Datasets:
File size: 3,682 Bytes
c67f462 032c4ac c67f462 19794d7 c67f462 41f1c8a c67f462 248ace0 41f1c8a f3ede03 41f1c8a f3ede03 41f1c8a 19794d7 41f1c8a bde8779 41f1c8a 19794d7 c67f462 41f1c8a aa7bc8a 41f1c8a 248ace0 41f1c8a f3ede03 3141c40 c67f462 19794d7 d2a0b4d f3ede03 19794d7 c67f462 41f1c8a 032c4ac a32d392 8cddfb1 032c4ac d2a0b4d 032c4ac 99ad669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import os
from glob import glob
import datasets
import json
from PIL import Image
_DESCRIPTION = """\
Watermark Dataset
"""
_VERSION = datasets.Version("1.0.0")
class WatermarkPitaConfig(datasets.BuilderConfig):
"""Builder Config for Food-101"""
def __init__(self, urls, categories, **kwargs):
"""BuilderConfig for Food-101.
Args:
repository: `string`, the name of the repository.
urls: `dict<string, string>`, the urls to the data.
categories: `list<string>`, the categories of the data.
**kwargs: keyword arguments forwarded to super.
"""
_VERSION = datasets.Version("1.0.0")
super(WatermarkPitaConfig, self).__init__(version=_VERSION, **kwargs)
self.urls = urls
self.categories = categories
class WatermarkPita(datasets.GeneratorBasedBuilder):
"""Watermark Dataset"""
BUILDER_CONFIGS = [
WatermarkPitaConfig(
name="text",
urls={"train": "data/text/train.zip", "valid": "data/text/valid.zip"},
categories=["text"],
),
WatermarkPitaConfig(
name="logo",
urls={"train": "data/logo/train.zip", "valid": "data/logo/valid.zip"},
categories=["logo"],
),
WatermarkPitaConfig(
name="mixed",
urls={"train": "data/mixed/train.zip", "valid": "data/mixed/valid.zip"},
categories=["logo", "text"],
),
]
DEFAULT_CONFIG_NAME = "text"
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features(
{
"image": datasets.Image(),
"objects": datasets.Sequence(
{
"x": datasets.Value("float32"),
"y": datasets.Value("float32"),
"w": datasets.Value("float32"),
"h": datasets.Value("float32"),
"label": datasets.ClassLabel(names=self.config.categories),
}
),
}
),
description=_DESCRIPTION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(self.config.urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"split": "train", "data_dir": data_dir["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"split": "valid", "data_dir": data_dir["valid"]},
),
]
def _generate_examples(self, split, data_dir):
image_dir = os.path.join(data_dir, "images")
label_dir = os.path.join(data_dir, "labels")
image_paths = sorted(glob(image_dir + "/*.jpg"))
label_paths = sorted(glob(label_dir + "/*.json"))
for idx, (image_path, label_path) in enumerate(zip(image_paths, label_paths)):
with open(label_path, "r") as f:
bboxes = json.load(f)
# print(bboxes)
# objects = []
# for bbox in bboxes:
# objects.append(
# {
# "x": bbox["x"],
# "y": bbox["y"],
# "w": bbox["width"],
# "h": bbox["height"],
# "label": bbox["label"],
# }
# )
# objects.append(bbox)
yield idx, {"image": image_path, "objects": bboxes}
|