gabrielaltay
commited on
Commit
·
6918fe9
1
Parent(s):
d1c9c6b
upload hubscripts/medal_hub.py to hub from bigbio repo
Browse files
medal.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
The Repository for Medical Dataset for Abbreviation Disambiguation for Natural Language Understanding (MeDAL) is
|
18 |
+
a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding
|
19 |
+
pre-training in the medical domain. This script loads the MeDAL dataset in the bigbio KB schema and/or source schema.
|
20 |
+
"""
|
21 |
+
|
22 |
+
import pandas as pd
|
23 |
+
from typing import Dict, List, Tuple
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
from .bigbiohub import kb_features
|
28 |
+
from .bigbiohub import BigBioConfig
|
29 |
+
from .bigbiohub import Tasks
|
30 |
+
|
31 |
+
logger = datasets.logging.get_logger(__name__)
|
32 |
+
|
33 |
+
_LANGUAGES = ['English']
|
34 |
+
_PUBMED = True
|
35 |
+
_LOCAL = False
|
36 |
+
_CITATION = """\
|
37 |
+
@inproceedings{,
|
38 |
+
title = {MeDAL\: Medical Abbreviation Disambiguation Dataset for Natural Language Understanding Pretraining},
|
39 |
+
author = {Wen, Zhi and Lu, Xing Han and Reddy, Siva},
|
40 |
+
booktitle = {Proceedings of the 3rd Clinical Natural Language Processing Workshop},
|
41 |
+
month = {Nov},
|
42 |
+
year = {2020},
|
43 |
+
address = {Online},
|
44 |
+
publisher = {Association for Computational Linguistics},
|
45 |
+
url = {https://www.aclweb.org/anthology/2020.clinicalnlp-1.15},
|
46 |
+
pages = {130--135},
|
47 |
+
}
|
48 |
+
"""
|
49 |
+
|
50 |
+
_DATASETNAME = "medal"
|
51 |
+
_DISPLAYNAME = "MeDAL"
|
52 |
+
|
53 |
+
_DESCRIPTION = """\
|
54 |
+
The Repository for Medical Dataset for Abbreviation Disambiguation for Natural Language Understanding (MeDAL) is
|
55 |
+
a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding
|
56 |
+
pre-training in the medical domain.
|
57 |
+
"""
|
58 |
+
|
59 |
+
_HOMEPAGE = "https://github.com/BruceWen120/medal"
|
60 |
+
|
61 |
+
_LICENSE = 'National Library of Medicine Terms and Conditions'
|
62 |
+
|
63 |
+
_URL = "https://zenodo.org/record/4482922/files/"
|
64 |
+
_URLS = {
|
65 |
+
"train": _URL + "train.csv",
|
66 |
+
"test": _URL + "test.csv",
|
67 |
+
"valid": _URL + "valid.csv",
|
68 |
+
}
|
69 |
+
|
70 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_DISAMBIGUATION]
|
71 |
+
|
72 |
+
_SOURCE_VERSION = "1.0.0"
|
73 |
+
|
74 |
+
_BIGBIO_VERSION = "1.0.0"
|
75 |
+
|
76 |
+
|
77 |
+
class MedalDataset(datasets.GeneratorBasedBuilder):
|
78 |
+
"""The Repository for Medical Dataset for Abbreviation Disambiguation for Natural Language Understanding (MeDAL) is
|
79 |
+
a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding
|
80 |
+
pre-training in the medical domain."""
|
81 |
+
|
82 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
83 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
84 |
+
|
85 |
+
BUILDER_CONFIGS = [
|
86 |
+
BigBioConfig(
|
87 |
+
name="medal_source",
|
88 |
+
version=SOURCE_VERSION,
|
89 |
+
description="MeDAL source schema",
|
90 |
+
schema="source",
|
91 |
+
subset_id="medal",
|
92 |
+
),
|
93 |
+
BigBioConfig(
|
94 |
+
name="medal_bigbio_kb",
|
95 |
+
version=BIGBIO_VERSION,
|
96 |
+
description="MeDAL BigBio schema",
|
97 |
+
schema="bigbio_kb",
|
98 |
+
subset_id="medal",
|
99 |
+
),
|
100 |
+
]
|
101 |
+
|
102 |
+
DEFAULT_CONFIG_NAME = "medal_source"
|
103 |
+
|
104 |
+
def _info(self) -> datasets.DatasetInfo:
|
105 |
+
|
106 |
+
if self.config.schema == "source":
|
107 |
+
features = datasets.Features(
|
108 |
+
{
|
109 |
+
"abstract_id": datasets.Value("int32"),
|
110 |
+
"text": datasets.Value("string"),
|
111 |
+
"location": datasets.Sequence(datasets.Value("int32")),
|
112 |
+
"label": datasets.Sequence(datasets.Value("string")),
|
113 |
+
}
|
114 |
+
)
|
115 |
+
|
116 |
+
elif self.config.schema == "bigbio_kb":
|
117 |
+
features = kb_features
|
118 |
+
|
119 |
+
return datasets.DatasetInfo(
|
120 |
+
description=_DESCRIPTION,
|
121 |
+
features=features,
|
122 |
+
homepage=_HOMEPAGE,
|
123 |
+
license=str(_LICENSE),
|
124 |
+
citation=_CITATION,
|
125 |
+
)
|
126 |
+
|
127 |
+
def _split_generators(
|
128 |
+
self, dl_manager: datasets.DownloadManager
|
129 |
+
) -> List[datasets.SplitGenerator]:
|
130 |
+
"""Returns SplitGenerators."""
|
131 |
+
|
132 |
+
urls = _URLS
|
133 |
+
data_dir = dl_manager.download_and_extract(urls)
|
134 |
+
|
135 |
+
urls_to_dl = _URLS
|
136 |
+
try:
|
137 |
+
dl_dir = dl_manager.download_and_extract(urls_to_dl)
|
138 |
+
except Exception:
|
139 |
+
logger.warning(
|
140 |
+
"This dataset is downloaded through Zenodo which is flaky. If this download failed try a few times before reporting an issue"
|
141 |
+
)
|
142 |
+
raise
|
143 |
+
|
144 |
+
return [
|
145 |
+
datasets.SplitGenerator(
|
146 |
+
name=datasets.Split.TRAIN,
|
147 |
+
# These kwargs will be passed to _generate_examples
|
148 |
+
gen_kwargs={"filepath": dl_dir["train"], "split": "train"},
|
149 |
+
),
|
150 |
+
datasets.SplitGenerator(
|
151 |
+
name=datasets.Split.TEST,
|
152 |
+
# These kwargs will be passed to _generate_examples
|
153 |
+
gen_kwargs={"filepath": dl_dir["test"], "split": "test"},
|
154 |
+
),
|
155 |
+
datasets.SplitGenerator(
|
156 |
+
name=datasets.Split.VALIDATION,
|
157 |
+
# These kwargs will be passed to _generate_examples
|
158 |
+
gen_kwargs={"filepath": dl_dir["valid"], "split": "val"},
|
159 |
+
),
|
160 |
+
]
|
161 |
+
|
162 |
+
def _generate_offsets(self, text, location):
|
163 |
+
"""Generate offsets from text and word location.
|
164 |
+
|
165 |
+
Parameters
|
166 |
+
----------
|
167 |
+
text : text
|
168 |
+
Abstract text
|
169 |
+
location : int
|
170 |
+
location of abbreviation in text, indexed by number of words in abstract
|
171 |
+
|
172 |
+
Returns
|
173 |
+
-------
|
174 |
+
dict
|
175 |
+
"word": str,
|
176 |
+
"offsets": tuple (int, int)
|
177 |
+
"""
|
178 |
+
words = text.split(" ")
|
179 |
+
word = words[location]
|
180 |
+
offset_start = sum(len(word) for word in words[0:location]) + location
|
181 |
+
offset_end = offset_start + len(word)
|
182 |
+
|
183 |
+
# return word and offsets
|
184 |
+
return {"word": word, "offsets": (offset_start, offset_end)}
|
185 |
+
|
186 |
+
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
|
187 |
+
"""Yields examples as (key, example) tuples."""
|
188 |
+
|
189 |
+
with open(filepath, encoding="utf-8") as file:
|
190 |
+
data = pd.read_csv(
|
191 |
+
file,
|
192 |
+
sep=",",
|
193 |
+
dtype={"ABSTRACT_ID": str, "TEXT": str, "LOCATION": int, "LABEL": str},
|
194 |
+
)
|
195 |
+
|
196 |
+
if self.config.schema == "source":
|
197 |
+
for id_, row in enumerate(data.itertuples()):
|
198 |
+
yield id_, {
|
199 |
+
"abstract_id": int(row.ABSTRACT_ID),
|
200 |
+
"text": row.TEXT,
|
201 |
+
"location": [row.LOCATION],
|
202 |
+
"label": [row.LABEL],
|
203 |
+
}
|
204 |
+
elif self.config.schema == "bigbio_kb":
|
205 |
+
uid = 0 # global unique id
|
206 |
+
for id_, row in enumerate(data.itertuples()):
|
207 |
+
word_offsets = self._generate_offsets(row.TEXT, row.LOCATION)
|
208 |
+
example = {
|
209 |
+
"id": str(uid),
|
210 |
+
"document_id": row.ABSTRACT_ID,
|
211 |
+
"passages": [],
|
212 |
+
"entities": [],
|
213 |
+
"relations": [],
|
214 |
+
"events": [],
|
215 |
+
"coreferences": [],
|
216 |
+
}
|
217 |
+
uid += 1
|
218 |
+
|
219 |
+
example["passages"].append(
|
220 |
+
{
|
221 |
+
"id": str(uid),
|
222 |
+
"type": "PubMed abstract",
|
223 |
+
"text": [row.TEXT],
|
224 |
+
"offsets": [(0, len(row.TEXT))],
|
225 |
+
}
|
226 |
+
)
|
227 |
+
|
228 |
+
uid += 1
|
229 |
+
|
230 |
+
example["entities"].append(
|
231 |
+
{
|
232 |
+
"id": str(uid),
|
233 |
+
"type": "abbreviation",
|
234 |
+
"text": [word_offsets["word"]],
|
235 |
+
"offsets": [word_offsets["offsets"]],
|
236 |
+
"normalized": [
|
237 |
+
{
|
238 |
+
"db_name": "medal",
|
239 |
+
"db_id": row.LABEL,
|
240 |
+
}
|
241 |
+
],
|
242 |
+
}
|
243 |
+
)
|
244 |
+
uid += 1
|
245 |
+
yield id_, example
|