File size: 6,445 Bytes
97b92e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8c7f16
97b92e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright 2022 Daniel van Strien.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NLS Chapbook Images"""

import collections
import json
import os
from typing import Any, Dict, List

import datasets


_CITATION = "TODO"


_DESCRIPTION = "TODO"


_HOMEPAGE = "TODO"


_LICENSE = "Public Domain Mark 1.0"  # TODO confirm licence terms for annotations


_IMAGES_URL = "https://nlsfoundry.s3.amazonaws.com/data/nls-data-chapbooks.zip"

# TODO update url if this is merged upstream
_ANNOTATIONS_URL = "https://gitlab.com/davanstrien/nls-chapbooks-illustrations/-/raw/master/data/annotations/step5-manual-verification-image-0-47329_train_coco.json"


class NationalLibraryScotlandChapBooksConfig(datasets.BuilderConfig):
    """BuilderConfig for National Library of Scotland Chapbooks dataset."""

    def __init__(self, name, **kwargs):
        super(NationalLibraryScotlandChapBooksConfig, self).__init__(
            version=datasets.Version("1.0.0"),
            name=name,
            description="TODO",
            **kwargs,
        )


class NationalLibraryScotlandChapBooks(datasets.GeneratorBasedBuilder):
    """National Library of Scotland Chapbooks dataset."""

    BUILDER_CONFIGS = [
        NationalLibraryScotlandChapBooksConfig("illustration_detection"),
        NationalLibraryScotlandChapBooksConfig("image_classification"),
    ]

    def _info(self):
        if self.config.name == "illustration_detection":
            features = datasets.Features(
                {
                    "image_id": datasets.Value("int64"),
                    "image": datasets.Image(),
                    "width": datasets.Value("int32"),
                    "height": datasets.Value("int32"),
                    "url": datasets.Value("string"),
                }
            )
            object_dict = {
                "category_id": datasets.ClassLabel(
                    names=["early_printed_illustration"]
                ),
                "image_id": datasets.Value("string"),
                "id": datasets.Value("int64"),
                "area": datasets.Value("int64"),
                "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
                "segmentation": [[datasets.Value("float32")]],
                "iscrowd": datasets.Value("bool"),
            }
            features["objects"] = [object_dict]
        if self.config.name == "image_classification":
            features = datasets.Features(
                {
                    "image": datasets.Image(),
                    "label": datasets.ClassLabel(
                        num_classes=2, names=["not-illustrated", "illustrated"]
                    ),
                }
            )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        images = dl_manager.download_and_extract(_IMAGES_URL)
        annotations = dl_manager.download(_ANNOTATIONS_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "annotations_file": os.path.join(annotations),
                    "image_dir": os.path.join(images, "nls-data-chapbooks"),
                },
            )
        ]

    def _get_image_id_to_annotations_mapping(
        self, annotations: List[Dict]
    ) -> Dict[int, List[Dict[Any, Any]]]:
        """
        A helper function to build a mapping from image ids to annotations.
        """
        image_id_to_annotations = collections.defaultdict(list)
        for annotation in annotations:
            image_id_to_annotations[annotation["image_id"]].append(annotation)
        return image_id_to_annotations

    def _generate_examples(self, annotations_file, image_dir):
        def _image_info_to_example(image_info, image_dir):
            image = image_info["file_name"]
            return {
                "image_id": image_info["id"],
                "image": os.path.join(image_dir, image),
                "width": image_info["width"],
                "height": image_info["height"],
                "url": image_info.get("url"),
            }

        with open(annotations_file, encoding="utf8") as f:
            annotation_data = json.load(f)
            images = annotation_data["images"]
            annotations = annotation_data["annotations"]

            image_id_to_annotations = self._get_image_id_to_annotations_mapping(
                annotations
            )
            if self.config.name == "illustration_detection":
                for idx, image_info in enumerate(images):
                    example = _image_info_to_example(
                        image_info,
                        image_dir,
                    )
                    annotations = image_id_to_annotations[image_info["id"]]
                    objects = []
                    for annot in annotations:
                        category_id = annot["category_id"]
                        if category_id == 1:
                            annot["category_id"] = 0
                        objects.append(annot)
                    example["objects"] = objects
                    yield idx, example
            if self.config.name == "image_classification":
                for idx, image_info in enumerate(images):
                    example = _image_info_to_example(image_info, image_dir)
                    annotations = image_id_to_annotations[image_info["id"]]
                    if len(annotations) < 1:
                        label = 0
                    else:
                        label = 1
                    example = {
                        "image": os.path.join(image_dir, image_info["file_name"]),
                        "label": label,
                    }
                    yield idx, example