import datasets _CITATION = """\ @InProceedings{huggingface:dataset, title = {Shrek Detection Dataset}, author={Aurelio AI}, year={2024} } """ _DESCRIPTION = """\ Demo dataset for testing Shrek detection capabilities in images. """ _HOMEPAGE = "https://huggingface.co/datasets/aurelio-ai/shrek-detection" _LICENSE = "" _REPO = "https://huggingface.co/datasets/aurelio-ai/shrek-detection" class ImageSet(datasets.GeneratorBasedBuilder): """Small sample of image-text pairs""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { 'text': datasets.Value("string"), 'image': datasets.Image(), 'is_shrek': datasets.Value("bool") } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): # iterator for train set images_archive = dl_manager.download(f"{_REPO}/resolve/main/images.tgz") image_iters = dl_manager.iter_archive(images_archive) # iterator for test set test_images_archive = dl_manager.download(f"{_REPO}/resolve/main/test_images.tgz") test_image_iters = dl_manager.iter_archive(test_images_archive) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": image_iters } ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "images": test_image_iters } ), ] def _generate_examples(self, images): """ This function returns the examples in the raw (text) form.""" for idx, (filepath, image) in enumerate(images): filename = filepath.split('/')[-1][:-4] cls = filename[0] if filename[0] in ["0", "1"] else None if cls: filename = filename[1:] description = filename.replace('_', ' ').replace('-', ' ') yield idx, { "image": {"path": filepath, "bytes": image.read()}, "text": description, "is_shrek": True if cls == "1" else False }