davanstrien HF staff commited on
Commit
97b92e8
·
1 Parent(s): e55356f

Create new file

Browse files
Files changed (1) hide show
  1. nls_chapbook_illustrations.py +175 -0
nls_chapbook_illustrations.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 Daniel van Strien.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """NLS Chapbook Images"""
15
+
16
+ import collections
17
+ import json
18
+ import os
19
+ from typing import Any, Dict, List
20
+
21
+ import datasets
22
+
23
+
24
+ _CITATION = "TODO"
25
+
26
+
27
+ _DESCRIPTION = "TODO"
28
+
29
+
30
+ _HOMEPAGE = "TODO"
31
+
32
+
33
+ _LICENSE = "Public Domain Mark 1.0" # TODO confirm licence terms for annotations
34
+
35
+
36
+ _IMAGES_URL = "https://nlsfoundry.s3.amazonaws.com/data/nls-data-chapbooks.zip"
37
+
38
+ # TODO update url if this is merged upstream
39
+ _ANNOTATIONS_URL = "https://gitlab.com/davanstrien/nls-chapbooks-illustrations/-/raw/master/data/annotations/step5-manual-verification-image-0-47329_train_coco.json"
40
+
41
+
42
+ class NationalLibraryScotlandChapBooksConfig(datasets.BuilderConfig):
43
+ """BuilderConfig for National Library of Scotland Chapbooks dataset."""
44
+
45
+ def __init__(self, name, **kwargs):
46
+ super(NationalLibraryScotlandChapBooksConfig, self).__init__(
47
+ version=datasets.Version("1.0.0"),
48
+ name=name,
49
+ description="TODO",
50
+ **kwargs,
51
+ )
52
+
53
+
54
+ class NationalLibraryScotlandChapBooks(datasets.GeneratorBasedBuilder):
55
+ """National Library of Scotland Chapbooks dataset."""
56
+
57
+ BUILDER_CONFIGS = [
58
+ NationalLibraryScotlandChapBooksConfig("illustration_detection"),
59
+ NationalLibraryScotlandChapBooksConfig("image_classification"),
60
+ ]
61
+
62
+ def _info(self):
63
+ if self.config.name == "illustration_detection":
64
+ features = datasets.Features(
65
+ {
66
+ "image_id": datasets.Value("int64"),
67
+ "image": datasets.Image(),
68
+ "width": datasets.Value("int32"),
69
+ "height": datasets.Value("int32"),
70
+ "url": datasets.Value("string"),
71
+ "date_captured": datasets.Value("string"),
72
+ }
73
+ )
74
+ object_dict = {
75
+ "category_id": datasets.ClassLabel(
76
+ names=["early_printed_illustration"]
77
+ ),
78
+ "image_id": datasets.Value("string"),
79
+ "id": datasets.Value("int64"),
80
+ "area": datasets.Value("int64"),
81
+ "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
82
+ "segmentation": [[datasets.Value("float32")]],
83
+ "iscrowd": datasets.Value("bool"),
84
+ }
85
+ features["objects"] = [object_dict]
86
+ if self.config.name == "image_classification":
87
+ features = datasets.Features(
88
+ {
89
+ "image": datasets.Image(),
90
+ "label": datasets.ClassLabel(
91
+ num_classes=2, names=["not-illustrated", "illustrated"]
92
+ ),
93
+ }
94
+ )
95
+ return datasets.DatasetInfo(
96
+ description=_DESCRIPTION,
97
+ features=features,
98
+ homepage=_HOMEPAGE,
99
+ license=_LICENSE,
100
+ citation=_CITATION,
101
+ )
102
+
103
+ def _split_generators(self, dl_manager):
104
+ images = dl_manager.download_and_extract(_IMAGES_URL)
105
+ annotations = dl_manager.download(_ANNOTATIONS_URL)
106
+ return [
107
+ datasets.SplitGenerator(
108
+ name=datasets.Split.TRAIN,
109
+ gen_kwargs={
110
+ "annotations_file": os.path.join(annotations),
111
+ "image_dir": os.path.join(images, "nls-data-chapbooks"),
112
+ },
113
+ )
114
+ ]
115
+
116
+ def _get_image_id_to_annotations_mapping(
117
+ self, annotations: List[Dict]
118
+ ) -> Dict[int, List[Dict[Any, Any]]]:
119
+ """
120
+ A helper function to build a mapping from image ids to annotations.
121
+ """
122
+ image_id_to_annotations = collections.defaultdict(list)
123
+ for annotation in annotations:
124
+ image_id_to_annotations[annotation["image_id"]].append(annotation)
125
+ return image_id_to_annotations
126
+
127
+ def _generate_examples(self, annotations_file, image_dir):
128
+ def _image_info_to_example(image_info, image_dir):
129
+ image = image_info["file_name"]
130
+ return {
131
+ "image_id": image_info["id"],
132
+ "image": os.path.join(image_dir, image),
133
+ "width": image_info["width"],
134
+ "height": image_info["height"],
135
+ "url": image_info.get("url"),
136
+ "date_captured": image_info["date_captured"],
137
+ }
138
+
139
+ with open(annotations_file, encoding="utf8") as f:
140
+ annotation_data = json.load(f)
141
+ images = annotation_data["images"]
142
+ annotations = annotation_data["annotations"]
143
+
144
+ image_id_to_annotations = self._get_image_id_to_annotations_mapping(
145
+ annotations
146
+ )
147
+ if self.config.name == "illustration_detection":
148
+ for idx, image_info in enumerate(images):
149
+ example = _image_info_to_example(
150
+ image_info,
151
+ image_dir,
152
+ )
153
+ annotations = image_id_to_annotations[image_info["id"]]
154
+ objects = []
155
+ for annot in annotations:
156
+ category_id = annot["category_id"]
157
+ if category_id == 1:
158
+ annot["category_id"] = 0
159
+ object_ = annot
160
+ objects.append(object_)
161
+ example["objects"] = objects
162
+ yield idx, example
163
+ if self.config.name == "image_classification":
164
+ for idx, image_info in enumerate(images):
165
+ example = _image_info_to_example(image_info, image_dir)
166
+ annotations = image_id_to_annotations[image_info["id"]]
167
+ if len(annotations) < 1:
168
+ label = 0
169
+ else:
170
+ label = 1
171
+ example = {
172
+ "image": os.path.join(image_dir, image_info["file_name"]),
173
+ "label": label,
174
+ }
175
+ yield idx, example