|
import datasets |
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {Shrek Detection Dataset}, |
|
author={Aurelio AI}, |
|
year={2024} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Demo dataset for testing Shrek detection capabilities in images. |
|
""" |
|
_HOMEPAGE = "https://huggingface.co/datasets/aurelio-ai/shrek-detection" |
|
|
|
_LICENSE = "" |
|
|
|
_REPO = "https://huggingface.co/datasets/aurelio-ai/shrek-detection" |
|
|
|
class ImageSet(datasets.GeneratorBasedBuilder): |
|
"""Small sample of image-text pairs""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
'text': datasets.Value("string"), |
|
'image': datasets.Image(), |
|
'is_shrek': datasets.Value("bool") |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
images_archive = dl_manager.download(f"{_REPO}/resolve/main/images.tgz") |
|
image_iters = dl_manager.iter_archive(images_archive) |
|
|
|
test_images_archive = dl_manager.download(f"{_REPO}/resolve/main/test_images.tgz") |
|
test_image_iters = dl_manager.iter_archive(test_images_archive) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"images": image_iters |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"images": test_image_iters |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, images): |
|
""" This function returns the examples in the raw (text) form.""" |
|
|
|
for idx, (filepath, image) in enumerate(images): |
|
filename = filepath.split('/')[-1][:-4] |
|
cls = filename[0] if filename[0] in ["0", "1"] else None |
|
if cls: |
|
filename = filename[1:] |
|
description = filename.replace('_', ' ').replace('-', ' ') |
|
yield idx, { |
|
"image": {"path": filepath, "bytes": image.read()}, |
|
"text": description, |
|
"is_shrek": True if cls == "1" else False |
|
} |
|
|