|
--- |
|
dataset_info: |
|
features: |
|
- name: case_id |
|
dtype: string |
|
- name: Overskrift |
|
dtype: string |
|
- name: Afgørelsesstatus |
|
dtype: string |
|
- name: Faggruppe |
|
dtype: string |
|
- name: Ret |
|
dtype: string |
|
- name: Rettens sagsnummer |
|
dtype: string |
|
- name: Sagstype |
|
dtype: string |
|
- name: Instans |
|
dtype: string |
|
- name: Domsdatabasens sagsnummer |
|
dtype: string |
|
- name: Sagsemner |
|
dtype: string |
|
- name: Særlige retsskridt |
|
dtype: string |
|
- name: Sagsdeltagere |
|
dtype: string |
|
- name: Dørlukning |
|
dtype: string |
|
- name: Løftet ud af småsagsprocessen |
|
dtype: string |
|
- name: Anerkendelsespåstand |
|
dtype: string |
|
- name: Politiets journalnummer |
|
dtype: string |
|
- name: Påstandsbeløb |
|
dtype: string |
|
- name: Sagskomplekser |
|
dtype: string |
|
- name: text |
|
dtype: string |
|
- name: text_anonymized |
|
dtype: string |
|
- name: text_len |
|
dtype: int64 |
|
- name: text_anon_len |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 193593176 |
|
num_examples: 3917 |
|
download_size: 96435472 |
|
dataset_size: 193593176 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
language: |
|
- da |
|
task_categories: |
|
- text-generation |
|
size_categories: |
|
- 1K<n<10K |
|
--- |
|
|
|
# Dataset Card for "domsdatabasen" |
|
|
|
## Dataset Description |
|
|
|
- **Point of Contact:** [Oliver Kinch](mailto:[email protected]) |
|
- **Size of dataset:** 199 MB |
|
|
|
### Dataset Summary |
|
|
|
[Domsdatabasen](https://domsdatabasen.dk/) is a database where you can find and read selected judgments delivered by the Danish Courts. |
|
|
|
Each judgment/case consists of tabular data and a case-descriptive PDF. This dataset collects all these cases, with each sample describing a specific judgment/case. |
|
|
|
The PDFs are anonymized to protect sensitive information. Therefore, each sample includes two text versions: |
|
- `text_anon` (with anonymization tags: \<anonym\>"Some sensitive text"\</anonym\>). |
|
- `text` (without anonymization tags). |
|
|
|
`text_anon` is read with [Easyocr](https://github.com/JaidedAI/EasyOCR). |
|
|
|
`text` is read with [Easyocr](https://github.com/JaidedAI/EasyOCR) or [Tika-python](https://github.com/chrismattmann/tika-python) |
|
depending on the PDF and the anonymization method used. |
|
|
|
`text_anon` will be empty if no anonymization is detected in the PDF. |
|
|
|
### Languages |
|
|
|
The dataset is available in Danish (`da`). |
|
|
|
## Dataset Structure |
|
|
|
An example from the dataset looks as follows. |
|
|
|
``` |
|
{ |
|
"case_id": "id of case/judgment", |
|
... The tabualar string data ..., |
|
"text": "pdf text", |
|
"text_anon": "anonymized pdf text" |
|
"text_len": <number of chars in text>, |
|
"text_anon_len": <number of chars in anonymized text> |
|
} |
|
``` |
|
|
|
|
|
### Data Fields |
|
|
|
- `case_id`: a `string` feature. |
|
- `text`: a `string` feature. |
|
- `text_anon`: a `string` feature. |
|
- `text_len`: an `int` feature. |
|
- `text_anon_len`: an `int` feature. |
|
|
|
|
|
### Dataset Statistics |
|
|
|
#### Size of dataset |
|
|
|
With the PDF texts being provided in two versions, `text` and `text_anon`, the total size of all PDF texts is approximately ~199//2 MB. |
|
|
|
#### Number of samples |
|
|
|
- 3919 |
|
|
|
#### PDF Text Length Distribution |
|
|
|
Statistics based on `text`. |
|
|
|
- Minimum length: 192 |
|
- Maximum length: 2101736 |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61e0713ac50610f535ed2c88/YTBH-nSHd2b4z6LIjeMF-.png) |
|
|
|
## Potential Dataset Issues |
|
|
|
See [open issues](https://github.com/oliverkinch/doms_databasen/issues). |
|
|
|
|
|
## Dataset Creation |
|
|
|
### Curation Rationale |
|
|
|
There are not many large-scale law datasets in Danish. |
|
|
|
### Source Data |
|
|
|
The dataset has been scraped from [Domsdatabasen](https://domsdatabasen.dk/). |
|
|
|
## Additional Information |
|
|
|
### Dataset Curators |
|
|
|
[Oliver Kinch](https://huggingface.co/oliverkinch) from the [The Alexandra |
|
Institute](https://alexandra.dk/) |