File size: 5,489 Bytes
dc070f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Twitter Sentiment Analysis Training Corpus (Dataset)"""
import json
import os
import datasets
from datasets import load_dataset
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@InProceedings{thinknook:dataset,
title = {Twitter Sentiment Analysis Training Corpus (Dataset)},
author={Ibrahim Naji},
year={2012}
}
"""
_DESCRIPTION = """\
The Twitter Sentiment Analysis Dataset contains 1,578,627 classified tweets, each row is marked as 1 for positive sentiment and 0 for negative sentiment.
The dataset is based on data from the following two sources:
University of Michigan Sentiment Analysis competition on Kaggle
Twitter Sentiment Corpus by Niek Sanders
Finally, I randomly selected a subset of them, applied a cleaning process, and divided them between the test and train subsets, keeping a balance between
the number of positive and negative tweets within each of these subsets.
"""
_URL = "https://raw.githubusercontent.com/cblancac/SentimentAnalysisBert/main/data/"
_URLS = {
"train": _URL + "train_150k.txt",
"test": _URL + "test_62k.txt",
}
_HOMEPAGE = "https://raw.githubusercontent.com/cblancac/SentimentAnalysisBert/main"
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
#_URLS = {
# "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
# "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
#}
def _define_columns(example):
text_splited = example["text"].split('\t')
return {"text": text_splited[1].strip(), "feeling": int(text_splited[0])}
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class NewDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.0.0")
def _info(self):
features = datasets.Features(
{
"text": datasets.Value("string"),
"feeling": datasets.Value("int32")
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir_files = dl_manager.download_and_extract(_URLS)
data_dir = '/'.join(data_dir_files["train"].split('/')[:-1])
print("AAAAAAAAAAAAA: ", data_dir)
data = load_dataset("text", data_files=data_dir_files)
data = data.map(_define_columns)
texts_dataset_clean = data["train"].train_test_split(train_size=0.8, seed=42)
# Rename the default "test" split to "validation"
texts_dataset_clean["validation"] = texts_dataset_clean.pop("test")
# Add the "test" set to our `DatasetDict`
texts_dataset_clean["test"] = data["test"]
texts_dataset_clean
for split, dataset in texts_dataset_clean.items():
dataset.to_json(data_dir + "/" + f"twitter-sentiment-analysis-{split}.jsonl")
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "twitter-sentiment-analysis-train.jsonl")}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, "twitter-sentiment-analysis-validation.jsonl")}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "twitter-sentiment-analysis-test.jsonl")}),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
yield key, {
"text": data["text"],
"feeling": data["feeling"],
} |