databench / README.md
jorses
Update README.md
1588420
|
raw
history blame
43.6 kB
metadata
language:
  - en
  - es
pretty_name: ' ๐Ÿ’พ๐Ÿ‹๏ธ๐Ÿ’พ DataBench ๐Ÿ’พ๐Ÿ‹๏ธ๐Ÿ’พ'
tags:
  - table-question-answering
  - table
  - qa
license: mit
task_categories:
  - table-question-answering
  - question-answering
default: qa
configs:
  - config_name: qa
    data_files:
      - data/001_Forbes/qa.parquet
      - data/002_Titanic/qa.parquet
      - data/003_Love/qa.parquet
      - data/004_Taxi/qa.parquet
      - data/005_NYC/qa.parquet
      - data/006_London/qa.parquet
      - data/007_Fifa/qa.parquet
      - data/008_Tornados/qa.parquet
      - data/009_Central/qa.parquet
      - data/010_ECommerce/qa.parquet
      - data/011_SF/qa.parquet
      - data/012_Heart/qa.parquet
      - data/013_Roller/qa.parquet
      - data/014_Airbnb/qa.parquet
      - data/015_Food/qa.parquet
      - data/016_Holiday/qa.parquet
      - data/017_Hacker/qa.parquet
      - data/018_Staff/qa.parquet
      - data/019_Aircraft/qa.parquet
      - data/020_Real/qa.parquet
      - data/021_Telco/qa.parquet
      - data/022_Airbnbs/qa.parquet
      - data/023_Climate/qa.parquet
      - data/024_Salary/qa.parquet
      - data/025_Data/qa.parquet
      - data/026_Predicting/qa.parquet
      - data/027_Supermarket/qa.parquet
      - data/028_Predict/qa.parquet
      - data/029_NYTimes/qa.parquet
      - data/030_Professionals/qa.parquet
      - data/031_Trustpilot/qa.parquet
      - data/032_Delicatessen/qa.parquet
      - data/033_Employee/qa.parquet
      - data/034_World/qa.parquet
      - data/035_Billboard/qa.parquet
      - data/036_US/qa.parquet
      - data/037_Ted/qa.parquet
      - data/038_Stroke/qa.parquet
      - data/039_Happy/qa.parquet
      - data/040_Speed/qa.parquet
      - data/041_Airline/qa.parquet
      - data/042_Predict/qa.parquet
      - data/043_Predict/qa.parquet
      - data/044_IMDb/qa.parquet
      - data/045_Predict/qa.parquet
      - data/046_120/qa.parquet
      - data/047_Bank/qa.parquet
      - data/048_Data/qa.parquet
      - data/049_Boris/qa.parquet
      - data/050_ING/qa.parquet
      - data/051_Pokemon/qa.parquet
      - data/052_Professional/qa.parquet
      - data/053_Patents/qa.parquet
      - data/054_Joe/qa.parquet
      - data/055_German/qa.parquet
      - data/056_Emoji/qa.parquet
      - data/057_Spain/qa.parquet
      - data/058_US/qa.parquet
      - data/059_Second/qa.parquet
      - data/060_Bakery/qa.parquet
      - data/061_Disneyland/qa.parquet
      - data/062_Trump/qa.parquet
      - data/063_Influencers/qa.parquet
      - data/064_Clustering/qa.parquet
      - data/065_RFM/qa.parquet
  - config_name: semeval
    data_files:
      - split: train
        path:
          - data/001_Forbes/qa.parquet
          - data/002_Titanic/qa.parquet
          - data/003_Love/qa.parquet
          - data/004_Taxi/qa.parquet
          - data/005_NYC/qa.parquet
          - data/006_London/qa.parquet
          - data/007_Fifa/qa.parquet
          - data/008_Tornados/qa.parquet
          - data/009_Central/qa.parquet
          - data/010_ECommerce/qa.parquet
          - data/011_SF/qa.parquet
          - data/012_Heart/qa.parquet
          - data/013_Roller/qa.parquet
          - data/014_Airbnb/qa.parquet
          - data/015_Food/qa.parquet
          - data/016_Holiday/qa.parquet
          - data/017_Hacker/qa.parquet
          - data/018_Staff/qa.parquet
          - data/019_Aircraft/qa.parquet
          - data/020_Real/qa.parquet
          - data/021_Telco/qa.parquet
          - data/022_Airbnbs/qa.parquet
          - data/023_Climate/qa.parquet
          - data/024_Salary/qa.parquet
          - data/025_Data/qa.parquet
          - data/026_Predicting/qa.parquet
          - data/027_Supermarket/qa.parquet
          - data/028_Predict/qa.parquet
          - data/029_NYTimes/qa.parquet
          - data/030_Professionals/qa.parquet
          - data/031_Trustpilot/qa.parquet
          - data/032_Delicatessen/qa.parquet
          - data/033_Employee/qa.parquet
          - data/034_World/qa.parquet
          - data/035_Billboard/qa.parquet
          - data/036_US/qa.parquet
          - data/037_Ted/qa.parquet
          - data/038_Stroke/qa.parquet
          - data/039_Happy/qa.parquet
          - data/040_Speed/qa.parquet
          - data/041_Airline/qa.parquet
          - data/042_Predict/qa.parquet
          - data/043_Predict/qa.parquet
          - data/044_IMDb/qa.parquet
          - data/045_Predict/qa.parquet
          - data/046_120/qa.parquet
          - data/047_Bank/qa.parquet
          - data/048_Data/qa.parquet
          - data/049_Boris/qa.parquet
      - split: dev
        path:
          - data/050_ING/qa.parquet
          - data/051_Pokemon/qa.parquet
          - data/052_Professional/qa.parquet
          - data/053_Patents/qa.parquet
          - data/054_Joe/qa.parquet
          - data/055_German/qa.parquet
          - data/056_Emoji/qa.parquet
          - data/057_Spain/qa.parquet
          - data/058_US/qa.parquet
          - data/059_Second/qa.parquet
          - data/060_Bakery/qa.parquet
          - data/061_Disneyland/qa.parquet
          - data/062_Trump/qa.parquet
          - data/063_Influencers/qa.parquet
          - data/064_Clustering/qa.parquet
          - data/065_RFM/qa.parquet

๐Ÿ’พ๐Ÿ‹๏ธ๐Ÿ’พ DataBench ๐Ÿ’พ๐Ÿ‹๏ธ๐Ÿ’พ

This repository contains the original 65 datasets used for the paper Question Answering over Tabular Data with DataBench: A Large-Scale Empirical Evaluation of LLMs which appeared in LREC-COLING 2024.

Large Language Models (LLMs) are showing emerging abilities, and one of the latest recognized ones is tabular reasoning in question answering on tabular data. Although there are some available datasets to assess question answering systems on tabular data, they are not large and diverse enough to evaluate this new ability of LLMs. To this end, we provide a corpus of 65 real world datasets, with 3,269,975 and 1615 columns in total, and 1300 questions to evaluate your models for the task of QA over Tabular Data.

Usage

from datasets import load_dataset

# Load all QA pairs
all_qa = load_dataset("cardiffnlp/databench", name="qa", split="train")

# Load SemEval 2025 task 8 Question-Answer splits
semeval_train_qa = load_dataset("cardiffnlp/databench", name="semeval", split="train")
semeval_dev_qa = load_dataset("cardiffnlp/databench", name="semeval", split="dev")

You can use any of the individual integrated libraries to load the actual data where the answer is to be retrieved.

For example, using pandas in Python:

import pandas as pd

# "001_Forbes", the id of the dataset
ds_id = all_qa['dataset'][0] 

# full dataset
df = pd.read_parquet(f"hf://datasets/cardiffnlp/databench/data/{ds_id}/all.parquet")

# sample dataset
df = pd.read_parquet(f"hf://datasets/cardiffnlp/databench/data/{ds_id}/sample.parquet")

๐Ÿ“š Datasets

By clicking on each name in the table below, you will be able to explore each dataset.

Name Rows Cols Domain Source (Reference)
1 Forbes 2668 17 Business Forbes
2 Titanic 887 8 Travel and Locations Kaggle
3 Love 373 35 Social Networks and Surveys Graphext
4 Taxi 100000 20 Travel and Locations Kaggle
5 NYC Calls 100000 46 Business City of New York
6 London Airbnbs 75241 74 Travel and Locations Kaggle
7 Fifa 14620 59 Sports and Entertainment Kaggle
8 Tornados 67558 14 Health Kaggle
9 Central Park 56245 6 Travel and Locations Kaggle
10 ECommerce Reviews 23486 10 Business Kaggle
11 SF Police 713107 35 Social Networks and Surveys US Gov
12 Heart Failure 918 12 Health Kaggle
13 Roller Coasters 1087 56 Sports and Entertainment Kaggle
14 Madrid Airbnbs 20776 75 Travel and Locations Inside Airbnb
15 Food Names 906 4 Business Data World
16 Holiday Package Sales 4888 20 Travel and Locations Kaggle
17 Hacker News 9429 20 Social Networks and Surveys Kaggle
18 Staff Satisfaction 14999 11 Business Kaggle
19 Aircraft Accidents 23519 23 Health Kaggle
20 Real Estate Madrid 26026 59 Business Idealista
21 Telco Customer Churn 7043 21 Business Kaggle
22 Airbnbs Listings NY 37012 33 Travel and Locations Kaggle
23 Climate in Madrid 36858 26 Travel and Locations AEMET
24 Salary Survey Spain 2018 216726 29 Business INE
25 Data Driven SEO 62 5 Business Graphext
26 Predicting Wine Quality 1599 12 Business Kaggle
27 Supermarket Sales 1000 17 Business Kaggle
28 Predict Diabetes 768 9 Health Kaggle
29 NYTimes World In 2021 52588 5 Travel and Locations New York Times
30 Professionals Kaggle Survey 19169 64 Business Kaggle
31 Trustpilot Reviews 8020 6 Business TrustPilot
32 Delicatessen Customers 2240 29 Business Kaggle
33 Employee Attrition 14999 11 Business Kaggle(modified)
34 World Happiness Report 2020 153 20 Social Networks and Surveys World Happiness
35 Billboard Lyrics 5100 6 Sports and Entertainment Brown University
36 US Migrations 2012-2016 288300 9 Social Networks and Surveys US Census
37 Ted Talks 4005 19 Social Networks and Surveys Kaggle
38 Stroke Likelihood 5110 12 Health Kaggle
39 Happy Moments 100535 11 Social Networks and Surveys Kaggle
40 Speed Dating 8378 123 Social Networks and Surveys Kaggle
41 Airline Mentions X (former Twitter) 14640 15 Social Networks and Surveys X (former Twitter)
42 Predict Student Performance 395 33 Business Kaggle
43 Loan Defaults 83656 20 Business SBA
44 IMDb Movies 85855 22 Sports and Entertainment Kaggle
45 Spotify Song Popularity 21000 19 Sports and Entertainment Spotify
46 120 Years Olympics 271116 15 Sports and Entertainment Kaggle
47 Bank Customer Churn 7088 15 Business Kaggle
48 Data Science Salary Data 742 28 Business Kaggle
49 Boris Johnson UK PM Tweets 3220 34 Social Networks and Surveys X (former Twitter)
50 ING 2019 X Mentions 7244 22 Social Networks and Surveys X (former Twitter)
51 Pokemon Features 1072 13 Business Kaggle
52 Professional Map 1227 12 Business Kern et al, PNAS'20
53 Google Patents 9999 20 Business BigQuery
54 Joe Biden Tweets 491 34 Social Networks and Surveys X (former Twitter)
55 German Loans 1000 18 Business Kaggle
56 Emoji Diet 58 35 Health Kaggle
57 Spain Survey 2015 20000 45 Social Networks and Surveys CIS
58 US Polls 2020 3523 52 Social Networks and Surveys Brandwatch
59 Second Hand Cars 50000 21 Business DataMarket
60 Bakery Purchases 20507 5 Business Kaggle
61 Disneyland Customer Reviews 42656 6 Travel and Locations Kaggle
62 Trump Tweets 15039 20 Social Networks and Surveys X (former Twitter)
63 Influencers 1039 14 Social Networks and Surveys X (former Twitter)
64 Clustering Zoo Animals 101 18 Health Kaggle
65 RFM Analysis 541909 8 Business UCI ML

๐Ÿ—๏ธ Folder structure

Each folder represents one dataset. You will find the following files within:

  • all.parquet: the processed data, with each column tagged with our typing system, in parquet.
  • qa.parquet: contains the human-made set of questions, tagged by type and columns used, for the dataset (sample_answer indicates the answers for DataBench lite)
  • sample.parquet: sample containing 20 rows of the original dataset (DataBench lite)
  • info.yml: additional information about the dataset

๐Ÿ—‚๏ธ Column typing system

In an effort to map the stage for later analysis, we have categorized the columns by type. This information allows us to segment different kinds of data so that we can subsequently analyze the model's behavior on each column type separately. All parquet files have been casted to their smallest viable data type using the open source Lector reader.

What this means is that in the data types we have more granular information that allows us to know if the column contains NaNs or not (following pandaโ€™s convention of Int vs int), as well as whether small numerical values contain negatives (Uint vs int) and their range. We also have dates with potential timezone information (although for now theyโ€™re all UTC), as well as information about categoriesโ€™ cardinality coming from the arrow types.

In the table below you can see all the data types assigned to each column, as well as the number of columns for each type. The most common data types are numbers and categories with 1336 columns of the total of 1615 included in DataBench. These are followed by some other more rare types as urls, booleans, dates or lists of elements.

Type Columns Example
number 788 55
category 548 apple
date 50 1970-01-01
text 46 A red fox ran...
url 31 google.com
boolean 18 True
list[number] 14 [1,2,3]
list[category] 112 [apple, orange, banana]
list[url] 8 [google.com, apple.com]

๐Ÿ”— Reference

You can download the paper here.

If you use this resource, please use the following reference:

@inproceedings{oses-etal-2024-databench,
    title = "Question Answering over Tabular Data with DataBench: A Large-Scale Empirical Evaluation of LLMs",
    author = "Jorge Osรฉs Grijalba and Luis Alfonso Ureรฑa-Lรณpez and
    Eugenio Martรญnez Cรกmara and Jose Camacho-Collados",
    booktitle = "Proceedings of LREC-COLING 2024",
    year = "2024",
    address = "Turin, Italy"
}