asahi417 commited on
Commit
3789adf
·
1 Parent(s): 700e037
Files changed (1) hide show
  1. training_scripts/finetune_t5.py +12 -13
training_scripts/finetune_t5.py CHANGED
@@ -1,6 +1,6 @@
1
  """ Fine-tune T5 on topic classification (multi-label multi-class classification)
2
  ```
3
- python finetune_t5.py --dataset-name ja --model-alias mt5-small-tweet-topic-ja --model-organization cardiffnlp
4
  ```
5
  """
6
  import json
@@ -8,7 +8,7 @@ import logging
8
  import os
9
  import argparse
10
  import gc
11
- from typing import List, Set
12
  from shutil import copyfile
13
  from statistics import mean
14
  from itertools import product
@@ -46,7 +46,7 @@ def load_model(
46
  return model
47
 
48
 
49
- def get_f1_score(references: List[Set[str]], predictions: List[Set[str]]):
50
  scores = []
51
  for g, r in zip(references, predictions):
52
  tp = len(set(g).intersection(set(r)))
@@ -84,11 +84,10 @@ def train(
84
  skip_test: bool = False,
85
  skip_upload: bool = False,
86
  eval_steps: float = 0.25,
87
- eval_batch_size: int = 16):
88
  """Fine-tune seq2seq model."""
89
  logging.info(f'[CONFIG]\n\t *LM: {model_name}, \n\t *Data: {dataset} ({dataset_name})')
90
- # set up the output directory
91
- if output_dir is None:
92
  output_dir = f'ckpt/{os.path.basename(model_name)}.{os.path.basename(dataset)}.{dataset_name}'
93
  # dataset process
94
  tokenizer = transformers.AutoTokenizer.from_pretrained(model_name, use_auth_token=use_auth_token)
@@ -117,7 +116,7 @@ def train(
117
  else:
118
  tokenized_dataset[f'{s}_ds'] = tokenized_dataset[s]
119
 
120
- def compute_metric(eval_pred): # for parameter search
121
 
122
  def decode_tokens(token_ids) -> List[Set[str]]:
123
  return [
@@ -137,10 +136,11 @@ def train(
137
 
138
  if not skip_train:
139
  lr = [1e-6, 1e-4] if lr is None else lr
140
- batch = [64] if batch is None else batch
141
- epoch = [1, 3, 5] if epoch is None else epoch
 
142
  for n, (lr_tmp, batch_tmp, epoch_tmp) in enumerate(product(lr, batch, epoch)):
143
- logging.info(f"[TRAIN {n}/{len(lr) * len(batch)}] lr: {lr_tmp}, batch: {batch_tmp}")
144
  model = load_model(
145
  model_name=model_name, use_auth_token=use_auth_token, low_cpu_mem_usage=model_low_cpu_mem_usage
146
  )
@@ -161,7 +161,6 @@ def train(
161
  eval_dataset=tokenized_dataset['validation_ds'],
162
  compute_metrics=compute_metric,
163
  )
164
-
165
  # train
166
  result = trainer.train()
167
  trainer.save_model() # Saves the tokenizer too for easy upload
@@ -169,13 +168,13 @@ def train(
169
  trainer.log_metrics("train", metrics)
170
  trainer.save_metrics("train", metrics)
171
  trainer.save_state()
172
-
173
  # evaluate
174
  metrics = trainer.evaluate()
175
  trainer.log_metrics("eval", metrics)
176
  trainer.save_metrics("eval", metrics)
177
-
178
  del trainer
 
179
  gc.collect()
180
  torch.cuda.empty_cache()
181
  else:
 
1
  """ Fine-tune T5 on topic classification (multi-label multi-class classification)
2
  ```
3
+ python finetune_t5.py --dataset-name ja --model-alias mt5-small-tweet-topic-ja --model-organization cardiffnlp --low-cpu-mem-usage
4
  ```
5
  """
6
  import json
 
8
  import os
9
  import argparse
10
  import gc
11
+ from typing import List, Set, Dict
12
  from shutil import copyfile
13
  from statistics import mean
14
  from itertools import product
 
46
  return model
47
 
48
 
49
+ def get_f1_score(references: List[Set[str]], predictions: List[Set[str]]) -> Dict[str, float]:
50
  scores = []
51
  for g, r in zip(references, predictions):
52
  tp = len(set(g).intersection(set(r)))
 
84
  skip_test: bool = False,
85
  skip_upload: bool = False,
86
  eval_steps: float = 0.25,
87
+ eval_batch_size: int = None):
88
  """Fine-tune seq2seq model."""
89
  logging.info(f'[CONFIG]\n\t *LM: {model_name}, \n\t *Data: {dataset} ({dataset_name})')
90
+ if not output_dir:
 
91
  output_dir = f'ckpt/{os.path.basename(model_name)}.{os.path.basename(dataset)}.{dataset_name}'
92
  # dataset process
93
  tokenizer = transformers.AutoTokenizer.from_pretrained(model_name, use_auth_token=use_auth_token)
 
116
  else:
117
  tokenized_dataset[f'{s}_ds'] = tokenized_dataset[s]
118
 
119
+ def compute_metric(eval_pred) -> Dict[str, float]: # for parameter search
120
 
121
  def decode_tokens(token_ids) -> List[Set[str]]:
122
  return [
 
136
 
137
  if not skip_train:
138
  lr = [1e-6, 1e-4] if lr is None else lr
139
+ batch = [64] if not batch else batch
140
+ epoch = [1, 3, 5] if not epoch else epoch
141
+ eval_batch_size = min(batch) if not eval_batch_size else eval_batch_size
142
  for n, (lr_tmp, batch_tmp, epoch_tmp) in enumerate(product(lr, batch, epoch)):
143
+ logging.info(f"[TRAIN {n}/{len(lr) * len(batch) * len(epoch)}] lr: {lr_tmp}, batch: {batch_tmp}")
144
  model = load_model(
145
  model_name=model_name, use_auth_token=use_auth_token, low_cpu_mem_usage=model_low_cpu_mem_usage
146
  )
 
161
  eval_dataset=tokenized_dataset['validation_ds'],
162
  compute_metrics=compute_metric,
163
  )
 
164
  # train
165
  result = trainer.train()
166
  trainer.save_model() # Saves the tokenizer too for easy upload
 
168
  trainer.log_metrics("train", metrics)
169
  trainer.save_metrics("train", metrics)
170
  trainer.save_state()
 
171
  # evaluate
172
  metrics = trainer.evaluate()
173
  trainer.log_metrics("eval", metrics)
174
  trainer.save_metrics("eval", metrics)
175
+ # clean up memory
176
  del trainer
177
+ del model
178
  gc.collect()
179
  torch.cuda.empty_cache()
180
  else: