Datasets:
feat: read json format intead of txt
Browse files- data/train.zip +2 -2
- visible-watermark-pita.py +54 -26
data/train.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61378ec4eed5bf3c71a91dcfb464a34ab6b74028f80e1e5a6e042f6e91dd0295
|
3 |
+
size 1586223
|
visible-watermark-pita.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
import os
|
2 |
from glob import glob
|
3 |
-
from PIL import Image
|
4 |
|
5 |
import datasets
|
|
|
|
|
6 |
|
7 |
_DESCRIPTION = """\
|
8 |
Watermark Dataset
|
@@ -15,23 +16,57 @@ _URLS = {"train": f"{_REPO}/train.zip", "valid": f"{_REPO}/valid.zip"}
|
|
15 |
|
16 |
_CATEGORIES = ["watermark"]
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
class WatermarkPita(datasets.GeneratorBasedBuilder):
|
19 |
"""Watermark Dataset"""
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def _info(self):
|
24 |
return datasets.DatasetInfo(
|
25 |
features=datasets.Features(
|
26 |
{
|
27 |
"image": datasets.Image(),
|
28 |
-
"objects": datasets.Sequence(
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
}
|
33 |
),
|
34 |
-
supervised_keys=None,
|
35 |
description=_DESCRIPTION,
|
36 |
)
|
37 |
|
@@ -49,7 +84,6 @@ class WatermarkPita(datasets.GeneratorBasedBuilder):
|
|
49 |
),
|
50 |
]
|
51 |
|
52 |
-
|
53 |
def _generate_examples(self, split, data_dir):
|
54 |
image_dir = os.path.join(data_dir, "images")
|
55 |
label_dir = os.path.join(data_dir, "labels")
|
@@ -58,26 +92,20 @@ class WatermarkPita(datasets.GeneratorBasedBuilder):
|
|
58 |
label_paths = sorted(glob(label_dir + "/*.txt"))
|
59 |
|
60 |
for idx, (image_path, label_path) in enumerate(zip(image_paths, label_paths)):
|
61 |
-
im = Image.open(image_path)
|
62 |
-
width, height = im.size
|
63 |
-
|
64 |
with open(label_path, "r") as f:
|
65 |
-
|
66 |
|
67 |
objects = []
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
"label": bbox_class,
|
80 |
-
"bbox": [bbox_top_left, bbox_top_right, bbox_bottom_left, bbox_bottom_right]
|
81 |
-
})
|
82 |
|
83 |
yield idx, {"image": image_path, "objects": objects}
|
|
|
1 |
import os
|
2 |
from glob import glob
|
|
|
3 |
|
4 |
import datasets
|
5 |
+
import json
|
6 |
+
from PIL import Image
|
7 |
|
8 |
_DESCRIPTION = """\
|
9 |
Watermark Dataset
|
|
|
16 |
|
17 |
_CATEGORIES = ["watermark"]
|
18 |
|
19 |
+
|
20 |
+
class WatermarkPitaConfig(datasets.BuilderConfig):
|
21 |
+
"""Builder Config for Food-101"""
|
22 |
+
|
23 |
+
def __init__(self, repository, urls, categories, **kwargs):
|
24 |
+
"""BuilderConfig for Food-101.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
repository: `string`, the name of the repository.
|
28 |
+
urls: `dict<string, string>`, the urls to the data.
|
29 |
+
categories: `list<string>`, the categories of the data.
|
30 |
+
|
31 |
+
**kwargs: keyword arguments forwarded to super.
|
32 |
+
"""
|
33 |
+
VERSION = datasets.Version("1.0.0")
|
34 |
+
|
35 |
+
super(WatermarkPitaConfig, self).__init__(version=VERSION, **kwargs)
|
36 |
+
self.repository = repository
|
37 |
+
self.urls = categories
|
38 |
+
self.categories = categories
|
39 |
+
|
40 |
+
|
41 |
class WatermarkPita(datasets.GeneratorBasedBuilder):
|
42 |
"""Watermark Dataset"""
|
43 |
|
44 |
+
BUILDER_CONFIGS = [
|
45 |
+
WatermarkPitaConfig(
|
46 |
+
name="text",
|
47 |
+
repository=_REPO,
|
48 |
+
urls=_URLS,
|
49 |
+
categories=_CATEGORIES,
|
50 |
+
)
|
51 |
+
]
|
52 |
+
|
53 |
+
_DEFAULT_CONFIG_NAME = "text"
|
54 |
|
55 |
def _info(self):
|
56 |
return datasets.DatasetInfo(
|
57 |
features=datasets.Features(
|
58 |
{
|
59 |
"image": datasets.Image(),
|
60 |
+
"objects": datasets.Sequence(
|
61 |
+
{
|
62 |
+
"label": datasets.ClassLabel(names=_CATEGORIES),
|
63 |
+
"bbox": datasets.Sequence(
|
64 |
+
datasets.Value("int32"), length=4
|
65 |
+
),
|
66 |
+
}
|
67 |
+
),
|
68 |
}
|
69 |
),
|
|
|
70 |
description=_DESCRIPTION,
|
71 |
)
|
72 |
|
|
|
84 |
),
|
85 |
]
|
86 |
|
|
|
87 |
def _generate_examples(self, split, data_dir):
|
88 |
image_dir = os.path.join(data_dir, "images")
|
89 |
label_dir = os.path.join(data_dir, "labels")
|
|
|
92 |
label_paths = sorted(glob(label_dir + "/*.txt"))
|
93 |
|
94 |
for idx, (image_path, label_path) in enumerate(zip(image_paths, label_paths)):
|
|
|
|
|
|
|
95 |
with open(label_path, "r") as f:
|
96 |
+
bbox = json.load(f)
|
97 |
|
98 |
objects = []
|
99 |
+
objects.append(
|
100 |
+
{
|
101 |
+
"label": bbox["label"],
|
102 |
+
"bbox": [
|
103 |
+
bbox["x"],
|
104 |
+
bbox["y"],
|
105 |
+
bbox["width"],
|
106 |
+
bbox["height"],
|
107 |
+
],
|
108 |
+
}
|
109 |
+
)
|
|
|
|
|
|
|
110 |
|
111 |
yield idx, {"image": image_path, "objects": objects}
|