Datasets:
File size: 6,445 Bytes
97b92e8 f8c7f16 97b92e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# Copyright 2022 Daniel van Strien.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NLS Chapbook Images"""
import collections
import json
import os
from typing import Any, Dict, List
import datasets
_CITATION = "TODO"
_DESCRIPTION = "TODO"
_HOMEPAGE = "TODO"
_LICENSE = "Public Domain Mark 1.0" # TODO confirm licence terms for annotations
_IMAGES_URL = "https://nlsfoundry.s3.amazonaws.com/data/nls-data-chapbooks.zip"
# TODO update url if this is merged upstream
_ANNOTATIONS_URL = "https://gitlab.com/davanstrien/nls-chapbooks-illustrations/-/raw/master/data/annotations/step5-manual-verification-image-0-47329_train_coco.json"
class NationalLibraryScotlandChapBooksConfig(datasets.BuilderConfig):
"""BuilderConfig for National Library of Scotland Chapbooks dataset."""
def __init__(self, name, **kwargs):
super(NationalLibraryScotlandChapBooksConfig, self).__init__(
version=datasets.Version("1.0.0"),
name=name,
description="TODO",
**kwargs,
)
class NationalLibraryScotlandChapBooks(datasets.GeneratorBasedBuilder):
"""National Library of Scotland Chapbooks dataset."""
BUILDER_CONFIGS = [
NationalLibraryScotlandChapBooksConfig("illustration_detection"),
NationalLibraryScotlandChapBooksConfig("image_classification"),
]
def _info(self):
if self.config.name == "illustration_detection":
features = datasets.Features(
{
"image_id": datasets.Value("int64"),
"image": datasets.Image(),
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
"url": datasets.Value("string"),
}
)
object_dict = {
"category_id": datasets.ClassLabel(
names=["early_printed_illustration"]
),
"image_id": datasets.Value("string"),
"id": datasets.Value("int64"),
"area": datasets.Value("int64"),
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
"segmentation": [[datasets.Value("float32")]],
"iscrowd": datasets.Value("bool"),
}
features["objects"] = [object_dict]
if self.config.name == "image_classification":
features = datasets.Features(
{
"image": datasets.Image(),
"label": datasets.ClassLabel(
num_classes=2, names=["not-illustrated", "illustrated"]
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
images = dl_manager.download_and_extract(_IMAGES_URL)
annotations = dl_manager.download(_ANNOTATIONS_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"annotations_file": os.path.join(annotations),
"image_dir": os.path.join(images, "nls-data-chapbooks"),
},
)
]
def _get_image_id_to_annotations_mapping(
self, annotations: List[Dict]
) -> Dict[int, List[Dict[Any, Any]]]:
"""
A helper function to build a mapping from image ids to annotations.
"""
image_id_to_annotations = collections.defaultdict(list)
for annotation in annotations:
image_id_to_annotations[annotation["image_id"]].append(annotation)
return image_id_to_annotations
def _generate_examples(self, annotations_file, image_dir):
def _image_info_to_example(image_info, image_dir):
image = image_info["file_name"]
return {
"image_id": image_info["id"],
"image": os.path.join(image_dir, image),
"width": image_info["width"],
"height": image_info["height"],
"url": image_info.get("url"),
}
with open(annotations_file, encoding="utf8") as f:
annotation_data = json.load(f)
images = annotation_data["images"]
annotations = annotation_data["annotations"]
image_id_to_annotations = self._get_image_id_to_annotations_mapping(
annotations
)
if self.config.name == "illustration_detection":
for idx, image_info in enumerate(images):
example = _image_info_to_example(
image_info,
image_dir,
)
annotations = image_id_to_annotations[image_info["id"]]
objects = []
for annot in annotations:
category_id = annot["category_id"]
if category_id == 1:
annot["category_id"] = 0
objects.append(annot)
example["objects"] = objects
yield idx, example
if self.config.name == "image_classification":
for idx, image_info in enumerate(images):
example = _image_info_to_example(image_info, image_dir)
annotations = image_id_to_annotations[image_info["id"]]
if len(annotations) < 1:
label = 0
else:
label = 1
example = {
"image": os.path.join(image_dir, image_info["file_name"]),
"label": label,
}
yield idx, example
|