Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
medal / medal.py
gabrielaltay's picture
upload hubscripts/medal_hub.py to hub from bigbio repo
6918fe9
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The Repository for Medical Dataset for Abbreviation Disambiguation for Natural Language Understanding (MeDAL) is
a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding
pre-training in the medical domain. This script loads the MeDAL dataset in the bigbio KB schema and/or source schema.
"""
import pandas as pd
from typing import Dict, List, Tuple
import datasets
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
logger = datasets.logging.get_logger(__name__)
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{,
title = {MeDAL\: Medical Abbreviation Disambiguation Dataset for Natural Language Understanding Pretraining},
author = {Wen, Zhi and Lu, Xing Han and Reddy, Siva},
booktitle = {Proceedings of the 3rd Clinical Natural Language Processing Workshop},
month = {Nov},
year = {2020},
address = {Online},
publisher = {Association for Computational Linguistics},
url = {https://www.aclweb.org/anthology/2020.clinicalnlp-1.15},
pages = {130--135},
}
"""
_DATASETNAME = "medal"
_DISPLAYNAME = "MeDAL"
_DESCRIPTION = """\
The Repository for Medical Dataset for Abbreviation Disambiguation for Natural Language Understanding (MeDAL) is
a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding
pre-training in the medical domain.
"""
_HOMEPAGE = "https://github.com/BruceWen120/medal"
_LICENSE = 'National Library of Medicine Terms and Conditions'
_URL = "https://zenodo.org/record/4482922/files/"
_URLS = {
"train": _URL + "train.csv",
"test": _URL + "test.csv",
"valid": _URL + "valid.csv",
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_DISAMBIGUATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class MedalDataset(datasets.GeneratorBasedBuilder):
"""The Repository for Medical Dataset for Abbreviation Disambiguation for Natural Language Understanding (MeDAL) is
a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding
pre-training in the medical domain."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="medal_source",
version=SOURCE_VERSION,
description="MeDAL source schema",
schema="source",
subset_id="medal",
),
BigBioConfig(
name="medal_bigbio_kb",
version=BIGBIO_VERSION,
description="MeDAL BigBio schema",
schema="bigbio_kb",
subset_id="medal",
),
]
DEFAULT_CONFIG_NAME = "medal_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"abstract_id": datasets.Value("int32"),
"text": datasets.Value("string"),
"location": datasets.Sequence(datasets.Value("int32")),
"label": datasets.Sequence(datasets.Value("string")),
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS
data_dir = dl_manager.download_and_extract(urls)
urls_to_dl = _URLS
try:
dl_dir = dl_manager.download_and_extract(urls_to_dl)
except Exception:
logger.warning(
"This dataset is downloaded through Zenodo which is flaky. If this download failed try a few times before reporting an issue"
)
raise
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": dl_dir["train"], "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": dl_dir["test"], "split": "test"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": dl_dir["valid"], "split": "val"},
),
]
def _generate_offsets(self, text, location):
"""Generate offsets from text and word location.
Parameters
----------
text : text
Abstract text
location : int
location of abbreviation in text, indexed by number of words in abstract
Returns
-------
dict
"word": str,
"offsets": tuple (int, int)
"""
words = text.split(" ")
word = words[location]
offset_start = sum(len(word) for word in words[0:location]) + location
offset_end = offset_start + len(word)
# return word and offsets
return {"word": word, "offsets": (offset_start, offset_end)}
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
with open(filepath, encoding="utf-8") as file:
data = pd.read_csv(
file,
sep=",",
dtype={"ABSTRACT_ID": str, "TEXT": str, "LOCATION": int, "LABEL": str},
)
if self.config.schema == "source":
for id_, row in enumerate(data.itertuples()):
yield id_, {
"abstract_id": int(row.ABSTRACT_ID),
"text": row.TEXT,
"location": [row.LOCATION],
"label": [row.LABEL],
}
elif self.config.schema == "bigbio_kb":
uid = 0 # global unique id
for id_, row in enumerate(data.itertuples()):
word_offsets = self._generate_offsets(row.TEXT, row.LOCATION)
example = {
"id": str(uid),
"document_id": row.ABSTRACT_ID,
"passages": [],
"entities": [],
"relations": [],
"events": [],
"coreferences": [],
}
uid += 1
example["passages"].append(
{
"id": str(uid),
"type": "PubMed abstract",
"text": [row.TEXT],
"offsets": [(0, len(row.TEXT))],
}
)
uid += 1
example["entities"].append(
{
"id": str(uid),
"type": "abbreviation",
"text": [word_offsets["word"]],
"offsets": [word_offsets["offsets"]],
"normalized": [
{
"db_name": "medal",
"db_id": row.LABEL,
}
],
}
)
uid += 1
yield id_, example