|
--- |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
dataset_info: |
|
features: |
|
- name: label |
|
dtype: int64 |
|
- name: title |
|
dtype: string |
|
- name: content |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 163359702 |
|
num_examples: 360000 |
|
- name: test |
|
num_bytes: 18182813 |
|
num_examples: 40000 |
|
download_size: 0 |
|
dataset_size: 181542515 |
|
--- |
|
|
|
# Amazon Polarity 10pct |
|
|
|
This is a direct subset of the original [Amazon Polarity](https://huggingface.co/datasets/amazon_polarity) dataset, downsampled 10pct with a random shuffle |
|
|
|
### Dataset Summary |
|
|
|
For quicker testing on Amazon Polarity. See https://huggingface.co/datasets/amazon_polarity for details and attributions |
|
|
|
|
|
### Source Data |
|
```python |
|
from datasets import ClassLabel, Dataset, DatasetDict, load_dataset |
|
|
|
ds_full = load_dataset("amazon_polarity", streaming=True) |
|
ds_train_10_pct = Dataset.from_list(list(ds_full["train"].shuffle(seed=42).take(360_000))) |
|
ds_test_10_pct = Dataset.from_list(list(ds_full["test"].shuffle(seed=42).take(40_000))) |
|
|
|
ds_10_pct = DatasetDict({"train": ds_train_10_pct, "test": ds_test_10_pct}) |
|
# Need to recreate the class labels |
|
class_label = ClassLabel(num_classes=2, names=["negative", "positive"]) |
|
ds_10_pct = ds_10_pct.map(lambda row: {"title": row["title"], "content": row["content"], "label": "negative" if not row["label"] else "positive"}) |
|
ds_10_pct = ds_10_pct.cast_column("label", class_label) |
|
``` |
|
|
|
|