File size: 3,657 Bytes
c67f462
032c4ac
c67f462
 
19794d7
 
c67f462
 
 
 
 
 
 
 
41f1c8a
 
c67f462
248ace0
41f1c8a
f3ede03
41f1c8a
 
 
 
f3ede03
41f1c8a
 
 
19794d7
41f1c8a
bde8779
41f1c8a
19794d7
 
c67f462
 
 
41f1c8a
 
 
aa7bc8a
41f1c8a
248ace0
 
 
 
 
 
 
 
 
 
 
41f1c8a
f3ede03
3141c40
c67f462
 
 
 
 
 
19794d7
 
d2a0b4d
 
 
 
f3ede03
19794d7
 
c67f462
 
 
 
 
 
41f1c8a
032c4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a32d392
8cddfb1
032c4ac
 
 
d2a0b4d
032c4ac
485550f
 
d2a0b4d
 
0ce0b68
 
 
 
 
 
 
 
 
d2a0b4d
 
0ce0b68
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
from glob import glob

import datasets
import json
from PIL import Image

_DESCRIPTION = """\
    Watermark Dataset
"""

_VERSION = datasets.Version("1.0.0")


class WatermarkPitaConfig(datasets.BuilderConfig):
    """Builder Config for Food-101"""

    def __init__(self, urls, categories, **kwargs):
        """BuilderConfig for Food-101.

        Args:
            repository: `string`, the name of the repository.
            urls: `dict<string, string>`, the urls to the data.
            categories: `list<string>`, the categories of the data.

            **kwargs: keyword arguments forwarded to super.
        """
        _VERSION = datasets.Version("1.0.0")

        super(WatermarkPitaConfig, self).__init__(version=_VERSION, **kwargs)
        self.urls = urls
        self.categories = categories


class WatermarkPita(datasets.GeneratorBasedBuilder):
    """Watermark Dataset"""

    BUILDER_CONFIGS = [
        WatermarkPitaConfig(
            name="text",
            urls={"train": "data/text/train.zip", "valid": "data/text/valid.zip"},
            categories=["text"],
        ),
        WatermarkPitaConfig(
            name="logo",
            urls={"train": "data/logo/train.zip", "valid": "data/logo/valid.zip"},
            categories=["logo"],
        ),
        WatermarkPitaConfig(
            name="mixed",
            urls={"train": "data/mixed/train.zip", "valid": "data/mixed/valid.zip"},
            categories=["logo", "text"],
        ),
    ]

    DEFAULT_CONFIG_NAME = "text"

    def _info(self):
        return datasets.DatasetInfo(
            features=datasets.Features(
                {
                    "image": datasets.Image(),
                    "objects": datasets.Sequence(
                        {
                            "x": datasets.Value("float32"),
                            "y": datasets.Value("float32"),
                            "w": datasets.Value("float32"),
                            "h": datasets.Value("float32"),
                            "label": datasets.ClassLabel(names=self.config.categories),
                        }
                    ),
                }
            ),
            description=_DESCRIPTION,
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(self.config.urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"split": "train", "data_dir": data_dir["train"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"split": "valid", "data_dir": data_dir["valid"]},
            ),
        ]

    def _generate_examples(self, split, data_dir):
        image_dir = os.path.join(data_dir, "images")
        label_dir = os.path.join(data_dir, "labels")

        image_paths = sorted(glob(image_dir + "/*.jpg"))
        label_paths = sorted(glob(label_dir + "/*.json"))

        for idx, (image_path, label_path) in enumerate(zip(image_paths, label_paths)):
            with open(label_path, "r") as f:
                bboxes = json.load(f)

            print(bboxes)

            objects = []
            for bbox in bboxes:
                objects.append(
                    {
                        "x": bbox["x"],
                        "y": bbox["y"],
                        "w": bbox["width"],
                        "h": bbox["height"],
                        "label": bbox["label"],
                    }
                )
                objects.append(bbox)

            yield idx, {"image": image_path, "objects": objects}