Datasets:
annotations_creators:
- expert-generated
language_creators:
- other
language:
- pl
license:
- cc-by-sa-3.0
multilinguality:
- monolingual
pretty_name: Did you know?
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- open-domain-question-answering
klej-dyk
Description
The Czy wiesz? (eng. Did you know?) the dataset consists of almost 5k question-answer pairs obtained from Czy wiesz... section of Polish Wikipedia. Each question is written by a Wikipedia collaborator and is answered with a link to a relevant Wikipedia article. In huggingface version of this dataset, they chose the negatives which have the largest token overlap with a question.
Tasks (input, output, and metrics)
The task is to predict if the answer to the given question is correct or not.
Input ('question sentence', 'answer' columns): question and answer sentences
Output ('target' column): 1 if the answer is correct, 0 otherwise. Note that the test split doesn't have target values so -1 is used instead
Domain: Wikipedia
Measurements: F1-Score
Example:
Input: Czym zajmowali się świątnicy?
; Świątnik – osoba, która dawniej zajmowała się obsługą kościoła (świątyni).
Input (translated by DeepL): What did the sacristans do?
; A sacristan - a person who used to be in charge of the handling the church (temple).
Output: 1
(the answer is correct)
Data splits
Subset | Cardinality |
---|---|
train | 4154 |
val | 0 |
test | 1029 |
Class distribution
Class | train | validation | test |
---|---|---|---|
incorrect | 0.831 | - | 0.831 |
correct | 0.169 | - | 0.169 |
Citation
@misc{11321/39,
title = {Pytania i odpowiedzi z serwisu wikipedyjnego "Czy wiesz", wersja 1.1},
author = {Marci{\'n}czuk, Micha{\l} and Piasecki, Dominik and Piasecki, Maciej and Radziszewski, Adam},
url = {http://hdl.handle.net/11321/39},
note = {{CLARIN}-{PL} digital repository},
year = {2013}
}
License
Creative Commons Attribution ShareAlike 3.0 licence (CC-BY-SA 3.0)
Links
Examples
Loading
from pprint import pprint
from datasets import load_dataset
dataset = load_dataset("allegro/klej-dyk")
pprint(dataset['train'][100])
#{'answer': '"W wyborach prezydenckich w 2004 roku, Moroz przekazał swoje '
# 'poparcie Wiktorowi Juszczence. Po wyborach w 2006 socjaliści '
# 'początkowo tworzyli ""pomarańczową koalicję"" z Naszą Ukrainą i '
# 'Blokiem Julii Tymoszenko."',
# 'q_id': 'czywiesz4362',
# 'question': 'ile partii tworzy powołaną przez Wiktora Juszczenkę koalicję '
# 'Blok Nasza Ukraina?',
# 'target': 0}
Evaluation
import random
from pprint import pprint
from datasets import load_dataset, load_metric
dataset = load_dataset("allegro/klej-dyk")
dataset = dataset.class_encode_column("target")
references = dataset["test"]["target"]
# generate random predictions
predictions = [random.randrange(max(references) + 1) for _ in range(len(references))]
acc = load_metric("accuracy")
f1 = load_metric("f1")
acc_score = acc.compute(predictions=predictions, references=references)
f1_score = f1.compute(predictions=predictions, references=references, average="macro")
pprint(acc_score)
pprint(f1_score)
# {'accuracy': 0.5286686103012633}
# {'f1': 0.46700507614213194}