carblacac commited on
Commit
dc070f6
·
1 Parent(s): 779282e

First version of the your_dataset_name dataset.

Browse files
dummy/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05d41bacb2cc856e87d7fbd5f79c8fe4e30d0e317c973edbf784418d32c4c008
3
+ size 946
dummy/1.0.0/dummy_data.zip.lock ADDED
File without changes
twitter-sentiment-analysis.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """Twitter Sentiment Analysis Training Corpus (Dataset)"""
16
+
17
+ import json
18
+ import os
19
+
20
+ import datasets
21
+ from datasets import load_dataset
22
+
23
+
24
+ logger = datasets.logging.get_logger(__name__)
25
+
26
+
27
+ _CITATION = """\
28
+ @InProceedings{thinknook:dataset,
29
+ title = {Twitter Sentiment Analysis Training Corpus (Dataset)},
30
+ author={Ibrahim Naji},
31
+ year={2012}
32
+ }
33
+ """
34
+
35
+ _DESCRIPTION = """\
36
+ The Twitter Sentiment Analysis Dataset contains 1,578,627 classified tweets, each row is marked as 1 for positive sentiment and 0 for negative sentiment.
37
+ The dataset is based on data from the following two sources:
38
+
39
+ University of Michigan Sentiment Analysis competition on Kaggle
40
+ Twitter Sentiment Corpus by Niek Sanders
41
+
42
+ Finally, I randomly selected a subset of them, applied a cleaning process, and divided them between the test and train subsets, keeping a balance between
43
+ the number of positive and negative tweets within each of these subsets.
44
+ """
45
+
46
+
47
+ _URL = "https://raw.githubusercontent.com/cblancac/SentimentAnalysisBert/main/data/"
48
+ _URLS = {
49
+ "train": _URL + "train_150k.txt",
50
+ "test": _URL + "test_62k.txt",
51
+ }
52
+
53
+
54
+ _HOMEPAGE = "https://raw.githubusercontent.com/cblancac/SentimentAnalysisBert/main"
55
+
56
+
57
+ # TODO: Add link to the official dataset URLs here
58
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
59
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
60
+ #_URLS = {
61
+ # "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
62
+ # "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
63
+ #}
64
+
65
+
66
+
67
+ def _define_columns(example):
68
+ text_splited = example["text"].split('\t')
69
+ return {"text": text_splited[1].strip(), "feeling": int(text_splited[0])}
70
+
71
+
72
+ # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
73
+ class NewDataset(datasets.GeneratorBasedBuilder):
74
+ """TODO: Short description of my dataset."""
75
+
76
+ VERSION = datasets.Version("1.0.0")
77
+
78
+ def _info(self):
79
+ features = datasets.Features(
80
+ {
81
+ "text": datasets.Value("string"),
82
+ "feeling": datasets.Value("int32")
83
+ }
84
+ )
85
+ return datasets.DatasetInfo(
86
+ # This is the description that will appear on the datasets page.
87
+ description=_DESCRIPTION,
88
+ # This defines the different columns of the dataset and their types
89
+ features=features, # Here we define them above because they are different between the two configurations
90
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
91
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
92
+ # supervised_keys=("sentence", "label"),
93
+ # Homepage of the dataset for documentation
94
+ homepage=_HOMEPAGE,
95
+ # Citation for the dataset
96
+ citation=_CITATION,
97
+ )
98
+
99
+ def _split_generators(self, dl_manager):
100
+
101
+
102
+ data_dir_files = dl_manager.download_and_extract(_URLS)
103
+ data_dir = '/'.join(data_dir_files["train"].split('/')[:-1])
104
+ print("AAAAAAAAAAAAA: ", data_dir)
105
+
106
+ data = load_dataset("text", data_files=data_dir_files)
107
+ data = data.map(_define_columns)
108
+
109
+ texts_dataset_clean = data["train"].train_test_split(train_size=0.8, seed=42)
110
+ # Rename the default "test" split to "validation"
111
+ texts_dataset_clean["validation"] = texts_dataset_clean.pop("test")
112
+ # Add the "test" set to our `DatasetDict`
113
+ texts_dataset_clean["test"] = data["test"]
114
+ texts_dataset_clean
115
+
116
+ for split, dataset in texts_dataset_clean.items():
117
+ dataset.to_json(data_dir + "/" + f"twitter-sentiment-analysis-{split}.jsonl")
118
+
119
+ return [
120
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "twitter-sentiment-analysis-train.jsonl")}),
121
+ datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, "twitter-sentiment-analysis-validation.jsonl")}),
122
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "twitter-sentiment-analysis-test.jsonl")}),
123
+ ]
124
+
125
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
126
+ def _generate_examples(self, filepath):
127
+ """This function returns the examples in the raw (text) form."""
128
+ logger.info("generating examples from = %s", filepath)
129
+ with open(filepath, encoding="utf-8") as f:
130
+ for key, row in enumerate(f):
131
+ data = json.loads(row)
132
+ yield key, {
133
+ "text": data["text"],
134
+ "feeling": data["feeling"],
135
+ }