File size: 35,582 Bytes
586ab0a 5ee7733 7b21041 817babe 0332273 defd676 4acdc2b defd676 7b21041 defd676 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 dd1162f 0332273 5ee7733 0332273 5ee7733 0332273 cbf1304 586ab0a a7090e1 72fe917 a7090e1 3b7f393 dedccd2 a7090e1 0332273 a7090e1 b94798c a7090e1 0332273 a7090e1 b94798c a7090e1 f2b8b7e 3b7f393 f2b8b7e 8d3636b be7767b f2b8b7e 45280d3 f2b8b7e be7767b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 |
---
language:
- en
- es
pretty_name: " 💾🏋️💾 DataBench 💾🏋️💾"
tags:
- table-question-answering
- table
- qa
license: mit
task_categories:
- table-question-answering
- question-answering
configs:
- config_name: qa
data_files:
- data/001_Forbes/qa.parquet
- data/002_Titanic/qa.parquet
- data/003_Love/qa.parquet
- data/004_Taxi/qa.parquet
- data/005_NYC/qa.parquet
- data/006_London/qa.parquet
- data/007_Fifa/qa.parquet
- data/008_Tornados/qa.parquet
- data/009_Central/qa.parquet
- data/010_ECommerce/qa.parquet
- data/011_SF/qa.parquet
- data/012_Heart/qa.parquet
- data/013_Roller/qa.parquet
- data/014_Airbnb/qa.parquet
- data/015_Food/qa.parquet
- data/016_Holiday/qa.parquet
- data/017_Hacker/qa.parquet
- data/018_Staff/qa.parquet
- data/019_Aircraft/qa.parquet
- data/020_Real/qa.parquet
- data/021_Telco/qa.parquet
- data/022_Airbnbs/qa.parquet
- data/023_Climate/qa.parquet
- data/024_Salary/qa.parquet
- data/025_Data/qa.parquet
- data/026_Predicting/qa.parquet
- data/027_Supermarket/qa.parquet
- data/028_Predict/qa.parquet
- data/029_NYTimes/qa.parquet
- data/030_Professionals/qa.parquet
- data/031_Trustpilot/qa.parquet
- data/032_Delicatessen/qa.parquet
- data/033_Employee/qa.parquet
- data/034_World/qa.parquet
- data/035_Billboard/qa.parquet
- data/036_US/qa.parquet
- data/037_Ted/qa.parquet
- data/038_Stroke/qa.parquet
- data/039_Happy/qa.parquet
- data/040_Speed/qa.parquet
- data/041_Airline/qa.parquet
- data/042_Predict/qa.parquet
- data/043_Predict/qa.parquet
- data/044_IMDb/qa.parquet
- data/045_Predict/qa.parquet
- data/046_120/qa.parquet
- data/047_Bank/qa.parquet
- data/048_Data/qa.parquet
- data/049_Boris/qa.parquet
- data/050_ING/qa.parquet
- data/051_Pokemon/qa.parquet
- data/052_Professional/qa.parquet
- data/053_Patents/qa.parquet
- data/054_Joe/qa.parquet
- data/055_German/qa.parquet
- data/056_Emoji/qa.parquet
- data/057_Spain/qa.parquet
- data/058_US/qa.parquet
- data/059_Second/qa.parquet
- data/060_Bakery/qa.parquet
- data/061_Disneyland/qa.parquet
- data/062_Trump/qa.parquet
- data/063_Influencers/qa.parquet
- data/064_Clustering/qa.parquet
- data/065_RFM/qa.parquet
- config_name: 008_Tornados
data_files:
- split: full
path: data/008_Tornados/all.parquet
- split: lite
path: data/008_Tornados/sample.parquet
- config_name: data
data_files:
- split: 001_Forbes
path: data/001_Forbes/all.parquet
- split: 002_Titanic
path: data/002_Titanic/all.parquet
- split: 003_Love
path: data/003_Love/all.parquet
- split: 004_Taxi
path: data/004_Taxi/all.parquet
- split: 005_NYC
path: data/005_NYC/all.parquet
- split: 006_London
path: data/006_London/all.parquet
- split: 007_Fifa
path: data/007_Fifa/all.parquet
- split: 008_Tornados
path: data/008_Tornados/all.parquet
- split: 009_Central
path: data/009_Central/all.parquet
- split: 010_ECommerce
path: data/010_ECommerce/all.parquet
- split: 011_SF
path: data/011_SF/all.parquet
- split: 012_Heart
path: data/012_Heart/all.parquet
- split: 013_Roller
path: data/013_Roller/all.parquet
- split: 014_Airbnb
path: data/014_Airbnb/all.parquet
- split: 015_Food
path: data/015_Food/all.parquet
- split: 016_Holiday
path: data/016_Holiday/all.parquet
- split: 017_Hacker
path: data/017_Hacker/all.parquet
- split: 018_Staff
path: data/018_Staff/all.parquet
- split: 019_Aircraft
path: data/019_Aircraft/all.parquet
- split: 020_Real
path: data/020_Real/all.parquet
- split: 021_Telco
path: data/021_Telco/all.parquet
- split: 022_Airbnbs
path: data/022_Airbnbs/all.parquet
- split: 023_Climate
path: data/023_Climate/all.parquet
- split: 024_Salary
path: data/024_Salary/all.parquet
- split: 025_Data
path: data/025_Data/all.parquet
- split: 026_Predicting
path: data/026_Predicting/all.parquet
- split: 027_Supermarket
path: data/027_Supermarket/all.parquet
- split: 028_Predict
path: data/028_Predict/all.parquet
- split: 029_NYTimes
path: data/029_NYTimes/all.parquet
- split: 030_Professionals
path: data/030_Professionals/all.parquet
- split: 031_Trustpilot
path: data/031_Trustpilot/all.parquet
- split: 032_Delicatessen
path: data/032_Delicatessen/all.parquet
- split: 033_Employee
path: data/033_Employee/all.parquet
- split: 034_World
path: data/034_World/all.parquet
- split: 035_Billboard
path: data/035_Billboard/all.parquet
- split: 036_US
path: data/036_US/all.parquet
- split: 037_Ted
path: data/037_Ted/all.parquet
- split: 038_Stroke
path: data/038_Stroke/all.parquet
- split: 039_Happy
path: data/039_Happy/all.parquet
- split: 040_Speed
path: data/040_Speed/all.parquet
- split: 041_Airline
path: data/041_Airline/all.parquet
- split: 042_Predict
path: data/042_Predict/all.parquet
- split: 043_Predict
path: data/043_Predict/all.parquet
- split: 044_IMDb
path: data/044_IMDb/all.parquet
- split: 045_Predict
path: data/045_Predict/all.parquet
- split: "046_120"
path: data/046_120/all.parquet
- split: 047_Bank
path: data/047_Bank/all.parquet
- split: 048_Data
path: data/048_Data/all.parquet
- split: 049_Boris
path: data/049_Boris/all.parquet
- split: 050_ING
path: data/050_ING/all.parquet
- split: 051_Pokemon
path: data/051_Pokemon/all.parquet
- split: 052_Professional
path: data/052_Professional/all.parquet
- split: 053_Patents
path: data/053_Patents/all.parquet
- split: 054_Joe
path: data/054_Joe/all.parquet
- split: 055_German
path: data/055_German/all.parquet
- split: 056_Emoji
path: data/056_Emoji/all.parquet
- split: 057_Spain
path: data/057_Spain/all.parquet
- split: 058_US
path: data/058_US/all.parquet
- split: 059_Second
path: data/059_Second/all.parquet
- split: 060_Bakery
path: data/060_Bakery/all.parquet
- split: 061_Disneyland
path: data/061_Disneyland/all.parquet
- split: 062_Trump
path: data/062_Trump/all.parquet
- split: 063_Influencers
path: data/063_Influencers/all.parquet
- split: 064_Clustering
path: data/064_Clustering/all.parquet
- split: 065_RFM
path: data/065_RFM/all.parquet
- config_name: data_lite
data_files:
- split: 001_Forbes
path: data/001_Forbes/sample.parquet
- split: 002_Titanic
path: data/002_Titanic/sample.parquet
- split: 003_Love
path: data/003_Love/sample.parquet
- split: 004_Taxi
path: data/004_Taxi/sample.parquet
- split: 005_NYC
path: data/005_NYC/sample.parquet
- split: 006_London
path: data/006_London/sample.parquet
- split: 007_Fifa
path: data/007_Fifa/sample.parquet
- split: 008_Tornados
path: data/008_Tornados/sample.parquet
- split: 009_Central
path: data/009_Central/sample.parquet
- split: 010_ECommerce
path: data/010_ECommerce/sample.parquet
- split: 011_SF
path: data/011_SF/sample.parquet
- split: 012_Heart
path: data/012_Heart/sample.parquet
- split: 013_Roller
path: data/013_Roller/sample.parquet
- split: 014_Airbnb
path: data/014_Airbnb/sample.parquet
- split: 015_Food
path: data/015_Food/sample.parquet
- split: 016_Holiday
path: data/016_Holiday/sample.parquet
- split: 017_Hacker
path: data/017_Hacker/sample.parquet
- split: 018_Staff
path: data/018_Staff/sample.parquet
- split: 019_Aircraft
path: data/019_Aircraft/sample.parquet
- split: 020_Real
path: data/020_Real/sample.parquet
- split: 021_Telco
path: data/021_Telco/sample.parquet
- split: 022_Airbnbs
path: data/022_Airbnbs/sample.parquet
- split: 023_Climate
path: data/023_Climate/sample.parquet
- split: 024_Salary
path: data/024_Salary/sample.parquet
- split: 025_Data
path: data/025_Data/sample.parquet
- split: 026_Predicting
path: data/026_Predicting/sample.parquet
- split: 027_Supermarket
path: data/027_Supermarket/sample.parquet
- split: 028_Predict
path: data/028_Predict/sample.parquet
- split: 029_NYTimes
path: data/029_NYTimes/sample.parquet
- split: 030_Professionals
path: data/030_Professionals/sample.parquet
- split: 031_Trustpilot
path: data/031_Trustpilot/sample.parquet
- split: 032_Delicatessen
path: data/032_Delicatessen/sample.parquet
- split: 033_Employee
path: data/033_Employee/sample.parquet
- split: 034_World
path: data/034_World/sample.parquet
- split: 035_Billboard
path: data/035_Billboard/sample.parquet
- split: 036_US
path: data/036_US/sample.parquet
- split: 037_Ted
path: data/037_Ted/sample.parquet
- split: 038_Stroke
path: data/038_Stroke/sample.parquet
- split: 039_Happy
path: data/039_Happy/sample.parquet
- split: 040_Speed
path: data/040_Speed/sample.parquet
- split: 041_Airline
path: data/041_Airline/sample.parquet
- split: 042_Predict
path: data/042_Predict/sample.parquet
- split: 043_Predict
path: data/043_Predict/sample.parquet
- split: 044_IMDb
path: data/044_IMDb/sample.parquet
- split: 045_Predict
path: data/045_Predict/sample.parquet
- split: "046_120"
path: data/046_120/sample.parquet
- split: 047_Bank
path: data/047_Bank/sample.parquet
- split: 048_Data
path: data/048_Data/sample.parquet
- split: 049_Boris
path: data/049_Boris/sample.parquet
- split: 050_ING
path: data/050_ING/sample.parquet
- split: 051_Pokemon
path: data/051_Pokemon/sample.parquet
- split: 052_Professional
path: data/052_Professional/sample.parquet
- split: 053_Patents
path: data/053_Patents/sample.parquet
- split: 054_Joe
path: data/054_Joe/sample.parquet
- split: 055_German
path: data/055_German/sample.parquet
- split: 056_Emoji
path: data/056_Emoji/sample.parquet
- split: 057_Spain
path: data/057_Spain/sample.parquet
- split: 058_US
path: data/058_US/sample.parquet
- split: 059_Second
path: data/059_Second/sample.parquet
- split: 060_Bakery
path: data/060_Bakery/sample.parquet
- split: 061_Disneyland
path: data/061_Disneyland/sample.parquet
- split: 062_Trump
path: data/062_Trump/sample.parquet
- split: 063_Influencers
path: data/063_Influencers/sample.parquet
- split: 064_Clustering
path: data/064_Clustering/sample.parquet
- split: 065_RFM
path: data/065_RFM/sample.parquet
- config_name: semeval
data_files:
- split: train
path:
- data/001_Forbes/qa.parquet
- data/002_Titanic/qa.parquet
- data/003_Love/qa.parquet
- data/004_Taxi/qa.parquet
- data/005_NYC/qa.parquet
- data/006_London/qa.parquet
- data/007_Fifa/qa.parquet
- data/008_Tornados/qa.parquet
- data/009_Central/qa.parquet
- data/010_ECommerce/qa.parquet
- data/011_SF/qa.parquet
- data/012_Heart/qa.parquet
- data/013_Roller/qa.parquet
- data/014_Airbnb/qa.parquet
- data/015_Food/qa.parquet
- data/016_Holiday/qa.parquet
- data/017_Hacker/qa.parquet
- data/018_Staff/qa.parquet
- data/019_Aircraft/qa.parquet
- data/020_Real/qa.parquet
- data/021_Telco/qa.parquet
- data/022_Airbnbs/qa.parquet
- data/023_Climate/qa.parquet
- data/024_Salary/qa.parquet
- data/025_Data/qa.parquet
- data/026_Predicting/qa.parquet
- data/027_Supermarket/qa.parquet
- data/028_Predict/qa.parquet
- data/029_NYTimes/qa.parquet
- data/030_Professionals/qa.parquet
- data/031_Trustpilot/qa.parquet
- data/032_Delicatessen/qa.parquet
- data/033_Employee/qa.parquet
- data/034_World/qa.parquet
- data/035_Billboard/qa.parquet
- data/036_US/qa.parquet
- data/037_Ted/qa.parquet
- data/038_Stroke/qa.parquet
- data/039_Happy/qa.parquet
- data/040_Speed/qa.parquet
- data/041_Airline/qa.parquet
- data/042_Predict/qa.parquet
- data/043_Predict/qa.parquet
- data/044_IMDb/qa.parquet
- data/045_Predict/qa.parquet
- data/046_120/qa.parquet
- data/047_Bank/qa.parquet
- data/048_Data/qa.parquet
- data/049_Boris/qa.parquet
- split: test
path:
- data/050_ING/qa.parquet
- data/051_Pokemon/qa.parquet
- data/052_Professional/qa.parquet
- data/053_Patents/qa.parquet
- data/054_Joe/qa.parquet
- data/055_German/qa.parquet
- data/056_Emoji/qa.parquet
- data/057_Spain/qa.parquet
- data/058_US/qa.parquet
- data/059_Second/qa.parquet
- data/060_Bakery/qa.parquet
- data/061_Disneyland/qa.parquet
- data/062_Trump/qa.parquet
- data/063_Influencers/qa.parquet
- data/064_Clustering/qa.parquet
- data/065_RFM/qa.parquet
---
# 💾🏋️💾 DataBench 💾🏋️💾
This repository contains the original 65 datasets used for the paper [Question Answering over Tabular Data with DataBench:
A Large-Scale Empirical Evaluation of LLMs](https://huggingface.co/datasets/cardiffnlp/databench/resolve/main/Databench-LREC-Coling-2024.pdf) which appeared in LREC-COLING 2024.
Large Language Models (LLMs) are showing emerging abilities, and one of the latest recognized ones is tabular
reasoning in question answering on tabular data. Although there are some available datasets to assess question
answering systems on tabular data, they are not large and diverse enough to evaluate this new ability of LLMs.
To this end, we provide a corpus of 65 real world datasets, with 3,269,975 and 1615 columns in total, and 1300 questions to evaluate your models for the task of QA over Tabular Data.
## 📚 Datasets
By clicking on each name in the table below, you will be able to explore each dataset.
| | Name | Rows | Cols | Domain | Source (Reference) |
|---:|:-------------------------------|-------:|-------:|:---------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
| 1 | [Forbes](https://public.graphext.com/0b211530c7e213d3/index.html?section=data) | 2668 | 17 | Business | [Forbes](https://www.forbes.com/billionaires/)|
| 2 | [Titanic](https://public.graphext.com/8577225c5ffd88fd/index.html) | 887 | 8 | Travel and Locations | [Kaggle](https://www.kaggle.com/competitions/titanic/data)|
| 3 | [Love](https://public.graphext.com/be7a566b0c485916/index.html) | 373 | 35 | Social Networks and Surveys | [Graphext](https://public.graphext.com/1de78f6820cfd5ba/index.html) |
| 4 | [Taxi](https://public.graphext.com/bcee13c23070f333/index.html) | 100000 | 20 | Travel and Locations | [Kaggle](https://www.kaggle.com/competitions/nyc-taxi-trip-duration/overview) |
| 5 | [NYC Calls](https://public.graphext.com/1ce2f5fae408621e/index.html) | 100000 | 46 | Business | [City of New York](https://data.cityofnewyork.us/Social-Services/NYC-311-Data/jrb2-thup) |
| 6 | [London Airbnbs](https://public.graphext.com/6bbf4bbd3ff279c0/index.html) | 75241 | 74 | Travel and Locations | [Kaggle](https://www.kaggle.com/datasets/labdmitriy/airbnb) |
| 7 | [Fifa](https://public.graphext.com/37bca51494c10a79/index.html) | 14620 | 59 | Sports and Entertainment | [Kaggle](https://www.kaggle.com/datasets/stefanoleone992/fifa-21-complete-player-dataset) |
| 8 | [Tornados](https://public.graphext.com/4be9872e031199c3/index.html) | 67558 | 14 | Health | [Kaggle](https://www.kaggle.com/datasets/danbraswell/us-tornado-dataset-1950-2021) |
| 9 | [Central Park](https://public.graphext.com/7b3d3a4d7bf1e9b5/index.html) | 56245 | 6 | Travel and Locations | [Kaggle](https://www.kaggle.com/datasets/danbraswell/new-york-city-weather-18692022) |
| 10 | [ECommerce Reviews](https://public.graphext.com/a5b8911b215958ad/index.html) | 23486 | 10 | Business | [Kaggle](https://www.kaggle.com/datasets/nicapotato/womens-ecommerce-clothing-reviews) |
| 11 | [SF Police](https://public.graphext.com/ab815ab14f88115c/index.html) | 713107 | 35 | Social Networks and Surveys | [US Gov](https://catalog.data.gov/dataset/police-department-incident-reports-2018-to-present) |
| 12 | [Heart Failure](https://public.graphext.com/245cec64075f5542/index.html) | 918 | 12 | Health | [Kaggle](https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction) |
| 13 | [Roller Coasters](https://public.graphext.com/1e550e6c24fc1930/index.html) | 1087 | 56 | Sports and Entertainment | [Kaggle](https://www.kaggle.com/datasets/robikscube/rollercoaster-database) |
| 14 | [Madrid Airbnbs](https://public.graphext.com/77265ea3a63e650f/index.html) | 20776 | 75 | Travel and Locations | [Inside Airbnb](http://data.insideairbnb.com/spain/comunidad-de-madrid/madrid/2023-09-07/data/listings.parquet.gz) |
| 15 | [Food Names](https://public.graphext.com/5aad4c5d6ef140b3/index.html) | 906 | 4 | Business | [Data World](https://data.world/alexandra/generic-food-database) |
| 16 | [Holiday Package Sales](https://public.graphext.com/fbc34d3f24282e46/index.html) | 4888 | 20 | Travel and Locations | [Kaggle](https://www.kaggle.com/datasets/susant4learning/holiday-package-purchase-prediction) |
| 17 | [Hacker News](https://public.graphext.com/f20501a9d616b5a5/index.html) | 9429 | 20 | Social Networks and Surveys | [Kaggle](https://www.kaggle.com/datasets/hacker-news/hacker-news) |
| 18 | [Staff Satisfaction](https://public.graphext.com/6822ac1ce6307fec/index.html) | 14999 | 11 | Business | [Kaggle](https://www.kaggle.com/datasets/mohamedharris/employee-satisfaction-index-dataset) |
| 19 | [Aircraft Accidents](https://public.graphext.com/1802117b1b14f5c5/index.html) | 23519 | 23 | Health | [Kaggle](https://www.kaggle.com/datasets/ramjasmaurya/aviation-accidents-history1919-april-2022) |
| 20 | [Real Estate Madrid](https://public.graphext.com/5f83ec219a7ea84f/index.html) | 26026 | 59 | Business | [Idealista](https://public.graphext.com/5f83ec219a7ea84f/index.html) |
| 21 | [Telco Customer Churn](https://public.graphext.com/362cd8e3e96f70d4/index.html) | 7043 | 21 | Business | [Kaggle](https://www.kaggle.com/datasets/blastchar/telco-customer-churn) |
| 22 | [Airbnbs Listings NY](https://public.graphext.com/77265ea3a63e650f/index.html) | 37012 | 33 | Travel and Locations | [Kaggle](https://www.kaggle.com/datasets/dgomonov/new-york-city-airbnb-open-data) |
| 23 | [Climate in Madrid](https://public.graphext.com/83a75b4f1cea8df4/index.html?section=data) | 36858 | 26 | Travel and Locations | [AEMET](https://public.graphext.com/83a75b4f1cea8df4/index.html?section=data) |
| 24 | [Salary Survey Spain 2018](https://public.graphext.com/24d1e717ba01aa3d/index.html) | 216726 | 29 | Business | [INE](ine.es) |
| 25 | [Data Driven SEO ](https://public.graphext.com/4e5b1cac9ebdfa44/index.html) | 62 | 5 | Business | [Graphext](https://www.graphext.com/post/data-driven-seo-a-keyword-optimization-guide-using-web-scraping-co-occurrence-analysis-graphext-deepnote-adwords) |
| 26 | [Predicting Wine Quality](https://public.graphext.com/de04acf5d18a9aea/index.html) | 1599 | 12 | Business | [Kaggle](https://www.kaggle.com/datasets/yasserh/wine-quality-dataset) |
| 27 | [Supermarket Sales](https://public.graphext.com/9a6742da6a8d8f7f/index.html) | 1000 | 17 | Business | [Kaggle](https://www.kaggle.com/datasets/aungpyaeap/supermarket-sales) |
| 28 | [Predict Diabetes](https://public.graphext.com/def4bada27af324c/index.html) | 768 | 9 | Health | [Kaggle](https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset) |
| 29 | [NYTimes World In 2021](https://public.graphext.com/af4c8eef1757973c/index.html?section=data) | 52588 | 5 | Travel and Locations | [New York Times](https://public.graphext.com/af4c8eef1757973c/index.html) |
| 30 | [Professionals Kaggle Survey](https://public.graphext.com/3a2e87f90363a85d/index.html) | 19169 | 64 | Business | [Kaggle](https://www.kaggle.com/c/kaggle-survey-2021/data) |
| 31 | [Trustpilot Reviews](https://public.graphext.com/367e29432331fbfd/index.html?section=data) | 8020 | 6 | Business | [TrustPilot](https://public.graphext.com/367e29432331fbfd/index.html?section=data) |
| 32 | [Delicatessen Customers](https://public.graphext.com/a1687589fbde07bc/index.html) | 2240 | 29 | Business | [Kaggle](https://www.kaggle.com/datasets/rodsaldanha/arketing-campaign) |
| 33 | [Employee Attrition](https://public.graphext.com/07a91a15ecf2b8f6/index.html) | 14999 | 11 | Business | [Kaggle(modified)](https://www.kaggle.com/datasets/pavan9065/predicting-employee-attrition) |
| 34 | [World Happiness Report 2020](https://public.graphext.com/754c83ff0a7ba087/index.html) | 153 | 20 | Social Networks and Surveys | [World Happiness](https://worldhappiness.report/data/) |
| 35 | [Billboard Lyrics](https://public.graphext.com/7e0b009e8d0af719/index.html) | 5100 | 6 | Sports and Entertainment | [Brown University](https://cs.brown.edu/courses/cs100/students/project11/) |
| 36 | [US Migrations 2012-2016](https://public.graphext.com/dbdadf87a5c21695/index.html) | 288300 | 9 | Social Networks and Surveys | [US Census](https://www.census.gov/topics/population/migration/guidance/county-to-county-migration-flows.html) |
| 37 | [Ted Talks](https://public.graphext.com/07e48466fb670904/index.html) | 4005 | 19 | Social Networks and Surveys | [Kaggle](https://www.kaggle.com/datasets/ashishjangra27/ted-talks) |
| 38 | [Stroke Likelihood](https://public.graphext.com/20ccfee9e84948e3/index.html) | 5110 | 12 | Health | [Kaggle](https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease) |
| 39 | [Happy Moments](https://public.graphext.com/9b86efff48989701/index.html) | 100535 | 11 | Social Networks and Surveys | [Kaggle](https://www.kaggle.com/datasets/ritresearch/happydb) |
| 40 | [Speed Dating](https://public.graphext.com/f1912daad7870be0/index.html) | 8378 | 123 | Social Networks and Surveys | [Kaggle](https://www.kaggle.com/datasets/ulrikthygepedersen/speed-dating) |
| 41 | [Airline Mentions X (former Twitter)](https://public.graphext.com/29cb7f73f6e17a38/index.html) | 14640 | 15 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/7e6999327d1f83fd/index.html) |
| 42 | [Predict Student Performance](https://public.graphext.com/def4bada27af324c/index.html) | 395 | 33 | Business | [Kaggle](https://www.kaggle.com/datasets/impapan/student-performance-data-set) |
| 43 | [Loan Defaults](https://public.graphext.com/0c7fb68ab8071a1f/index.html) | 83656 | 20 | Business | [SBA](https://www.kaggle.com/datasets/mirbektoktogaraev/should-this-loan-be-approved-or-denied) |
| 44 | [IMDb Movies](https://public.graphext.com/e23e33774872c496/index.html) | 85855 | 22 | Sports and Entertainment | [Kaggle](https://www.kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows) |
| 45 | [Spotify Song Popularity](https://public.graphext.com/def4bada27af324c/index.html) | 21000 | 19 | Sports and Entertainment | [Spotify](https://www.kaggle.com/datasets/tomigelo/spotify-audio-features) |
| 46 | [120 Years Olympics](https://public.graphext.com/e57d5e2f172c9a99/index.html) | 271116 | 15 | Sports and Entertainment | [Kaggle](https://www.kaggle.com/datasets/heesoo37/120-years-of-olympic-history-athletes-and-results) |
| 47 | [Bank Customer Churn](https://public.graphext.com/e8f7aeacd209f74a/index.html) | 7088 | 15 | Business | [Kaggle](https://www.kaggle.com/datasets/mathchi/churn-for-bank-customers) |
| 48 | [Data Science Salary Data](https://public.graphext.com/4e5b1cac9ebdfa44/index.html) | 742 | 28 | Business | [Kaggle](https://www.kaggle.com/datasets/ruchi798/data-science-job-salaries) |
| 49 | [Boris Johnson UK PM Tweets](https://public.graphext.com/f6623a1ca0f41c8e/index.html) | 3220 | 34 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/f6623a1ca0f41c8e/index.html) |
| 50 | [ING 2019 X Mentions](https://public.graphext.com/075030310aa702c6/index.html) | 7244 | 22 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/075030310aa702c6/index.html) |
| 51 | [Pokemon Features](https://public.graphext.com/f30d4d863a2e6b01/index.html) | 1072 | 13 | Business | [Kaggle](https://www.kaggle.com/datasets/rounakbanik/pokemon) |
| 52 | [Professional Map](https://public.graphext.com/70af2240cb751968/index.html) | 1227 | 12 | Business | [Kern et al, PNAS'20](https://github.com/behavioral-ds/VocationMap) |
| 53 | [Google Patents](https://public.graphext.com/a262300e31874716/index.html) | 9999 | 20 | Business | [BigQuery](https://www.kaggle.com/datasets/bigquery/patents/data) |
| 54 | [Joe Biden Tweets](https://public.graphext.com/33fa2efa41541ab1/index.html) | 491 | 34 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/339cee259f0a9b32/index.html?section=data) |
55 | [German Loans](https://public.graphext.com/d3f5e425e9d4b0a1/index.html) | 1000 | 18 | Business | [Kaggle](https://www.kaggle.com/datasets/uciml/german-credit/data) |
| 56 | [Emoji Diet](https://public.graphext.com/e721cc7d790c06d4/index.html) | 58 | 35 | Health | [Kaggle](https://www.kaggle.com/datasets/ofrancisco/emoji-diet-nutritional-data-sr28) |
| 57 | [Spain Survey 2015](https://public.graphext.com/90ca7539b160fdfa/index.html?section=data) | 20000 | 45 | Social Networks and Surveys | [CIS](https://public.graphext.com/90ca7539b160fdfa/index.html?section=data) |
| 58 | [US Polls 2020](https://public.graphext.com/dbdadf87a5c21695/index.html) | 3523 | 52 | Social Networks and Surveys | [Brandwatch](https://www.brandwatch.com/p/us-election-raw-polling-data/) |
| 59 | [Second Hand Cars](https://public.graphext.com/543d0c49d7120ca0/index.html) | 50000 | 21 | Business | [DataMarket](https://www.kaggle.com/datasets/datamarket/venta-de-coches) |
| 60 | [Bakery Purchases](https://public.graphext.com/6f2102e80f47a192/index.html) | 20507 | 5 | Business | [Kaggle](https://www.kaggle.com/code/xvivancos/market-basket-analysis/report) |
| 61 | [Disneyland Customer Reviews](https://public.graphext.com/b1037bb566b7b316/index.html) | 42656 | 6 | Travel and Locations | [Kaggle](https://www.kaggle.com/datasets/arushchillar/disneyland-reviews) |
| 62 | [Trump Tweets](https://public.graphext.com/7aff94c3b7f159fc/index.html) | 15039 | 20 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/be903c098a90e46f/index.html?section=data) |
| 63 | [Influencers](https://public.graphext.com/e097f1ea03d761a9/index.html) | 1039 | 14 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/e097f1ea03d761a9/index.html) |
| 64 | [Clustering Zoo Animals](https://public.graphext.com/d1b66902e46a712a/index.html) | 101 | 18 | Health | [Kaggle](https://www.kaggle.com/datasets/jirkadaberger/zoo-animals) |
| 65 | [RFM Analysis](https://public.graphext.com/4db2e54e29006a21/index.html) | 541909 | 8 | Business | [UCI ML](https://www.kaggle.com/datasets/carrie1/ecommerce-data) |
## 🏗️ Folder structure
Each folder represents one dataset. You will find the following files within:
* all.parquet: the processed data, with each column tagged with our typing system, in [parquet](https://arrow.apache.org/docs/python/parquet.html).
* qa.parquet: contains the human-made set of questions, tagged by type and columns used, for the dataset (sample_answer indicates the answers for DataBench lite)
* sample.parquet: sample containing 20 rows of the original dataset (DataBench lite)
* info.yml: additional information about the dataset
## 🗂️ Column typing system
In an effort to map the stage for later analysis, we have categorized the columns by type. This information allows us to segment different kinds of data so that we can subsequently analyze the model's behavior on each column type separately. All parquet files have been casted to their smallest viable data type using the open source [Lector](https://github.com/graphext/lector) reader.
What this means is that in the data types we have more granular information that allows us to know if the column contains NaNs or not (following panda’s convention of Int vs int), as well as whether small numerical values contain negatives (Uint vs int) and their range. We also have dates with potential timezone information (although for now they’re all UTC), as well as information about categories’ cardinality coming from the arrow types.
In the table below you can see all the data types assigned to each column, as well as the number of columns for each type. The most common data types are numbers and categories with 1336 columns of the total of 1615 included in DataBench. These are followed by some other more rare types as urls, booleans, dates or lists of elements.
| Type | Columns | Example |
| -------------- | ------- | ----------------------- |
| number | 788 | 55 |
| category | 548 | apple |
| date | 50 | 1970-01-01 |
| text | 46 | A red fox ran... |
| url | 31 | google.com |
| boolean | 18 | True |
| list[number] | 14 | [1,2,3] |
| list[category] | 112 | [apple, orange, banana] |
| list[url] | 8 | [google.com, apple.com] |
## 🔗 Reference
You can download the paper [here](https://huggingface.co/datasets/cardiffnlp/databench/resolve/main/Databench-LREC-Coling-2024.pdf).
If you use this resource, please use the following reference:
```
@inproceedings{oses-etal-2024-databench,
title = "Question Answering over Tabular Data with DataBench: A Large-Scale Empirical Evaluation of LLMs",
author = "Jorge Osés Grijalba and Luis Alfonso Ureña-López and
Eugenio Martínez Cámara and Jose Camacho-Collados",
booktitle = "Proceedings of LREC-COLING 2024",
year = "2024",
address = "Turin, Italy"
}
```
|