jorses
commited on
Commit
โข
0332273
1
Parent(s):
ef2afcd
all to pqt
Browse filesThis view is limited to 50 files because it contains too many changes. ย
See raw diff
- README.md +330 -332
- data/001_Forbes/qa.parquet +0 -0
- data/002_Titanic/qa.parquet +0 -0
- data/002_Titanic/sample.parquet +0 -0
- data/003_Love/qa.parquet +0 -0
- data/003_Love/sample.parquet +0 -0
- data/004_Taxi/qa.parquet +0 -0
- data/004_Taxi/sample.parquet +0 -0
- data/005_NYC/qa.parquet +0 -0
- data/005_NYC/sample.parquet +0 -0
- data/006_London/qa.parquet +0 -0
- data/006_London/sample.parquet +0 -0
- data/007_Fifa/qa.parquet +0 -0
- data/007_Fifa/sample.parquet +0 -0
- data/008_Tornados/qa.parquet +0 -0
- data/008_Tornados/sample.parquet +0 -0
- data/009_Central/qa.parquet +0 -0
- data/009_Central/sample.parquet +0 -0
- data/010_ECommerce/qa.parquet +0 -0
- data/010_ECommerce/sample.parquet +0 -0
- data/011_SF/qa.parquet +0 -0
- data/011_SF/sample.parquet +0 -0
- data/012_Heart/qa.parquet +0 -0
- data/012_Heart/sample.parquet +0 -0
- data/013_Roller/qa.parquet +0 -0
- data/013_Roller/sample.parquet +0 -0
- data/014_Airbnb/qa.parquet +0 -0
- data/014_Airbnb/sample.parquet +0 -0
- data/015_Food/qa.parquet +0 -0
- data/015_Food/sample.parquet +0 -0
- data/016_Holiday/qa.parquet +0 -0
- data/016_Holiday/sample.parquet +0 -0
- data/017_Hacker/qa.parquet +0 -0
- data/017_Hacker/sample.parquet +0 -0
- data/018_Staff/qa.parquet +0 -0
- data/018_Staff/sample.parquet +0 -0
- data/019_Aircraft/qa.parquet +0 -0
- data/019_Aircraft/sample.parquet +0 -0
- data/020_Real/qa.parquet +0 -0
- data/020_Real/sample.parquet +0 -0
- data/021_Telco/qa.parquet +0 -0
- data/021_Telco/sample.parquet +0 -0
- data/022_Airbnbs/qa.parquet +0 -0
- data/022_Airbnbs/sample.parquet +0 -0
- data/023_Climate/qa.parquet +0 -0
- data/023_Climate/sample.parquet +0 -0
- data/024_Salary/qa.parquet +0 -0
- data/024_Salary/sample.parquet +0 -0
- data/025_Data/qa.parquet +0 -0
- data/025_Data/sample.parquet +0 -0
README.md
CHANGED
@@ -14,414 +14,412 @@ task_categories:
|
|
14 |
configs:
|
15 |
- config_name: qa
|
16 |
data_files:
|
17 |
-
- data/001_Forbes/qa.
|
18 |
-
- data/002_Titanic/qa.
|
19 |
-
- data/003_Love/qa.
|
20 |
-
- data/004_Taxi/qa.
|
21 |
-
- data/005_NYC/qa.
|
22 |
-
- data/006_London/qa.
|
23 |
-
- data/007_Fifa/qa.
|
24 |
-
- data/008_Tornados/qa.
|
25 |
-
- data/009_Central/qa.
|
26 |
-
- data/010_ECommerce/qa.
|
27 |
-
- data/011_SF/qa.
|
28 |
-
- data/012_Heart/qa.
|
29 |
-
- data/013_Roller/qa.
|
30 |
-
- data/014_Airbnb/qa.
|
31 |
-
- data/015_Food/qa.
|
32 |
-
- data/016_Holiday/qa.
|
33 |
-
- data/017_Hacker/qa.
|
34 |
-
- data/018_Staff/qa.
|
35 |
-
- data/019_Aircraft/qa.
|
36 |
-
- data/020_Real/qa.
|
37 |
-
- data/021_Telco/qa.
|
38 |
-
- data/022_Airbnbs/qa.
|
39 |
-
- data/023_Climate/qa.
|
40 |
-
- data/024_Salary/qa.
|
41 |
-
- data/025_Data/qa.
|
42 |
-
- data/026_Predicting/qa.
|
43 |
-
- data/027_Supermarket/qa.
|
44 |
-
- data/028_Predict/qa.
|
45 |
-
- data/029_NYTimes/qa.
|
46 |
-
- data/030_Professionals/qa.
|
47 |
-
- data/031_Trustpilot/qa.
|
48 |
-
- data/032_Delicatessen/qa.
|
49 |
-
- data/033_Employee/qa.
|
50 |
-
- data/034_World/qa.
|
51 |
-
- data/035_Billboard/qa.
|
52 |
-
- data/036_US/qa.
|
53 |
-
- data/037_Ted/qa.
|
54 |
-
- data/038_Stroke/qa.
|
55 |
-
- data/039_Happy/qa.
|
56 |
-
- data/040_Speed/qa.
|
57 |
-
- data/041_Airline/qa.
|
58 |
-
- data/042_Predict/qa.
|
59 |
-
- data/043_Predict/qa.
|
60 |
-
- data/044_IMDb/qa.
|
61 |
-
- data/045_Predict/qa.
|
62 |
-
- data/046_120/qa.
|
63 |
-
- data/047_Bank/qa.
|
64 |
-
- data/048_Data/qa.
|
65 |
-
- data/049_Boris/qa.
|
66 |
-
- data/050_ING/qa.
|
67 |
-
- data/051_Pokemon/qa.
|
68 |
-
- data/052_Professional/qa.
|
69 |
-
- data/053_Patents/qa.
|
70 |
-
- data/054_Joe/qa.
|
71 |
-
- data/055_German/qa.
|
72 |
-
- data/056_Emoji/qa.
|
73 |
-
- data/057_Spain/qa.
|
74 |
-
- data/058_US/qa.
|
75 |
-
- data/059_Second/qa.
|
76 |
-
- data/060_Bakery/qa.
|
77 |
-
- data/061_Disneyland/qa.
|
78 |
-
- data/062_Trump/qa.
|
79 |
-
- data/063_Influencers/qa.
|
80 |
-
- data/064_Clustering/qa.
|
81 |
-
- data/065_RFM/qa.
|
82 |
- config_name: 001_Forbes
|
83 |
data_files:
|
84 |
- split: full
|
85 |
path: data/001_Forbes/all.parquet
|
86 |
-
format: parquet
|
87 |
- split: lite
|
88 |
path: data/001_Forbes/sample.parquet
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
# path: data/065_RFM/all.parquet
|
222 |
- config_name: data_lite
|
223 |
data_files:
|
224 |
- split: 001_Forbes
|
225 |
-
path: data/001_Forbes/sample.
|
226 |
- split: 002_Titanic
|
227 |
-
path: data/002_Titanic/sample.
|
228 |
- split: 003_Love
|
229 |
-
path: data/003_Love/sample.
|
230 |
- split: 004_Taxi
|
231 |
-
path: data/004_Taxi/sample.
|
232 |
- split: 005_NYC
|
233 |
-
path: data/005_NYC/sample.
|
234 |
- split: 006_London
|
235 |
-
path: data/006_London/sample.
|
236 |
- split: 007_Fifa
|
237 |
-
path: data/007_Fifa/sample.
|
238 |
- split: 008_Tornados
|
239 |
-
path: data/008_Tornados/sample.
|
240 |
- split: 009_Central
|
241 |
-
path: data/009_Central/sample.
|
242 |
- split: 010_ECommerce
|
243 |
-
path: data/010_ECommerce/sample.
|
244 |
- split: 011_SF
|
245 |
-
path: data/011_SF/sample.
|
246 |
- split: 012_Heart
|
247 |
-
path: data/012_Heart/sample.
|
248 |
- split: 013_Roller
|
249 |
-
path: data/013_Roller/sample.
|
250 |
- split: 014_Airbnb
|
251 |
-
path: data/014_Airbnb/sample.
|
252 |
- split: 015_Food
|
253 |
-
path: data/015_Food/sample.
|
254 |
- split: 016_Holiday
|
255 |
-
path: data/016_Holiday/sample.
|
256 |
- split: 017_Hacker
|
257 |
-
path: data/017_Hacker/sample.
|
258 |
- split: 018_Staff
|
259 |
-
path: data/018_Staff/sample.
|
260 |
- split: 019_Aircraft
|
261 |
-
path: data/019_Aircraft/sample.
|
262 |
- split: 020_Real
|
263 |
-
path: data/020_Real/sample.
|
264 |
- split: 021_Telco
|
265 |
-
path: data/021_Telco/sample.
|
266 |
- split: 022_Airbnbs
|
267 |
-
path: data/022_Airbnbs/sample.
|
268 |
- split: 023_Climate
|
269 |
-
path: data/023_Climate/sample.
|
270 |
- split: 024_Salary
|
271 |
-
path: data/024_Salary/sample.
|
272 |
- split: 025_Data
|
273 |
-
path: data/025_Data/sample.
|
274 |
- split: 026_Predicting
|
275 |
-
path: data/026_Predicting/sample.
|
276 |
- split: 027_Supermarket
|
277 |
-
path: data/027_Supermarket/sample.
|
278 |
- split: 028_Predict
|
279 |
-
path: data/028_Predict/sample.
|
280 |
- split: 029_NYTimes
|
281 |
-
path: data/029_NYTimes/sample.
|
282 |
- split: 030_Professionals
|
283 |
-
path: data/030_Professionals/sample.
|
284 |
- split: 031_Trustpilot
|
285 |
-
path: data/031_Trustpilot/sample.
|
286 |
- split: 032_Delicatessen
|
287 |
-
path: data/032_Delicatessen/sample.
|
288 |
- split: 033_Employee
|
289 |
-
path: data/033_Employee/sample.
|
290 |
- split: 034_World
|
291 |
-
path: data/034_World/sample.
|
292 |
- split: 035_Billboard
|
293 |
-
path: data/035_Billboard/sample.
|
294 |
- split: 036_US
|
295 |
-
path: data/036_US/sample.
|
296 |
- split: 037_Ted
|
297 |
-
path: data/037_Ted/sample.
|
298 |
- split: 038_Stroke
|
299 |
-
path: data/038_Stroke/sample.
|
300 |
- split: 039_Happy
|
301 |
-
path: data/039_Happy/sample.
|
302 |
- split: 040_Speed
|
303 |
-
path: data/040_Speed/sample.
|
304 |
- split: 041_Airline
|
305 |
-
path: data/041_Airline/sample.
|
306 |
- split: 042_Predict
|
307 |
-
path: data/042_Predict/sample.
|
308 |
- split: 043_Predict
|
309 |
-
path: data/043_Predict/sample.
|
310 |
- split: 044_IMDb
|
311 |
-
path: data/044_IMDb/sample.
|
312 |
- split: 045_Predict
|
313 |
-
path: data/045_Predict/sample.
|
314 |
- split: "046_120"
|
315 |
-
path: data/046_120/sample.
|
316 |
- split: 047_Bank
|
317 |
-
path: data/047_Bank/sample.
|
318 |
- split: 048_Data
|
319 |
-
path: data/048_Data/sample.
|
320 |
- split: 049_Boris
|
321 |
-
path: data/049_Boris/sample.
|
322 |
- split: 050_ING
|
323 |
-
path: data/050_ING/sample.
|
324 |
- split: 051_Pokemon
|
325 |
-
path: data/051_Pokemon/sample.
|
326 |
- split: 052_Professional
|
327 |
-
path: data/052_Professional/sample.
|
328 |
- split: 053_Patents
|
329 |
-
path: data/053_Patents/sample.
|
330 |
- split: 054_Joe
|
331 |
-
path: data/054_Joe/sample.
|
332 |
- split: 055_German
|
333 |
-
path: data/055_German/sample.
|
334 |
- split: 056_Emoji
|
335 |
-
path: data/056_Emoji/sample.
|
336 |
- split: 057_Spain
|
337 |
-
path: data/057_Spain/sample.
|
338 |
- split: 058_US
|
339 |
-
path: data/058_US/sample.
|
340 |
- split: 059_Second
|
341 |
-
path: data/059_Second/sample.
|
342 |
- split: 060_Bakery
|
343 |
-
path: data/060_Bakery/sample.
|
344 |
- split: 061_Disneyland
|
345 |
-
path: data/061_Disneyland/sample.
|
346 |
- split: 062_Trump
|
347 |
-
path: data/062_Trump/sample.
|
348 |
- split: 063_Influencers
|
349 |
-
path: data/063_Influencers/sample.
|
350 |
- split: 064_Clustering
|
351 |
-
path: data/064_Clustering/sample.
|
352 |
- split: 065_RFM
|
353 |
-
path: data/065_RFM/sample.
|
354 |
- config_name: semeval
|
355 |
data_files:
|
356 |
- split: train
|
357 |
path:
|
358 |
-
- data/001_Forbes/qa.
|
359 |
-
- data/002_Titanic/qa.
|
360 |
-
- data/003_Love/qa.
|
361 |
-
- data/004_Taxi/qa.
|
362 |
-
- data/005_NYC/qa.
|
363 |
-
- data/006_London/qa.
|
364 |
-
- data/007_Fifa/qa.
|
365 |
-
- data/008_Tornados/qa.
|
366 |
-
- data/009_Central/qa.
|
367 |
-
- data/010_ECommerce/qa.
|
368 |
-
- data/011_SF/qa.
|
369 |
-
- data/012_Heart/qa.
|
370 |
-
- data/013_Roller/qa.
|
371 |
-
- data/014_Airbnb/qa.
|
372 |
-
- data/015_Food/qa.
|
373 |
-
- data/016_Holiday/qa.
|
374 |
-
- data/017_Hacker/qa.
|
375 |
-
- data/018_Staff/qa.
|
376 |
-
- data/019_Aircraft/qa.
|
377 |
-
- data/020_Real/qa.
|
378 |
-
- data/021_Telco/qa.
|
379 |
-
- data/022_Airbnbs/qa.
|
380 |
-
- data/023_Climate/qa.
|
381 |
-
- data/024_Salary/qa.
|
382 |
-
- data/025_Data/qa.
|
383 |
-
- data/026_Predicting/qa.
|
384 |
-
- data/027_Supermarket/qa.
|
385 |
-
- data/028_Predict/qa.
|
386 |
-
- data/029_NYTimes/qa.
|
387 |
-
- data/030_Professionals/qa.
|
388 |
-
- data/031_Trustpilot/qa.
|
389 |
-
- data/032_Delicatessen/qa.
|
390 |
-
- data/033_Employee/qa.
|
391 |
-
- data/034_World/qa.
|
392 |
-
- data/035_Billboard/qa.
|
393 |
-
- data/036_US/qa.
|
394 |
-
- data/037_Ted/qa.
|
395 |
-
- data/038_Stroke/qa.
|
396 |
-
- data/039_Happy/qa.
|
397 |
-
- data/040_Speed/qa.
|
398 |
-
- data/041_Airline/qa.
|
399 |
-
- data/042_Predict/qa.
|
400 |
-
- data/043_Predict/qa.
|
401 |
-
- data/044_IMDb/qa.
|
402 |
-
- data/045_Predict/qa.
|
403 |
-
- data/046_120/qa.
|
404 |
-
- data/047_Bank/qa.
|
405 |
-
- data/048_Data/qa.
|
406 |
-
- data/049_Boris/qa.
|
407 |
- split: test
|
408 |
path:
|
409 |
-
- data/050_ING/qa.
|
410 |
-
- data/051_Pokemon/qa.
|
411 |
-
- data/052_Professional/qa.
|
412 |
-
- data/053_Patents/qa.
|
413 |
-
- data/054_Joe/qa.
|
414 |
-
- data/055_German/qa.
|
415 |
-
- data/056_Emoji/qa.
|
416 |
-
- data/057_Spain/qa.
|
417 |
-
- data/058_US/qa.
|
418 |
-
- data/059_Second/qa.
|
419 |
-
- data/060_Bakery/qa.
|
420 |
-
- data/061_Disneyland/qa.
|
421 |
-
- data/062_Trump/qa.
|
422 |
-
- data/063_Influencers/qa.
|
423 |
-
- data/064_Clustering/qa.
|
424 |
-
- data/065_RFM/qa.
|
425 |
|
426 |
---
|
427 |
# ๐พ๐๏ธ๐พ DataBench ๐พ๐๏ธ๐พ
|
@@ -453,7 +451,7 @@ By clicking on each name in the table below, you will be able to explore each da
|
|
453 |
| 11 | [SF Police](https://public.graphext.com/ab815ab14f88115c/index.html) | 713107 | 35 | Social Networks and Surveys | [US Gov](https://catalog.data.gov/dataset/police-department-incident-reports-2018-to-present) |
|
454 |
| 12 | [Heart Failure](https://public.graphext.com/245cec64075f5542/index.html) | 918 | 12 | Health | [Kaggle](https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction) |
|
455 |
| 13 | [Roller Coasters](https://public.graphext.com/1e550e6c24fc1930/index.html) | 1087 | 56 | Sports and Entertainment | [Kaggle](https://www.kaggle.com/datasets/robikscube/rollercoaster-database) |
|
456 |
-
| 14 | [Madrid Airbnbs](https://public.graphext.com/77265ea3a63e650f/index.html) | 20776 | 75 | Travel and Locations | [Inside Airbnb](http://data.insideairbnb.com/spain/comunidad-de-madrid/madrid/2023-09-07/data/listings.
|
457 |
| 15 | [Food Names](https://public.graphext.com/5aad4c5d6ef140b3/index.html) | 906 | 4 | Business | [Data World](https://data.world/alexandra/generic-food-database) |
|
458 |
| 16 | [Holiday Package Sales](https://public.graphext.com/fbc34d3f24282e46/index.html) | 4888 | 20 | Travel and Locations | [Kaggle](https://www.kaggle.com/datasets/susant4learning/holiday-package-purchase-prediction) |
|
459 |
| 17 | [Hacker News](https://public.graphext.com/f20501a9d616b5a5/index.html) | 9429 | 20 | Social Networks and Surveys | [Kaggle](https://www.kaggle.com/datasets/hacker-news/hacker-news) |
|
@@ -510,8 +508,8 @@ By clicking on each name in the table below, you will be able to explore each da
|
|
510 |
Each folder represents one dataset. You will find the following files within:
|
511 |
|
512 |
* all.parquet: the processed data, with each column tagged with our typing system, in [parquet](https://arrow.apache.org/docs/python/parquet.html).
|
513 |
-
* qa.
|
514 |
-
* sample.
|
515 |
* info.yml: additional information about the dataset
|
516 |
|
517 |
## ๐๏ธ Column typing system
|
|
|
14 |
configs:
|
15 |
- config_name: qa
|
16 |
data_files:
|
17 |
+
- data/001_Forbes/qa.parquet
|
18 |
+
- data/002_Titanic/qa.parquet
|
19 |
+
- data/003_Love/qa.parquet
|
20 |
+
- data/004_Taxi/qa.parquet
|
21 |
+
- data/005_NYC/qa.parquet
|
22 |
+
- data/006_London/qa.parquet
|
23 |
+
- data/007_Fifa/qa.parquet
|
24 |
+
- data/008_Tornados/qa.parquet
|
25 |
+
- data/009_Central/qa.parquet
|
26 |
+
- data/010_ECommerce/qa.parquet
|
27 |
+
- data/011_SF/qa.parquet
|
28 |
+
- data/012_Heart/qa.parquet
|
29 |
+
- data/013_Roller/qa.parquet
|
30 |
+
- data/014_Airbnb/qa.parquet
|
31 |
+
- data/015_Food/qa.parquet
|
32 |
+
- data/016_Holiday/qa.parquet
|
33 |
+
- data/017_Hacker/qa.parquet
|
34 |
+
- data/018_Staff/qa.parquet
|
35 |
+
- data/019_Aircraft/qa.parquet
|
36 |
+
- data/020_Real/qa.parquet
|
37 |
+
- data/021_Telco/qa.parquet
|
38 |
+
- data/022_Airbnbs/qa.parquet
|
39 |
+
- data/023_Climate/qa.parquet
|
40 |
+
- data/024_Salary/qa.parquet
|
41 |
+
- data/025_Data/qa.parquet
|
42 |
+
- data/026_Predicting/qa.parquet
|
43 |
+
- data/027_Supermarket/qa.parquet
|
44 |
+
- data/028_Predict/qa.parquet
|
45 |
+
- data/029_NYTimes/qa.parquet
|
46 |
+
- data/030_Professionals/qa.parquet
|
47 |
+
- data/031_Trustpilot/qa.parquet
|
48 |
+
- data/032_Delicatessen/qa.parquet
|
49 |
+
- data/033_Employee/qa.parquet
|
50 |
+
- data/034_World/qa.parquet
|
51 |
+
- data/035_Billboard/qa.parquet
|
52 |
+
- data/036_US/qa.parquet
|
53 |
+
- data/037_Ted/qa.parquet
|
54 |
+
- data/038_Stroke/qa.parquet
|
55 |
+
- data/039_Happy/qa.parquet
|
56 |
+
- data/040_Speed/qa.parquet
|
57 |
+
- data/041_Airline/qa.parquet
|
58 |
+
- data/042_Predict/qa.parquet
|
59 |
+
- data/043_Predict/qa.parquet
|
60 |
+
- data/044_IMDb/qa.parquet
|
61 |
+
- data/045_Predict/qa.parquet
|
62 |
+
- data/046_120/qa.parquet
|
63 |
+
- data/047_Bank/qa.parquet
|
64 |
+
- data/048_Data/qa.parquet
|
65 |
+
- data/049_Boris/qa.parquet
|
66 |
+
- data/050_ING/qa.parquet
|
67 |
+
- data/051_Pokemon/qa.parquet
|
68 |
+
- data/052_Professional/qa.parquet
|
69 |
+
- data/053_Patents/qa.parquet
|
70 |
+
- data/054_Joe/qa.parquet
|
71 |
+
- data/055_German/qa.parquet
|
72 |
+
- data/056_Emoji/qa.parquet
|
73 |
+
- data/057_Spain/qa.parquet
|
74 |
+
- data/058_US/qa.parquet
|
75 |
+
- data/059_Second/qa.parquet
|
76 |
+
- data/060_Bakery/qa.parquet
|
77 |
+
- data/061_Disneyland/qa.parquet
|
78 |
+
- data/062_Trump/qa.parquet
|
79 |
+
- data/063_Influencers/qa.parquet
|
80 |
+
- data/064_Clustering/qa.parquet
|
81 |
+
- data/065_RFM/qa.parquet
|
82 |
- config_name: 001_Forbes
|
83 |
data_files:
|
84 |
- split: full
|
85 |
path: data/001_Forbes/all.parquet
|
|
|
86 |
- split: lite
|
87 |
path: data/001_Forbes/sample.parquet
|
88 |
+
- config_name: data
|
89 |
+
data_files:
|
90 |
+
- split: 001_Forbes
|
91 |
+
path: data/001_Forbes/all.parquet
|
92 |
+
- split: 002_Titanic
|
93 |
+
path: data/002_Titanic/all.parquet
|
94 |
+
- split: 003_Love
|
95 |
+
path: data/003_Love/all.parquet
|
96 |
+
- split: 004_Taxi
|
97 |
+
path: data/004_Taxi/all.parquet
|
98 |
+
- split: 005_NYC
|
99 |
+
path: data/005_NYC/all.parquet
|
100 |
+
- split: 006_London
|
101 |
+
path: data/006_London/all.parquet
|
102 |
+
- split: 007_Fifa
|
103 |
+
path: data/007_Fifa/all.parquet
|
104 |
+
- split: 008_Tornados
|
105 |
+
path: data/008_Tornados/all.parquet
|
106 |
+
- split: 009_Central
|
107 |
+
path: data/009_Central/all.parquet
|
108 |
+
- split: 010_ECommerce
|
109 |
+
path: data/010_ECommerce/all.parquet
|
110 |
+
- split: 011_SF
|
111 |
+
path: data/011_SF/all.parquet
|
112 |
+
- split: 012_Heart
|
113 |
+
path: data/012_Heart/all.parquet
|
114 |
+
- split: 013_Roller
|
115 |
+
path: data/013_Roller/all.parquet
|
116 |
+
- split: 014_Airbnb
|
117 |
+
path: data/014_Airbnb/all.parquet
|
118 |
+
- split: 015_Food
|
119 |
+
path: data/015_Food/all.parquet
|
120 |
+
- split: 016_Holiday
|
121 |
+
path: data/016_Holiday/all.parquet
|
122 |
+
- split: 017_Hacker
|
123 |
+
path: data/017_Hacker/all.parquet
|
124 |
+
- split: 018_Staff
|
125 |
+
path: data/018_Staff/all.parquet
|
126 |
+
- split: 019_Aircraft
|
127 |
+
path: data/019_Aircraft/all.parquet
|
128 |
+
- split: 020_Real
|
129 |
+
path: data/020_Real/all.parquet
|
130 |
+
- split: 021_Telco
|
131 |
+
path: data/021_Telco/all.parquet
|
132 |
+
- split: 022_Airbnbs
|
133 |
+
path: data/022_Airbnbs/all.parquet
|
134 |
+
- split: 023_Climate
|
135 |
+
path: data/023_Climate/all.parquet
|
136 |
+
- split: 024_Salary
|
137 |
+
path: data/024_Salary/all.parquet
|
138 |
+
- split: 025_Data
|
139 |
+
path: data/025_Data/all.parquet
|
140 |
+
- split: 026_Predicting
|
141 |
+
path: data/026_Predicting/all.parquet
|
142 |
+
- split: 027_Supermarket
|
143 |
+
path: data/027_Supermarket/all.parquet
|
144 |
+
- split: 028_Predict
|
145 |
+
path: data/028_Predict/all.parquet
|
146 |
+
- split: 029_NYTimes
|
147 |
+
path: data/029_NYTimes/all.parquet
|
148 |
+
- split: 030_Professionals
|
149 |
+
path: data/030_Professionals/all.parquet
|
150 |
+
- split: 031_Trustpilot
|
151 |
+
path: data/031_Trustpilot/all.parquet
|
152 |
+
- split: 032_Delicatessen
|
153 |
+
path: data/032_Delicatessen/all.parquet
|
154 |
+
- split: 033_Employee
|
155 |
+
path: data/033_Employee/all.parquet
|
156 |
+
- split: 034_World
|
157 |
+
path: data/034_World/all.parquet
|
158 |
+
- split: 035_Billboard
|
159 |
+
path: data/035_Billboard/all.parquet
|
160 |
+
- split: 036_US
|
161 |
+
path: data/036_US/all.parquet
|
162 |
+
- split: 037_Ted
|
163 |
+
path: data/037_Ted/all.parquet
|
164 |
+
- split: 038_Stroke
|
165 |
+
path: data/038_Stroke/all.parquet
|
166 |
+
- split: 039_Happy
|
167 |
+
path: data/039_Happy/all.parquet
|
168 |
+
- split: 040_Speed
|
169 |
+
path: data/040_Speed/all.parquet
|
170 |
+
- split: 041_Airline
|
171 |
+
path: data/041_Airline/all.parquet
|
172 |
+
- split: 042_Predict
|
173 |
+
path: data/042_Predict/all.parquet
|
174 |
+
- split: 043_Predict
|
175 |
+
path: data/043_Predict/all.parquet
|
176 |
+
- split: 044_IMDb
|
177 |
+
path: data/044_IMDb/all.parquet
|
178 |
+
- split: 045_Predict
|
179 |
+
path: data/045_Predict/all.parquet
|
180 |
+
- split: "046_120"
|
181 |
+
path: data/046_120/all.parquet
|
182 |
+
- split: 047_Bank
|
183 |
+
path: data/047_Bank/all.parquet
|
184 |
+
- split: 048_Data
|
185 |
+
path: data/048_Data/all.parquet
|
186 |
+
- split: 049_Boris
|
187 |
+
path: data/049_Boris/all.parquet
|
188 |
+
- split: 050_ING
|
189 |
+
path: data/050_ING/all.parquet
|
190 |
+
- split: 051_Pokemon
|
191 |
+
path: data/051_Pokemon/all.parquet
|
192 |
+
- split: 052_Professional
|
193 |
+
path: data/052_Professional/all.parquet
|
194 |
+
- split: 053_Patents
|
195 |
+
path: data/053_Patents/all.parquet
|
196 |
+
- split: 054_Joe
|
197 |
+
path: data/054_Joe/all.parquet
|
198 |
+
- split: 055_German
|
199 |
+
path: data/055_German/all.parquet
|
200 |
+
- split: 056_Emoji
|
201 |
+
path: data/056_Emoji/all.parquet
|
202 |
+
- split: 057_Spain
|
203 |
+
path: data/057_Spain/all.parquet
|
204 |
+
- split: 058_US
|
205 |
+
path: data/058_US/all.parquet
|
206 |
+
- split: 059_Second
|
207 |
+
path: data/059_Second/all.parquet
|
208 |
+
- split: 060_Bakery
|
209 |
+
path: data/060_Bakery/all.parquet
|
210 |
+
- split: 061_Disneyland
|
211 |
+
path: data/061_Disneyland/all.parquet
|
212 |
+
- split: 062_Trump
|
213 |
+
path: data/062_Trump/all.parquet
|
214 |
+
- split: 063_Influencers
|
215 |
+
path: data/063_Influencers/all.parquet
|
216 |
+
- split: 064_Clustering
|
217 |
+
path: data/064_Clustering/all.parquet
|
218 |
+
- split: 065_RFM
|
219 |
+
path: data/065_RFM/all.parquet
|
|
|
220 |
- config_name: data_lite
|
221 |
data_files:
|
222 |
- split: 001_Forbes
|
223 |
+
path: data/001_Forbes/sample.parquet
|
224 |
- split: 002_Titanic
|
225 |
+
path: data/002_Titanic/sample.parquet
|
226 |
- split: 003_Love
|
227 |
+
path: data/003_Love/sample.parquet
|
228 |
- split: 004_Taxi
|
229 |
+
path: data/004_Taxi/sample.parquet
|
230 |
- split: 005_NYC
|
231 |
+
path: data/005_NYC/sample.parquet
|
232 |
- split: 006_London
|
233 |
+
path: data/006_London/sample.parquet
|
234 |
- split: 007_Fifa
|
235 |
+
path: data/007_Fifa/sample.parquet
|
236 |
- split: 008_Tornados
|
237 |
+
path: data/008_Tornados/sample.parquet
|
238 |
- split: 009_Central
|
239 |
+
path: data/009_Central/sample.parquet
|
240 |
- split: 010_ECommerce
|
241 |
+
path: data/010_ECommerce/sample.parquet
|
242 |
- split: 011_SF
|
243 |
+
path: data/011_SF/sample.parquet
|
244 |
- split: 012_Heart
|
245 |
+
path: data/012_Heart/sample.parquet
|
246 |
- split: 013_Roller
|
247 |
+
path: data/013_Roller/sample.parquet
|
248 |
- split: 014_Airbnb
|
249 |
+
path: data/014_Airbnb/sample.parquet
|
250 |
- split: 015_Food
|
251 |
+
path: data/015_Food/sample.parquet
|
252 |
- split: 016_Holiday
|
253 |
+
path: data/016_Holiday/sample.parquet
|
254 |
- split: 017_Hacker
|
255 |
+
path: data/017_Hacker/sample.parquet
|
256 |
- split: 018_Staff
|
257 |
+
path: data/018_Staff/sample.parquet
|
258 |
- split: 019_Aircraft
|
259 |
+
path: data/019_Aircraft/sample.parquet
|
260 |
- split: 020_Real
|
261 |
+
path: data/020_Real/sample.parquet
|
262 |
- split: 021_Telco
|
263 |
+
path: data/021_Telco/sample.parquet
|
264 |
- split: 022_Airbnbs
|
265 |
+
path: data/022_Airbnbs/sample.parquet
|
266 |
- split: 023_Climate
|
267 |
+
path: data/023_Climate/sample.parquet
|
268 |
- split: 024_Salary
|
269 |
+
path: data/024_Salary/sample.parquet
|
270 |
- split: 025_Data
|
271 |
+
path: data/025_Data/sample.parquet
|
272 |
- split: 026_Predicting
|
273 |
+
path: data/026_Predicting/sample.parquet
|
274 |
- split: 027_Supermarket
|
275 |
+
path: data/027_Supermarket/sample.parquet
|
276 |
- split: 028_Predict
|
277 |
+
path: data/028_Predict/sample.parquet
|
278 |
- split: 029_NYTimes
|
279 |
+
path: data/029_NYTimes/sample.parquet
|
280 |
- split: 030_Professionals
|
281 |
+
path: data/030_Professionals/sample.parquet
|
282 |
- split: 031_Trustpilot
|
283 |
+
path: data/031_Trustpilot/sample.parquet
|
284 |
- split: 032_Delicatessen
|
285 |
+
path: data/032_Delicatessen/sample.parquet
|
286 |
- split: 033_Employee
|
287 |
+
path: data/033_Employee/sample.parquet
|
288 |
- split: 034_World
|
289 |
+
path: data/034_World/sample.parquet
|
290 |
- split: 035_Billboard
|
291 |
+
path: data/035_Billboard/sample.parquet
|
292 |
- split: 036_US
|
293 |
+
path: data/036_US/sample.parquet
|
294 |
- split: 037_Ted
|
295 |
+
path: data/037_Ted/sample.parquet
|
296 |
- split: 038_Stroke
|
297 |
+
path: data/038_Stroke/sample.parquet
|
298 |
- split: 039_Happy
|
299 |
+
path: data/039_Happy/sample.parquet
|
300 |
- split: 040_Speed
|
301 |
+
path: data/040_Speed/sample.parquet
|
302 |
- split: 041_Airline
|
303 |
+
path: data/041_Airline/sample.parquet
|
304 |
- split: 042_Predict
|
305 |
+
path: data/042_Predict/sample.parquet
|
306 |
- split: 043_Predict
|
307 |
+
path: data/043_Predict/sample.parquet
|
308 |
- split: 044_IMDb
|
309 |
+
path: data/044_IMDb/sample.parquet
|
310 |
- split: 045_Predict
|
311 |
+
path: data/045_Predict/sample.parquet
|
312 |
- split: "046_120"
|
313 |
+
path: data/046_120/sample.parquet
|
314 |
- split: 047_Bank
|
315 |
+
path: data/047_Bank/sample.parquet
|
316 |
- split: 048_Data
|
317 |
+
path: data/048_Data/sample.parquet
|
318 |
- split: 049_Boris
|
319 |
+
path: data/049_Boris/sample.parquet
|
320 |
- split: 050_ING
|
321 |
+
path: data/050_ING/sample.parquet
|
322 |
- split: 051_Pokemon
|
323 |
+
path: data/051_Pokemon/sample.parquet
|
324 |
- split: 052_Professional
|
325 |
+
path: data/052_Professional/sample.parquet
|
326 |
- split: 053_Patents
|
327 |
+
path: data/053_Patents/sample.parquet
|
328 |
- split: 054_Joe
|
329 |
+
path: data/054_Joe/sample.parquet
|
330 |
- split: 055_German
|
331 |
+
path: data/055_German/sample.parquet
|
332 |
- split: 056_Emoji
|
333 |
+
path: data/056_Emoji/sample.parquet
|
334 |
- split: 057_Spain
|
335 |
+
path: data/057_Spain/sample.parquet
|
336 |
- split: 058_US
|
337 |
+
path: data/058_US/sample.parquet
|
338 |
- split: 059_Second
|
339 |
+
path: data/059_Second/sample.parquet
|
340 |
- split: 060_Bakery
|
341 |
+
path: data/060_Bakery/sample.parquet
|
342 |
- split: 061_Disneyland
|
343 |
+
path: data/061_Disneyland/sample.parquet
|
344 |
- split: 062_Trump
|
345 |
+
path: data/062_Trump/sample.parquet
|
346 |
- split: 063_Influencers
|
347 |
+
path: data/063_Influencers/sample.parquet
|
348 |
- split: 064_Clustering
|
349 |
+
path: data/064_Clustering/sample.parquet
|
350 |
- split: 065_RFM
|
351 |
+
path: data/065_RFM/sample.parquet
|
352 |
- config_name: semeval
|
353 |
data_files:
|
354 |
- split: train
|
355 |
path:
|
356 |
+
- data/001_Forbes/qa.parquet
|
357 |
+
- data/002_Titanic/qa.parquet
|
358 |
+
- data/003_Love/qa.parquet
|
359 |
+
- data/004_Taxi/qa.parquet
|
360 |
+
- data/005_NYC/qa.parquet
|
361 |
+
- data/006_London/qa.parquet
|
362 |
+
- data/007_Fifa/qa.parquet
|
363 |
+
- data/008_Tornados/qa.parquet
|
364 |
+
- data/009_Central/qa.parquet
|
365 |
+
- data/010_ECommerce/qa.parquet
|
366 |
+
- data/011_SF/qa.parquet
|
367 |
+
- data/012_Heart/qa.parquet
|
368 |
+
- data/013_Roller/qa.parquet
|
369 |
+
- data/014_Airbnb/qa.parquet
|
370 |
+
- data/015_Food/qa.parquet
|
371 |
+
- data/016_Holiday/qa.parquet
|
372 |
+
- data/017_Hacker/qa.parquet
|
373 |
+
- data/018_Staff/qa.parquet
|
374 |
+
- data/019_Aircraft/qa.parquet
|
375 |
+
- data/020_Real/qa.parquet
|
376 |
+
- data/021_Telco/qa.parquet
|
377 |
+
- data/022_Airbnbs/qa.parquet
|
378 |
+
- data/023_Climate/qa.parquet
|
379 |
+
- data/024_Salary/qa.parquet
|
380 |
+
- data/025_Data/qa.parquet
|
381 |
+
- data/026_Predicting/qa.parquet
|
382 |
+
- data/027_Supermarket/qa.parquet
|
383 |
+
- data/028_Predict/qa.parquet
|
384 |
+
- data/029_NYTimes/qa.parquet
|
385 |
+
- data/030_Professionals/qa.parquet
|
386 |
+
- data/031_Trustpilot/qa.parquet
|
387 |
+
- data/032_Delicatessen/qa.parquet
|
388 |
+
- data/033_Employee/qa.parquet
|
389 |
+
- data/034_World/qa.parquet
|
390 |
+
- data/035_Billboard/qa.parquet
|
391 |
+
- data/036_US/qa.parquet
|
392 |
+
- data/037_Ted/qa.parquet
|
393 |
+
- data/038_Stroke/qa.parquet
|
394 |
+
- data/039_Happy/qa.parquet
|
395 |
+
- data/040_Speed/qa.parquet
|
396 |
+
- data/041_Airline/qa.parquet
|
397 |
+
- data/042_Predict/qa.parquet
|
398 |
+
- data/043_Predict/qa.parquet
|
399 |
+
- data/044_IMDb/qa.parquet
|
400 |
+
- data/045_Predict/qa.parquet
|
401 |
+
- data/046_120/qa.parquet
|
402 |
+
- data/047_Bank/qa.parquet
|
403 |
+
- data/048_Data/qa.parquet
|
404 |
+
- data/049_Boris/qa.parquet
|
405 |
- split: test
|
406 |
path:
|
407 |
+
- data/050_ING/qa.parquet
|
408 |
+
- data/051_Pokemon/qa.parquet
|
409 |
+
- data/052_Professional/qa.parquet
|
410 |
+
- data/053_Patents/qa.parquet
|
411 |
+
- data/054_Joe/qa.parquet
|
412 |
+
- data/055_German/qa.parquet
|
413 |
+
- data/056_Emoji/qa.parquet
|
414 |
+
- data/057_Spain/qa.parquet
|
415 |
+
- data/058_US/qa.parquet
|
416 |
+
- data/059_Second/qa.parquet
|
417 |
+
- data/060_Bakery/qa.parquet
|
418 |
+
- data/061_Disneyland/qa.parquet
|
419 |
+
- data/062_Trump/qa.parquet
|
420 |
+
- data/063_Influencers/qa.parquet
|
421 |
+
- data/064_Clustering/qa.parquet
|
422 |
+
- data/065_RFM/qa.parquet
|
423 |
|
424 |
---
|
425 |
# ๐พ๐๏ธ๐พ DataBench ๐พ๐๏ธ๐พ
|
|
|
451 |
| 11 | [SF Police](https://public.graphext.com/ab815ab14f88115c/index.html) | 713107 | 35 | Social Networks and Surveys | [US Gov](https://catalog.data.gov/dataset/police-department-incident-reports-2018-to-present) |
|
452 |
| 12 | [Heart Failure](https://public.graphext.com/245cec64075f5542/index.html) | 918 | 12 | Health | [Kaggle](https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction) |
|
453 |
| 13 | [Roller Coasters](https://public.graphext.com/1e550e6c24fc1930/index.html) | 1087 | 56 | Sports and Entertainment | [Kaggle](https://www.kaggle.com/datasets/robikscube/rollercoaster-database) |
|
454 |
+
| 14 | [Madrid Airbnbs](https://public.graphext.com/77265ea3a63e650f/index.html) | 20776 | 75 | Travel and Locations | [Inside Airbnb](http://data.insideairbnb.com/spain/comunidad-de-madrid/madrid/2023-09-07/data/listings.parquet.gz) |
|
455 |
| 15 | [Food Names](https://public.graphext.com/5aad4c5d6ef140b3/index.html) | 906 | 4 | Business | [Data World](https://data.world/alexandra/generic-food-database) |
|
456 |
| 16 | [Holiday Package Sales](https://public.graphext.com/fbc34d3f24282e46/index.html) | 4888 | 20 | Travel and Locations | [Kaggle](https://www.kaggle.com/datasets/susant4learning/holiday-package-purchase-prediction) |
|
457 |
| 17 | [Hacker News](https://public.graphext.com/f20501a9d616b5a5/index.html) | 9429 | 20 | Social Networks and Surveys | [Kaggle](https://www.kaggle.com/datasets/hacker-news/hacker-news) |
|
|
|
508 |
Each folder represents one dataset. You will find the following files within:
|
509 |
|
510 |
* all.parquet: the processed data, with each column tagged with our typing system, in [parquet](https://arrow.apache.org/docs/python/parquet.html).
|
511 |
+
* qa.parquet: contains the human-made set of questions, tagged by type and columns used, for the dataset (sample_answer indicates the answers for DataBench lite)
|
512 |
+
* sample.parquet: sample containing 20 rows of the original dataset (DataBench lite)
|
513 |
* info.yml: additional information about the dataset
|
514 |
|
515 |
## ๐๏ธ Column typing system
|
data/001_Forbes/qa.parquet
ADDED
Binary file (5.18 kB). View file
|
|
data/002_Titanic/qa.parquet
ADDED
Binary file (4.92 kB). View file
|
|
data/002_Titanic/sample.parquet
ADDED
Binary file (4 kB). View file
|
|
data/003_Love/qa.parquet
ADDED
Binary file (5.61 kB). View file
|
|
data/003_Love/sample.parquet
ADDED
Binary file (20.9 kB). View file
|
|
data/004_Taxi/qa.parquet
ADDED
Binary file (4.92 kB). View file
|
|
data/004_Taxi/sample.parquet
ADDED
Binary file (7.27 kB). View file
|
|
data/005_NYC/qa.parquet
ADDED
Binary file (5.16 kB). View file
|
|
data/005_NYC/sample.parquet
ADDED
Binary file (5.02 kB). View file
|
|
data/006_London/qa.parquet
ADDED
Binary file (5.01 kB). View file
|
|
data/006_London/sample.parquet
ADDED
Binary file (7.06 kB). View file
|
|
data/007_Fifa/qa.parquet
ADDED
Binary file (5.3 kB). View file
|
|
data/007_Fifa/sample.parquet
ADDED
Binary file (7.07 kB). View file
|
|
data/008_Tornados/qa.parquet
ADDED
Binary file (4.67 kB). View file
|
|
data/008_Tornados/sample.parquet
ADDED
Binary file (3.88 kB). View file
|
|
data/009_Central/qa.parquet
ADDED
Binary file (4.64 kB). View file
|
|
data/009_Central/sample.parquet
ADDED
Binary file (2.75 kB). View file
|
|
data/010_ECommerce/qa.parquet
ADDED
Binary file (4.7 kB). View file
|
|
data/010_ECommerce/sample.parquet
ADDED
Binary file (3.98 kB). View file
|
|
data/011_SF/qa.parquet
ADDED
Binary file (5.98 kB). View file
|
|
data/011_SF/sample.parquet
ADDED
Binary file (6.72 kB). View file
|
|
data/012_Heart/qa.parquet
ADDED
Binary file (4.73 kB). View file
|
|
data/012_Heart/sample.parquet
ADDED
Binary file (4.61 kB). View file
|
|
data/013_Roller/qa.parquet
ADDED
Binary file (5.79 kB). View file
|
|
data/013_Roller/sample.parquet
ADDED
Binary file (7.58 kB). View file
|
|
data/014_Airbnb/qa.parquet
ADDED
Binary file (5.74 kB). View file
|
|
data/014_Airbnb/sample.parquet
ADDED
Binary file (74.7 kB). View file
|
|
data/015_Food/qa.parquet
ADDED
Binary file (4.53 kB). View file
|
|
data/015_Food/sample.parquet
ADDED
Binary file (3.04 kB). View file
|
|
data/016_Holiday/qa.parquet
ADDED
Binary file (4.66 kB). View file
|
|
data/016_Holiday/sample.parquet
ADDED
Binary file (9.42 kB). View file
|
|
data/017_Hacker/qa.parquet
ADDED
Binary file (5.06 kB). View file
|
|
data/017_Hacker/sample.parquet
ADDED
Binary file (6.83 kB). View file
|
|
data/018_Staff/qa.parquet
ADDED
Binary file (4.91 kB). View file
|
|
data/018_Staff/sample.parquet
ADDED
Binary file (6.01 kB). View file
|
|
data/019_Aircraft/qa.parquet
ADDED
Binary file (5.61 kB). View file
|
|
data/019_Aircraft/sample.parquet
ADDED
Binary file (9.84 kB). View file
|
|
data/020_Real/qa.parquet
ADDED
Binary file (5 kB). View file
|
|
data/020_Real/sample.parquet
ADDED
Binary file (28.3 kB). View file
|
|
data/021_Telco/qa.parquet
ADDED
Binary file (5.1 kB). View file
|
|
data/021_Telco/sample.parquet
ADDED
Binary file (10.5 kB). View file
|
|
data/022_Airbnbs/qa.parquet
ADDED
Binary file (5.76 kB). View file
|
|
data/022_Airbnbs/sample.parquet
ADDED
Binary file (6.3 kB). View file
|
|
data/023_Climate/qa.parquet
ADDED
Binary file (5.33 kB). View file
|
|
data/023_Climate/sample.parquet
ADDED
Binary file (7.35 kB). View file
|
|
data/024_Salary/qa.parquet
ADDED
Binary file (6.65 kB). View file
|
|
data/024_Salary/sample.parquet
ADDED
Binary file (8.23 kB). View file
|
|
data/025_Data/qa.parquet
ADDED
Binary file (5.19 kB). View file
|
|
data/025_Data/sample.parquet
ADDED
Binary file (3.43 kB). View file
|
|