import copyfile
from statistics import mean
from itertools import product
import torch
import transformers
import numba
from datasets import load_dataset
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments, pipeline
from huggingface_hub import Repository
os.environ['TOKENIZERS_PARALLELISM'] = 'false' # turn-off the warning message
os.environ['WANDB_DISABLED'] = 'true' # disable wandb
def load_model(
model_name: str,
use_auth_token: bool = False,
low_cpu_mem_usage: bool = False) -> transformers.PreTrainedModel:
"""Load language model from huggingface model hub."""
# config & tokenizer
config = transformers.AutoConfig.from_pretrained(model_name, use_auth_token=use_auth_token)
if config.model_type == 't5': # T5 model requires T5ForConditionalGeneration class
model_class = transformers.T5ForConditionalGeneration.from_pretrained
elif config.model_type == 'mt5':
model_class = transformers.MT5ForConditionalGeneration.from_pretrained
elif config.model_type == 'bart':
model_class = transformers.BartForConditionalGeneration.from_pretrained
elif config.model_type == 'mbart':
model_class = transformers.MBartForConditionalGeneration.from_pretrained
else:
raise ValueError(f'unsupported model type: {config.model_type}')
param = {'config': config, 'use_auth_token': use_auth_token, 'low_cpu_mem_usage': low_cpu_mem_usage}
model = model_class(model_name, **param)
return model
def get_f1_score(references: List[Set[str]], predictions: List[Set[str]]) -> Dict[str, float]:
scores = []
for g, r in zip(references, predictions):
tp = len(set(g).intersection(set(r)))
fp = len([_g for _g in g if _g not in r])
fn = len([_r for _r in r if _r not in g])
if tp == 0:
f1 = 0
else:
f1 = 2 * tp / (2 * tp + fp + fn)
scores.append(f1)
return {'f1': mean(scores)}
def train(
model_name: str,
model_low_cpu_mem_usage: bool,
dataset: str,
dataset_name: str,
dataset_column_label: str,
dataset_column_text: str,
dataset_split_train: str,
dataset_split_validation: str,
dataset_split_test: str,
lr: List,
epoch: List,
batch: List,
down_sample_train: int,
down_sample_validation: int,
random_seed: int,
use_auth_token: bool,
output_dir: str,
model_alias: str,
model_organization: str,
skip_train: bool = False,
skip_test: bool = False,
skip_upload: bool = False,
eval_steps: float = 0.25,
eval_batch_size: int = None):
"""Fine-tune seq2seq model."""
logging.info(f'[CONFIG]\n\t *LM: {model_name}, \n\t *Data: {dataset} ({dataset_name})')
if not output_dir:
output_dir = f'ckpt/{os.path.basename(model_name)}.{os.path.basename(dataset)}.{dataset_name}'
# dataset process
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name, use_auth_token=use_auth_token)
dataset_split = {
'train': [dataset_split_train, down_sample_train],
'validation': [dataset_split_validation, down_sample_validation]
}
dataset_instance = load_dataset(dataset, dataset_name, use_auth_token=use_auth_token)
tokenized_dataset = {}
for s, (s_dataset, down_sample) in dataset_split.items():
tokenized_dataset[s] = []
dataset_tmp = dataset_instance[s_dataset]
dataset_tmp.shuffle(random_seed)
for i in dataset_tmp:
model_inputs = tokenizer(i[dataset_column_text], truncation=True)
model_inputs['labels'] = tokenizer(text_target=i[dataset_column_label], truncation=True)['input_ids']
tokenized_dataset[s].append(model_inputs)
if down_sample is not None and len(dataset_tmp) > down_sample:
tokenized_dataset[f'{s}_ds'] = []
dataset_tmp = dataset_tmp.select(list(range(down_sample)))
for i in dataset_tmp:
model_inputs = tokenizer(i[dataset_column_text], truncation=True)
model_inputs['labels'] = tokenizer(text_target=i[dataset_column_label], truncation=True)['input_ids']
tokenized_dataset[f'{s}_ds'].append(model_inputs)
else:
tokenized_dataset[f'{s}_ds'] = tokenized_dataset[s]
def compute_metric(eval_pred) -> Dict[str, float]: # for parameter search
def decode_tokens(token_ids) -> List[Set[str]]:
return [
set(tokenizer.decode(list(filter(lambda x: x != -100, r)), skip_special_tokens=True).split(',')) for r
in token_ids
]
predictions, reference_token_ids = eval_pred
# format reference
references_decode = decode_tokens(reference_token_ids)
# format prediction
logit, loss = predictions
generation_token_id = logit.argmax(-1)
generation_token_id[logit.min(-1) == -100] = -100
generation_decode = decode_tokens(generation_token_id)
return get_f1_score(references_decode, generation_decode)
if not skip_train:
lr = [1e-6, 1e-4] if lr is None else lr
batch = [64] if not batch else batch
epoch = [1, 3, 5] if not epoch else epoch
eval_batch_size = min(batch) if not eval_batch_size else eval_batch_size
for n, (lr_tmp, batch_tmp, epoch_tmp) in enumerate(product(lr, batch, epoch)):
logging.info(f"[TRAIN {n}/{len(lr) * len(batch) * len(epoch)}] lr: {lr_tmp}, batch: {batch_tmp}")
model = load_model(
model_name=model_name, use_auth_token=use_auth_token, low_cpu_mem_usage=model_low_cpu_mem_usage
)
trainer = Seq2SeqTrainer(
model=model,
args=Seq2SeqTrainingArguments(
num_train_epochs=epoch_tmp,
learning_rate=lr_tmp,
output_dir=f"{output_dir}/model_{n}",
evaluation_strategy='steps',
eval_steps=eval_steps,
per_device_eval_batch_size=eval_batch_size,
seed=random_seed,
per_device_train_batch_size=batch_tmp,
),
data_collator=transformers.DataCollatorForSeq2Seq(tokenizer, model=model),
train_dataset=tokenized_dataset['train_ds'],
eval_dataset=tokenized_dataset['validation_ds'],
compute_metrics=compute_metric,
)
# train
result = trainer.train()
trainer.log_metrics("train", result.metrics)
trainer.save_metrics("train", result.metrics)
# evaluate
metrics = trainer.evaluate()
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# clean up memory
trainer.save_model()
trainer.save_state()
del trainer
del model
gc.collect()
torch.cuda.empty_cache()
numba.cuda.get_current_device().reset()
model_score = {}
for eval_file in glob(f"{output_dir}/model_*/eval_result.json"):
with open(eval_file) as f:
model_score[os.path.dirname(eval_file)] = json.load(f)['eval_f1']
best_model = max(model_score, key=model_score.get)
else:
logging.info('skip hyperparameter search & model training (already done)')
# get metric on the test set
if not skip_test:
logging.info('run evaluation on test set')
if not os.path.exists(f'{output_dir}/model/prediction_test.txt'):
pipe = pipeline(
'text2text-generation',
model=f'{output_dir}/model',
device='cuda:0' if torch.cuda.is_available() else 'cpu',
)
input_data = [i[dataset_column_text] for i in dataset_instance[dataset_split_test]]
output = pipe(input_data, batch_size=eval_batch_size)
output = [i['generated_text'] for i in output]
with open(f'{output_dir}/model/prediction_test.txt', 'w') as f:
f.write('\n'.join(output))
with open(f'{output_dir}/model/prediction_test.txt') as f:
output = [set(i.split(',')) for i in f.read().split('\n')]
dataset_tmp = dataset_instance[dataset_split_test]
label_list = dataset_tmp[dataset_column_label]
_references = [
set([_l for __i, _l in zip(_i[dataset_column_label], label_list) if __i == 1]) for _i in dataset_tmp
]
eval_metric = get_f1_score(_references, output)
logging.info(json.dumps(eval_metric, indent=4))
with open(f'{output_dir}/model/evaluation_metrics.json', 'w') as f:
json.dump(eval_metric, f)
if not skip_upload:
assert model_alias is not None and model_organization is not None,\
'model_organization must be specified when model_alias is specified'
logging.info('uploading to huggingface')
args = {'use_auth_token': use_auth_token, 'organization': model_organization}
model = load_model(model_name=f'{output_dir}/model')
model.push_to_hub(model_alias, **args)
tokenizer.push_to_hub(model_alias, **args)
repo = Repository(model_alias, f'{model_organization}/{model_alias}')
copyfile(f'{output_dir}/model/hyperparameters.json', f'{model_alias}/hyperparameters.json')
if os.path.exists(f'{output_dir}/model/prediction_test.txt'):
copyfile(f'{output_dir}/model/prediction_test.txt', f'{model_alias}/prediction_test.txt')
if os.path.exists(f'{output_dir}/model/evaluation_metrics.json'):
copyfile(f'{output_dir}/model/evaluation_metrics.json', f'{model_alias}/evaluation_metrics.json')
sample = [i[dataset_column_text] for i in dataset_instance[dataset_split_train]]
sample = [i for i in sample if ''' not in i and ''' not in i][:3]
widget = '\n'.join([f"- text: '{t}'\n example_title: example {_n + 1}" for _n, t in enumerate(sample)])
with open(f'{model_alias}/README.md', 'w') as f:
f.write(f"""
---
widget:
{widget}
---
# {model_organization}/{model_alias}
This is [{model_name}](https://huggingface.co/{model_name}) fine-tuned on [{dataset} ({dataset_name})](https://huggingface.co/datasets/{dataset}).
### Usage
```python
from transformers import pipeline
pipe = pipeline('text2text-generation', model='{model_organization}/{model_alias}')
output = pipe('{sample[0]}')
```
""")
repo.push_to_hub()
if __name__ == '__main__':
# arguments
logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S')
parser = argparse.ArgumentParser(description='Seq2Seq LM Fine-tuning on topic classification.')
parser.add_argument('-m', '--model-name', default='google/mt5-small', type=str)
parser.add_argument('--low-cpu-mem-usage', action='store_true')
parser.add_argument('-d', '--dataset', default='cardiffnlp/tweet_topic_multilingual', type=str)
parser.add_argument('--dataset-name', default='ja', type=str)
parser.add_argument('--dataset-column-label', default='label_name_flatten', type=str)
parser.add_argument('--dataset-column-text', default='text', type=str)
parser.add_argument('--dataset-split-train', default='train', type=str)
parser.add_argument('--dataset-split-validation', default='validation', type=str)
parser.add_argument('--dataset-split-test', default='test', type=str)
parser.add_argument('--lr', nargs='+', default=None, type=float)
parser.add_argument('--epoch', nargs='+', default=None, type=int)
parser.add_argument('--batch', nargs='+', default=None, type=int)
parser.add_argument('--down-sample-train', default=None, type=int)
parser.add_argument('--down-sample-validation', default=2000, type=int)
parser.add_argument('--random-seed', default=42, type=int)
parser.add_argument('--use-auth-token', action='store_true')
parser.add_argument('--eval-steps', default=100, type=int)
parser.add_argument('--output-dir', default=None, type=str)
parser.add_argument('--model-alias', default=None, type=str)
parser.add_argument('--model-organization', default=None, type=str)
parser.add_argument('--skip-train', action='store_true')
parser.add_argument('--skip-test', action='store_true')
parser.add_argument('--skip-upload', action='store_true')
opt = parser.parse_args()
train(
model_name=opt.model_name,
model_low_cpu_mem_usage=opt.low_cpu_mem_usage,
dataset=opt.dataset,
dataset_name=opt.dataset_name,
dataset_column_label=opt.dataset_column_label,
dataset_column_text=opt.dataset_column_text,
dataset_split_train=opt.dataset_split_train,
dataset_split_validation=opt.dataset_split_validation,
dataset_split_test=opt.dataset_split_test,
lr=opt.lr,
epoch=opt.epoch,
batch=opt.batch,
down_sample_train=opt.down_sample_train,
down_sample_validation=opt.down_sample_validation,
random_seed=opt.random_seed,
use_auth_token=opt.use_auth_token,
eval_steps=opt.eval_steps,
output_dir=opt.output_dir,
model_alias=opt.model_alias,
model_organization=opt.model_organization,
skip_train=opt.skip_train,
skip_test=opt.skip_test,
skip_upload=opt.skip_upload
) |