init
Browse files
README.md
CHANGED
@@ -26,7 +26,6 @@ pretty_name: TweetTopicSingle
|
|
26 |
|
27 |
### Dataset Summary
|
28 |
Topic classification dataset on Twitter with multiple labels per tweet.
|
29 |
-
- Label Types: `arts_&_culture`, `business_&_entrepreneurs`, `celebrity_&_pop_culture`, `diaries_&_daily_life`, `family`, `fashion_&_style`, `film_tv_&_video`, `fitness_&_health`, `food_&_dining`, `gaming`, `learning_&_educational`, `music`, `news_&_social_concern`, `other_hobbies`, `relationships`, `science_&_technology`, `sports`, `travel_&_adventure`, `youth_&_student_life`
|
30 |
|
31 |
## Dataset Structure
|
32 |
|
@@ -37,7 +36,7 @@ An example of `train` looks as follows.
|
|
37 |
{
|
38 |
"date": "2021-03-07",
|
39 |
"text": "The latest The Movie theater Daily! {{URL}} Thanks to {{USERNAME}} {{USERNAME}} {{USERNAME}} #lunchtimeread #amc1000",
|
40 |
-
"id": 1368464923370676231,
|
41 |
"label": [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
42 |
"label_name": ["film_tv_&_video"]
|
43 |
}
|
@@ -72,6 +71,25 @@ The label2id dictionary can be found at [here](https://huggingface.co/datasets/t
|
|
72 |
### Data Splits
|
73 |
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
### Citation Information
|
77 |
|
|
|
26 |
|
27 |
### Dataset Summary
|
28 |
Topic classification dataset on Twitter with multiple labels per tweet.
|
|
|
29 |
|
30 |
## Dataset Structure
|
31 |
|
|
|
36 |
{
|
37 |
"date": "2021-03-07",
|
38 |
"text": "The latest The Movie theater Daily! {{URL}} Thanks to {{USERNAME}} {{USERNAME}} {{USERNAME}} #lunchtimeread #amc1000",
|
39 |
+
"id": "1368464923370676231",
|
40 |
"label": [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
41 |
"label_name": ["film_tv_&_video"]
|
42 |
}
|
|
|
71 |
### Data Splits
|
72 |
|
73 |
|
74 |
+
| split | number of texts |
|
75 |
+
|:--------------------------|-----:|
|
76 |
+
| test | 1679 |
|
77 |
+
| train | 1505 |
|
78 |
+
| validation | 188 |
|
79 |
+
| temporal_2020_test | 573 |
|
80 |
+
| temporal_2021_test | 1679 |
|
81 |
+
| temporal_2020_train | 4585 |
|
82 |
+
| temporal_2021_train | 1505 |
|
83 |
+
| temporal_2020_validation | 573 |
|
84 |
+
| temporal_2021_validation | 188 |
|
85 |
+
| random_train | 4564 |
|
86 |
+
| random_validation | 573 |
|
87 |
+
| coling2022_random_test | 5536 |
|
88 |
+
| coling2022_random_train | 5731 |
|
89 |
+
| coling2022_temporal_test | 5536 |
|
90 |
+
| coling2022_temporal_train | 5731 |
|
91 |
+
|
92 |
+
|
93 |
|
94 |
### Citation Information
|
95 |
|