visible-watermark-pita / visible-watermark-pita.py
bastienp's picture
fix: change json format
99ad669
raw
history blame
3.68 kB
import os
from glob import glob
import datasets
import json
from PIL import Image
_DESCRIPTION = """\
Watermark Dataset
"""
_VERSION = datasets.Version("1.0.0")
class WatermarkPitaConfig(datasets.BuilderConfig):
"""Builder Config for Food-101"""
def __init__(self, urls, categories, **kwargs):
"""BuilderConfig for Food-101.
Args:
repository: `string`, the name of the repository.
urls: `dict<string, string>`, the urls to the data.
categories: `list<string>`, the categories of the data.
**kwargs: keyword arguments forwarded to super.
"""
_VERSION = datasets.Version("1.0.0")
super(WatermarkPitaConfig, self).__init__(version=_VERSION, **kwargs)
self.urls = urls
self.categories = categories
class WatermarkPita(datasets.GeneratorBasedBuilder):
"""Watermark Dataset"""
BUILDER_CONFIGS = [
WatermarkPitaConfig(
name="text",
urls={"train": "data/text/train.zip", "valid": "data/text/valid.zip"},
categories=["text"],
),
WatermarkPitaConfig(
name="logo",
urls={"train": "data/logo/train.zip", "valid": "data/logo/valid.zip"},
categories=["logo"],
),
WatermarkPitaConfig(
name="mixed",
urls={"train": "data/mixed/train.zip", "valid": "data/mixed/valid.zip"},
categories=["logo", "text"],
),
]
DEFAULT_CONFIG_NAME = "text"
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features(
{
"image": datasets.Image(),
"objects": datasets.Sequence(
{
"x": datasets.Value("float32"),
"y": datasets.Value("float32"),
"w": datasets.Value("float32"),
"h": datasets.Value("float32"),
"label": datasets.ClassLabel(names=self.config.categories),
}
),
}
),
description=_DESCRIPTION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(self.config.urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"split": "train", "data_dir": data_dir["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"split": "valid", "data_dir": data_dir["valid"]},
),
]
def _generate_examples(self, split, data_dir):
image_dir = os.path.join(data_dir, "images")
label_dir = os.path.join(data_dir, "labels")
image_paths = sorted(glob(image_dir + "/*.jpg"))
label_paths = sorted(glob(label_dir + "/*.json"))
for idx, (image_path, label_path) in enumerate(zip(image_paths, label_paths)):
with open(label_path, "r") as f:
bboxes = json.load(f)
# print(bboxes)
# objects = []
# for bbox in bboxes:
# objects.append(
# {
# "x": bbox["x"],
# "y": bbox["y"],
# "w": bbox["width"],
# "h": bbox["height"],
# "label": bbox["label"],
# }
# )
# objects.append(bbox)
yield idx, {"image": image_path, "objects": bboxes}