Datasets:

Languages:
English
ArXiv:
License:
File size: 4,491 Bytes
fe9471d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5503344
fe9471d
 
b5c6e76
fe9471d
 
 
12b3a5d
fe9471d
 
 
 
 
 
 
 
 
 
b9d8e4d
fe9471d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44cbae4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5c6e76
d4bea2a
 
b9d8e4d
fe9471d
 
 
 
5f5cfd6
 
 
 
 
 
 
 
 
 
 
 
 
 
fe9471d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
---
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 1k<10K
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: TweetTopicSingle
---

# Dataset Card for "cardiff_nlp/tweet_topic_multi"

## Dataset Description

- **Paper:** [https://arxiv.org/abs/2209.09824](https://arxiv.org/abs/2209.09824)
- **Dataset:** Tweet Topic Dataset
- **Domain:** Twitter
- **Number of Class:** 19


### Dataset Summary
Topic classification dataset on Twitter with multiple labels per tweet. See [cardiffnlp/tweet_topic_single](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single) for single label version of Tweet Topic.

## Dataset Structure

### Data Instances
An example of `train` looks as follows.

```python
{
    "date": "2021-03-07",
    "text": "The latest The Movie theater Daily! {{URL}} Thanks to {{USERNAME}} {{USERNAME}} {{USERNAME}} #lunchtimeread #amc1000",
    "id": "1368464923370676231",
    "label": [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    "label_name": ["film_tv_&_video"]
}
```

### Label ID
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/tweet_topic_multi/raw/main/dataset/label.multi.json).
```python
{
    "arts_&_culture": 0,
    "business_&_entrepreneurs": 1,
    "celebrity_&_pop_culture": 2,
    "diaries_&_daily_life": 3,
    "family": 4,
    "fashion_&_style": 5,
    "film_tv_&_video": 6,
    "fitness_&_health": 7,
    "food_&_dining": 8,
    "gaming": 9,
    "learning_&_educational": 10,
    "music": 11,
    "news_&_social_concern": 12,
    "other_hobbies": 13,
    "relationships": 14,
    "science_&_technology": 15,
    "sports": 16,
    "travel_&_adventure": 17,
    "youth_&_student_life": 18
 }
```

### Data Splits


| split                       | number of texts | description |
|:----------------------------|-----:|:-----|
| `test`                      | 1679 | alias of `temporal_2021_test` |
| `train`                     | 4585 | alias of `temporal_2020_train` | 
| `validation`                |  573 | alias of `temporal_2020_validation` |
| `temporal_2020_test`        |  573 | test set in 2020 period of temporal split |
| `temporal_2021_test`        | 1679 | test set in 2021 period of temporal split |
| `temporal_2020_train`       | 4585 | training set in 2020 period of temporal split |
| `temporal_2021_train`       | 1505 | training set in 2021 period of temporal split |
| `temporal_2020_validation`  |  573 | validation set in 2020 period of temporal split |
| `temporal_2021_validation`  |  188 | validation set in 2021 period of temporal split |
| `random_train`              | 4564 | training set of random split (mix of 2020 and 2021) |
| `random_validation`         |  573 | validation set of random split (mix of 2020 and 2021) |
| `coling2022_random_test`    | 5536 | test set of random split used in COLING 2022 Tweet Topic paper |
| `coling2022_random_train`   | 5731 | training set of random split used in COLING 2022 Tweet Topic paper |
| `coling2022_temporal_test`  | 5536 | test set of temporal split used in COLING 2022 Tweet Topic paper |
| `coling2022_temporal_train` | 5731 | training set of temporal split used in COLING 2022 Tweet Topic paper|

For the temporal-shift setting, we recommend to train models on `train` (an alias of `temporal_2020_train`) with `validation` (an alias of `temporal_2020_validation`) and evaluate on `test` (an alias of `temporal_2021_test`).
For the random split, we recommend to train models on `random_train` with `random_validation` and evaluate on `test` (`temporal_2021_test`).

**IMPORTANT NOTE:** To get a result that is comparable with the results of the COLING 2022 Tweet Topic paper, please use `coling2022_temporal_train` and `coling2022_temporal_test` for temporal-shift, and `coling2022_random_train` and `coling2022_temporal_test` fir random split (the coling2022 split does not have validation set).


### Citation Information

```
@inproceedings{dimosthenis-etal-2022-twitter,
    title = "{T}witter {T}opic {C}lassification",
    author = "Antypas, Dimosthenis  and
    Ushio, Asahi  and
    Camacho-Collados, Jose  and
    Neves, Leonardo  and
    Silva, Vitor  and
    Barbieri, Francesco",
    booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
    month = oct,
    year = "2022",
    address = "Gyeongju, Republic of Korea",
    publisher = "International Committee on Computational Linguistics"
}
```