MultiFin / README.md
awinml's picture
Update README.md
03e31c0 verified
|
raw
history blame
7.14 kB
metadata
dataset_info:
  - config_name: all_languages_highlevel
    features:
      - name: text
        dtype: string
      - name: label
        dtype: string
      - name: lang
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: train
        num_bytes: 710259
        num_examples: 6430
      - name: validation
        num_bytes: 179231
        num_examples: 1608
      - name: test
        num_bytes: 222985
        num_examples: 2010
    download_size: 601522
    dataset_size: 1112475
  - config_name: all_languages_lowlevel
    features:
      - name: text
        dtype: string
      - name: labels
        sequence: string
      - name: lang
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: train
        num_bytes: 826954
        num_examples: 6430
      - name: validation
        num_bytes: 207973
        num_examples: 1608
      - name: test
        num_bytes: 260637
        num_examples: 2010
    download_size: 614714
    dataset_size: 1295564
  - config_name: high_resources_highlevel
    features:
      - name: text
        dtype: string
      - name: label
        dtype: string
      - name: lang
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: train
        num_bytes: 569544
        num_examples: 5353
      - name: validation
        num_bytes: 142698
        num_examples: 1339
    download_size: 359821
    dataset_size: 712242
  - config_name: high_resources_lowlevel
    features:
      - name: text
        dtype: string
      - name: labels
        sequence: string
      - name: lang
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: train
        num_bytes: 668111
        num_examples: 5353
      - name: validation
        num_bytes: 166962
        num_examples: 1339
    download_size: 368829
    dataset_size: 835073
  - config_name: only_english_highlevel
    features:
      - name: text
        dtype: string
      - name: label
        dtype: string
      - name: lang
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: train
        num_bytes: 162298
        num_examples: 1747
      - name: validation
        num_bytes: 40922
        num_examples: 437
    download_size: 88620
    dataset_size: 203220
  - config_name: only_english_lowlevel
    features:
      - name: text
        dtype: string
      - name: labels
        sequence: string
      - name: lang
        dtype: string
      - name: id
        dtype: string
    splits:
      - name: train
        num_bytes: 191533
        num_examples: 1747
      - name: validation
        num_bytes: 48286
        num_examples: 437
    download_size: 91808
    dataset_size: 239819
configs:
  - config_name: all_languages_highlevel
    data_files:
      - split: train
        path: all_languages_highlevel/train-*
      - split: validation
        path: all_languages_highlevel/validation-*
      - split: test
        path: all_languages_highlevel/test-*
  - config_name: all_languages_lowlevel
    data_files:
      - split: train
        path: all_languages_lowlevel/train-*
      - split: validation
        path: all_languages_lowlevel/validation-*
      - split: test
        path: all_languages_lowlevel/test-*
  - config_name: high_resources_highlevel
    data_files:
      - split: train
        path: high_resources_highlevel/train-*
      - split: validation
        path: high_resources_highlevel/validation-*
  - config_name: high_resources_lowlevel
    data_files:
      - split: train
        path: high_resources_lowlevel/train-*
      - split: validation
        path: high_resources_lowlevel/validation-*
  - config_name: only_english_highlevel
    data_files:
      - split: train
        path: only_english_highlevel/train-*
      - split: validation
        path: only_english_highlevel/validation-*
  - config_name: only_english_lowlevel
    data_files:
      - split: train
        path: only_english_lowlevel/train-*
      - split: validation
        path: only_english_lowlevel/validation-*
task_categories:
  - text-classification
language:
  - en
  - es
  - pl
  - hu
  - el
  - da
  - tr
  - ja
  - sv
  - fi
  - 'no'
  - ru
  - it
  - he
  - is
tags:
  - finance
size_categories:
  - 1K<n<10K

MultiFin

MultiFin – a publicly available financial dataset consisting of real-world article headlines covering 15 languages across different writing systems and language families. The dataset consists of hierarchical label structure providing two classification tasks: multi-label and multi-class.

Dataset Description

The MULTIFIN dataset is a multilingual corpus, consisting of real-world article headlines covering 15 languages. The corpus is annotated using hierarchical label structure, providing two classification tasks: multi-class and multi-label classification.

  • Curated by: Rasmus Jørgensen, Oliver Brandt, Mareike Hartmann, Xiang Dai, Christian Igel, and Desmond Elliott.
  • Language(s) (NLP): English, Spanish, Polish, Hungarian, Greek, Danish, Turkish, Japanese, Swedish, Finnish, Norwegian, Russian, Italian, Hebrew, Icelandic.
  • License: [More Information Needed]

Dataset Sources

Dataset Structure

[More Information Needed]

Citation

BibTeX:

@inproceedings{jorgensen-etal-2023-multifin,
    title = "{M}ulti{F}in: A Dataset for Multilingual Financial {NLP}",
    author = "J{\o}rgensen, Rasmus  and
      Brandt, Oliver  and
      Hartmann, Mareike  and
      Dai, Xiang  and
      Igel, Christian  and
      Elliott, Desmond",
    editor = "Vlachos, Andreas  and
      Augenstein, Isabelle",
    booktitle = "Findings of the Association for Computational Linguistics: EACL 2023",
    month = may,
    year = "2023",
    address = "Dubrovnik, Croatia",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.findings-eacl.66",
    doi = "10.18653/v1/2023.findings-eacl.66",
    pages = "894--909",
    abstract = "Financial information is generated and distributed across the world, resulting in a vast amount of domain-specific multilingual data. Multilingual models adapted to the financial domain would ease deployment when an organization needs to work with multiple languages on a regular basis. For the development and evaluation of such models, there is a need for multilingual financial language processing datasets. We describe MultiFin {--} a publicly available financial dataset consisting of real-world article headlines covering 15 languages across different writing systems and language families. The dataset consists of hierarchical label structure providing two classification tasks: multi-label and multi-class. We develop our annotation schema based on a real-world application and annotate our dataset using both {`}label by native-speaker{'} and {`}translate-then-label{'} approaches. The evaluation of several popular multilingual models, e.g., mBERT, XLM-R, and mT5, show that although decent accuracy can be achieved in high-resource languages, there is substantial room for improvement in low-resource languages.",
}