prompt
stringlengths 70
19.8k
| completion
stringlengths 8
1.03k
| api
stringlengths 23
93
|
---|---|---|
import os
from getpass import getpass
if os.getenv("OPENAI_API_KEY") is None:
os.environ["OPENAI_API_KEY"] = getpass(
"Paste your OpenAI key from:"
" https://platform.openai.com/account/api-keys\n"
)
assert os.getenv("OPENAI_API_KEY", "").startswith(
"sk-"
), "This doesn't look like a valid OpenAI API key"
print("OpenAI API key configured")
get_ipython().run_line_magic('pip', 'install -q html2text llama-index pandas pyarrow tqdm')
get_ipython().run_line_magic('pip', 'install -q llama-index-readers-web')
get_ipython().run_line_magic('pip', 'install -q llama-index-callbacks-openinference')
import hashlib
import json
from pathlib import Path
import os
import textwrap
from typing import List, Union
import llama_index.core
from llama_index.readers.web import SimpleWebPageReader
from llama_index.core import VectorStoreIndex
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.callbacks import CallbackManager
from llama_index.callbacks.openinference import OpenInferenceCallbackHandler
from llama_index.callbacks.openinference.base import (
as_dataframe,
QueryData,
NodeData,
)
from llama_index.core.node_parser import SimpleNodeParser
import pandas as pd
from tqdm import tqdm
documents = SimpleWebPageReader().load_data(
[
"https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt"
]
)
print(documents[0].text)
parser = SentenceSplitter()
nodes = parser.get_nodes_from_documents(documents)
print(nodes[0].text)
callback_handler = | OpenInferenceCallbackHandler() | llama_index.callbacks.openinference.OpenInferenceCallbackHandler |
get_ipython().system('pip install llama-index-multi-modal-llms-ollama')
get_ipython().system('pip install llama-index-readers-file')
get_ipython().system('pip install unstructured')
get_ipython().system('pip install llama-index-embeddings-huggingface')
get_ipython().system('pip install llama-index-vector-stores-qdrant')
get_ipython().system('pip install llama-index-embeddings-clip')
from llama_index.multi_modal_llms.ollama import OllamaMultiModal
mm_model = OllamaMultiModal(model="llava:13b")
from pathlib import Path
from llama_index.core import SimpleDirectoryReader
from PIL import Image
import matplotlib.pyplot as plt
input_image_path = Path("restaurant_images")
if not input_image_path.exists():
Path.mkdir(input_image_path)
get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1GlqcNJhGGbwLKjJK1QJ_nyswCTQ2K2Fq" -O ./restaurant_images/fried_chicken.png')
image_documents = SimpleDirectoryReader("./restaurant_images").load_data()
imageUrl = "./restaurant_images/fried_chicken.png"
image = Image.open(imageUrl).convert("RGB")
plt.figure(figsize=(16, 5))
plt.imshow(image)
from pydantic import BaseModel
class Restaurant(BaseModel):
"""Data model for an restaurant."""
restaurant: str
food: str
discount: str
price: str
rating: str
review: str
from llama_index.core.program import MultiModalLLMCompletionProgram
from llama_index.core.output_parsers import PydanticOutputParser
prompt_template_str = """\
{query_str}
Return the answer as a Pydantic object. The Pydantic schema is given below:
"""
mm_program = MultiModalLLMCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Restaurant),
image_documents=image_documents,
prompt_template_str=prompt_template_str,
multi_modal_llm=mm_model,
verbose=True,
)
response = mm_program(query_str="Can you summarize what is in the image?")
for res in response:
print(res)
get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm')
get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1THe1qqM61lretr9N3BmINc_NWDvuthYf" -O shanghai.jpg')
from pathlib import Path
from llama_index.readers.file import UnstructuredReader
from llama_index.core.schema import ImageDocument
loader = UnstructuredReader()
documents = loader.load_data(file=Path("tesla_2021_10k.htm"))
image_doc = ImageDocument(image_path="./shanghai.jpg")
from llama_index.core import VectorStoreIndex
from llama_index.core.embeddings import resolve_embed_model
embed_model = | resolve_embed_model("local:BAAI/bge-m3") | llama_index.core.embeddings.resolve_embed_model |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-replicate')
get_ipython().run_line_magic('pip', 'install unstructured replicate')
get_ipython().run_line_magic('pip', 'install llama_index ftfy regex tqdm')
get_ipython().run_line_magic('pip', 'install git+https://github.com/openai/CLIP.git')
get_ipython().run_line_magic('pip', 'install torch torchvision')
get_ipython().run_line_magic('pip', 'install matplotlib scikit-image')
get_ipython().run_line_magic('pip', 'install -U qdrant_client')
import os
REPLICATE_API_TOKEN = "..." # Your Relicate API token here
os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN
get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm')
get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1UU0xc3uLXs-WG0aDQSXjGacUkp142rLS" -O texas.jpg')
from llama_index.readers.file import FlatReader
from pathlib import Path
from llama_index.core.node_parser import UnstructuredElementNodeParser
reader = FlatReader()
docs_2021 = reader.load_data(Path("tesla_2021_10k.htm"))
node_parser = UnstructuredElementNodeParser()
import openai
OPENAI_API_TOKEN = "..."
openai.api_key = OPENAI_API_TOKEN # add your openai api key here
os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN
import os
import pickle
if not os.path.exists("2021_nodes.pkl"):
raw_nodes_2021 = node_parser.get_nodes_from_documents(docs_2021)
pickle.dump(raw_nodes_2021, open("2021_nodes.pkl", "wb"))
else:
raw_nodes_2021 = pickle.load(open("2021_nodes.pkl", "rb"))
nodes_2021, objects_2021 = node_parser.get_nodes_and_objects(raw_nodes_2021)
from llama_index.core import VectorStoreIndex
vector_index = VectorStoreIndex(nodes=nodes_2021, objects=objects_2021)
query_engine = vector_index.as_query_engine(similarity_top_k=5, verbose=True)
from PIL import Image
import matplotlib.pyplot as plt
imageUrl = "./texas.jpg"
image = Image.open(imageUrl).convert("RGB")
plt.figure(figsize=(16, 5))
plt.imshow(image)
from llama_index.multi_modal_llms.replicate import ReplicateMultiModal
from llama_index.core.schema import ImageDocument
from llama_index.multi_modal_llms.replicate.base import (
REPLICATE_MULTI_MODAL_LLM_MODELS,
)
print(imageUrl)
llava_multi_modal_llm = ReplicateMultiModal(
model=REPLICATE_MULTI_MODAL_LLM_MODELS["llava-13b"],
max_new_tokens=200,
temperature=0.1,
)
prompt = "which Tesla factory is shown in the image? Please answer just the name of the factory."
llava_response = llava_multi_modal_llm.complete(
prompt=prompt,
image_documents=[ImageDocument(image_path=imageUrl)],
)
print(llava_response.text)
rag_response = query_engine.query(llava_response.text)
print(rag_response)
input_image_path = Path("instagram_images")
if not input_image_path.exists():
Path.mkdir(input_image_path)
get_ipython().system('wget "https://docs.google.com/uc?export=download&id=12ZpBBFkYu-jzz1iz356U5kMikn4uN9ww" -O ./instagram_images/jordan.png')
from pydantic import BaseModel
class InsAds(BaseModel):
"""Data model for a Ins Ads."""
account: str
brand: str
product: str
category: str
discount: str
price: str
comments: str
review: str
description: str
from PIL import Image
import matplotlib.pyplot as plt
ins_imageUrl = "./instagram_images/jordan.png"
image = Image.open(ins_imageUrl).convert("RGB")
plt.figure(figsize=(16, 5))
plt.imshow(image)
from llama_index.multi_modal_llms.replicate import ReplicateMultiModal
from llama_index.core.program import MultiModalLLMCompletionProgram
from llama_index.core.output_parsers import PydanticOutputParser
from llama_index.multi_modal_llms.replicate.base import (
REPLICATE_MULTI_MODAL_LLM_MODELS,
)
prompt_template_str = """\
can you summarize what is in the image\
and return the answer with json format \
"""
def pydantic_llava(
model_name, output_class, image_documents, prompt_template_str
):
mm_llm = ReplicateMultiModal(
model=REPLICATE_MULTI_MODAL_LLM_MODELS["llava-13b"],
max_new_tokens=1000,
)
llm_program = MultiModalLLMCompletionProgram.from_defaults(
output_parser= | PydanticOutputParser(output_class) | llama_index.core.output_parsers.PydanticOutputParser |
get_ipython().run_line_magic('pip', 'install llama-index-evaluation-tonic-validate')
import json
import pandas as pd
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.evaluation.tonic_validate import (
AnswerConsistencyEvaluator,
AnswerSimilarityEvaluator,
AugmentationAccuracyEvaluator,
AugmentationPrecisionEvaluator,
RetrievalPrecisionEvaluator,
TonicValidateEvaluator,
)
question = "What makes Sam Altman a good founder?"
reference_answer = "He is smart and has a great force of will."
llm_answer = "He is a good founder because he is smart."
retrieved_context_list = [
"Sam Altman is a good founder. He is very smart.",
"What makes Sam Altman such a good founder is his great force of will.",
]
answer_similarity_evaluator = AnswerSimilarityEvaluator()
score = await answer_similarity_evaluator.aevaluate(
question,
llm_answer,
retrieved_context_list,
reference_response=reference_answer,
)
score
answer_consistency_evaluator = AnswerConsistencyEvaluator()
score = await answer_consistency_evaluator.aevaluate(
question, llm_answer, retrieved_context_list
)
score
augmentation_accuracy_evaluator = AugmentationAccuracyEvaluator()
score = await augmentation_accuracy_evaluator.aevaluate(
question, llm_answer, retrieved_context_list
)
score
augmentation_precision_evaluator = AugmentationPrecisionEvaluator()
score = await augmentation_precision_evaluator.aevaluate(
question, llm_answer, retrieved_context_list
)
score
retrieval_precision_evaluator = RetrievalPrecisionEvaluator()
score = await retrieval_precision_evaluator.aevaluate(
question, llm_answer, retrieved_context_list
)
score
tonic_validate_evaluator = TonicValidateEvaluator()
scores = await tonic_validate_evaluator.aevaluate(
question,
llm_answer,
retrieved_context_list,
reference_response=reference_answer,
)
scores.score_dict
tonic_validate_evaluator = TonicValidateEvaluator()
scores = await tonic_validate_evaluator.aevaluate_run(
[question], [llm_answer], [retrieved_context_list], [reference_answer]
)
scores.run_data[0].scores
get_ipython().system('llamaindex-cli download-llamadataset EvaluatingLlmSurveyPaperDataset --download-dir ./data')
from llama_index.core import SimpleDirectoryReader
from llama_index.core.llama_dataset import LabelledRagDataset
from llama_index.core import VectorStoreIndex
rag_dataset = LabelledRagDataset.from_json("./data/rag_dataset.json")
documents = SimpleDirectoryReader(input_dir="./data/source_files").load_data(
num_workers=4
) # parallel loading
index = | VectorStoreIndex.from_documents(documents=documents) | llama_index.core.VectorStoreIndex.from_documents |
import os
from PIL import Image
from IPython.display import display
from llama_index.tools.openai.image_generation import OpenAIImageGenerationToolSpec
from llama_index.agent import ReActAgent
from llama_index.tools import FunctionTool
def show_image(filename: str) -> Image:
"""Display an image based on the filename"""
img = Image.open(filename)
return display(img)
image_generation_tool = OpenAIImageGenerationToolSpec(
api_key=os.environ["OPENAI_API_KEY"]
)
show_image_tool = | FunctionTool.from_defaults(fn=show_image) | llama_index.tools.FunctionTool.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo-instruct", temperature=0.1)
Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5")
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
from llama_index.core import SimpleDirectoryReader
documents = | SimpleDirectoryReader("./data/paul_graham/") | llama_index.core.SimpleDirectoryReader |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
get_ipython().system('pip install llama_hub')
from pathlib import Path
from llama_index.readers.file import PyMuPDFReader
from llama_index.core import Document
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.schema import IndexNode
docs0 = PyMuPDFReader().load(file_path=Path("./data/llama2.pdf"))
doc_text = "\n\n".join([d.get_content() for d in docs0])
docs = [Document(text=doc_text)]
node_parser = SentenceSplitter(chunk_size=1024)
base_nodes = node_parser.get_nodes_from_documents(docs)
from llama_index.core import VectorStoreIndex
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
Settings.llm = | OpenAI(model="gpt-3.5-turbo") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-elasticsearch')
get_ipython().system('pip install llama-index')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import os
import getpass
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
import openai
openai.api_key = os.environ["OPENAI_API_KEY"]
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.elasticsearch import ElasticsearchStore
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text=(
"A bunch of scientists bring back dinosaurs and mayhem breaks"
" loose"
),
metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"},
),
TextNode(
text=(
"Leo DiCaprio gets lost in a dream within a dream within a dream"
" within a ..."
),
metadata={
"year": 2010,
"director": "Christopher Nolan",
"rating": 8.2,
},
),
TextNode(
text=(
"A psychologist / detective gets lost in a series of dreams within"
" dreams within dreams and Inception reused the idea"
),
metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6},
),
TextNode(
text=(
"A bunch of normal-sized women are supremely wholesome and some"
" men pine after them"
),
metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3},
),
TextNode(
text="Toys come alive and have a blast doing so",
metadata={"year": 1995, "genre": "animated"},
),
]
vector_store = ElasticsearchStore(
index_name="auto_retriever_movies", es_url="http://localhost:9200"
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = | VectorStoreIndex(nodes, storage_context=storage_context) | llama_index.core.VectorStoreIndex |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-.."
openai.api_key = os.environ["OPENAI_API_KEY"]
from IPython.display import Markdown, display
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
select,
)
engine = create_engine("sqlite:///:memory:")
metadata_obj = MetaData()
table_name = "city_stats"
city_stats_table = Table(
table_name,
metadata_obj,
Column("city_name", String(16), primary_key=True),
Column("population", Integer),
Column("country", String(16), nullable=False),
)
metadata_obj.create_all(engine)
from llama_index.core import SQLDatabase
from llama_index.llms.openai import OpenAI
llm = OpenAI(temperature=0.1, model="gpt-3.5-turbo")
sql_database = SQLDatabase(engine, include_tables=["city_stats"])
sql_database = SQLDatabase(engine, include_tables=["city_stats"])
from sqlalchemy import insert
rows = [
{"city_name": "Toronto", "population": 2930000, "country": "Canada"},
{"city_name": "Tokyo", "population": 13960000, "country": "Japan"},
{
"city_name": "Chicago",
"population": 2679000,
"country": "United States",
},
{"city_name": "Seoul", "population": 9776000, "country": "South Korea"},
]
for row in rows:
stmt = insert(city_stats_table).values(**row)
with engine.begin() as connection:
cursor = connection.execute(stmt)
stmt = select(
city_stats_table.c.city_name,
city_stats_table.c.population,
city_stats_table.c.country,
).select_from(city_stats_table)
with engine.connect() as connection:
results = connection.execute(stmt).fetchall()
print(results)
from sqlalchemy import text
with engine.connect() as con:
rows = con.execute(text("SELECT city_name from city_stats"))
for row in rows:
print(row)
from llama_index.core.query_engine import NLSQLTableQueryEngine
query_engine = NLSQLTableQueryEngine(
sql_database=sql_database, tables=["city_stats"], llm=llm
)
query_str = "Which city has the highest population?"
response = query_engine.query(query_str)
display(Markdown(f"<b>{response}</b>"))
from llama_index.core.indices.struct_store.sql_query import (
SQLTableRetrieverQueryEngine,
)
from llama_index.core.objects import (
SQLTableNodeMapping,
ObjectIndex,
SQLTableSchema,
)
from llama_index.core import VectorStoreIndex
table_node_mapping = SQLTableNodeMapping(sql_database)
table_schema_objs = [
(SQLTableSchema(table_name="city_stats"))
] # add a SQLTableSchema for each table
obj_index = ObjectIndex.from_objects(
table_schema_objs,
table_node_mapping,
VectorStoreIndex,
)
query_engine = SQLTableRetrieverQueryEngine(
sql_database, obj_index.as_retriever(similarity_top_k=1)
)
response = query_engine.query("Which city has the highest population?")
display(Markdown(f"<b>{response}</b>"))
response.metadata["result"]
city_stats_text = (
"This table gives information regarding the population and country of a"
" given city.\nThe user will query with codewords, where 'foo' corresponds"
" to population and 'bar'corresponds to city."
)
table_node_mapping = | SQLTableNodeMapping(sql_database) | llama_index.core.objects.SQLTableNodeMapping |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-experimental-param-tuner')
get_ipython().system('pip install llama-index llama-hub')
get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
import nest_asyncio
nest_asyncio.apply()
from pathlib import Path
from llama_index.readers.file import PDFReader
from llama_index.readers.file import UnstructuredReader
from llama_index.readers.file import PyMuPDFReader
loader = PDFReader()
docs0 = loader.load_data(file=Path("./data/llama2.pdf"))
from llama_index.core import Document
doc_text = "\n\n".join([d.get_content() for d in docs0])
docs = [Document(text=doc_text)]
from llama_index.core.node_parser import SimpleNodeParser
from llama_index.core.schema import IndexNode
get_ipython().system('wget "https://www.dropbox.com/scl/fi/fh9vsmmm8vu0j50l3ss38/llama2_eval_qr_dataset.json?rlkey=kkoaez7aqeb4z25gzc06ak6kb&dl=1" -O data/llama2_eval_qr_dataset.json')
from llama_index.core.evaluation import QueryResponseDataset
eval_dataset = QueryResponseDataset.from_json(
"data/llama2_eval_qr_dataset.json"
)
eval_qs = eval_dataset.questions
ref_response_strs = [r for (_, r) in eval_dataset.qr_pairs]
from llama_index.core import (
VectorStoreIndex,
load_index_from_storage,
StorageContext,
)
from llama_index.experimental.param_tuner import ParamTuner
from llama_index.core.param_tuner.base import TunedResult, RunResult
from llama_index.core.evaluation.eval_utils import (
get_responses,
aget_responses,
)
from llama_index.core.evaluation import (
SemanticSimilarityEvaluator,
BatchEvalRunner,
)
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
import os
import numpy as np
from pathlib import Path
def _build_index(chunk_size, docs):
index_out_path = f"./storage_{chunk_size}"
if not os.path.exists(index_out_path):
Path(index_out_path).mkdir(parents=True, exist_ok=True)
node_parser = SimpleNodeParser.from_defaults(chunk_size=chunk_size)
base_nodes = node_parser.get_nodes_from_documents(docs)
index = | VectorStoreIndex(base_nodes) | llama_index.core.VectorStoreIndex |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
from llama_index.core.evaluation import CorrectnessEvaluator
from llama_index.llms.openai import OpenAI
llm = OpenAI("gpt-4")
evaluator = | CorrectnessEvaluator(llm=llm) | llama_index.core.evaluation.CorrectnessEvaluator |
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.postprocessor import (
FixedRecencyPostprocessor,
EmbeddingRecencyPostprocessor,
)
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.storage.docstore import SimpleDocumentStore
from llama_index.core.response.notebook_utils import display_response
from llama_index.core import StorageContext
def get_file_metadata(file_name: str):
"""Get file metadata."""
if "v1" in file_name:
return {"date": "2020-01-01"}
elif "v2" in file_name:
return {"date": "2020-02-03"}
elif "v3" in file_name:
return {"date": "2022-04-12"}
else:
raise ValueError("invalid file")
documents = SimpleDirectoryReader(
input_files=[
"test_versioned_data/paul_graham_essay_v1.txt",
"test_versioned_data/paul_graham_essay_v2.txt",
"test_versioned_data/paul_graham_essay_v3.txt",
],
file_metadata=get_file_metadata,
).load_data()
from llama_index.core import Settings
Settings.text_splitter = SentenceSplitter(chunk_size=512)
nodes = Settings.text_splitter.get_nodes_from_documents(documents)
docstore = | SimpleDocumentStore() | llama_index.core.storage.docstore.SimpleDocumentStore |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
from llama_index.core import PromptTemplate
text_qa_template_str = (
"Context information is"
" below.\n---------------------\n{context_str}\n---------------------\nUsing"
" both the context information and also using your own knowledge, answer"
" the question: {query_str}\nIf the context isn't helpful, you can also"
" answer the question on your own.\n"
)
text_qa_template = PromptTemplate(text_qa_template_str)
refine_template_str = (
"The original question is as follows: {query_str}\nWe have provided an"
" existing answer: {existing_answer}\nWe have the opportunity to refine"
" the existing answer (only if needed) with some more context"
" below.\n------------\n{context_msg}\n------------\nUsing both the new"
" context and your own knowledge, update or repeat the existing answer.\n"
)
refine_template = PromptTemplate(refine_template_str)
import openai
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
openai.api_key = os.environ["OPENAI_API_KEY"]
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo")
documents = | SimpleDirectoryReader("./data/paul_graham/") | llama_index.core.SimpleDirectoryReader |
get_ipython().run_line_magic('pip', 'install llama-index-llms-litellm')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-cohere')
get_ipython().system('pip install llama-index')
import os
cohere_api_key = "YOUR_API_KEY"
os.environ["COHERE_API_KEY"] = cohere_api_key
from llama_index.embeddings.cohere import CohereEmbedding
embed_model = CohereEmbedding(
cohere_api_key=cohere_api_key,
model_name="embed-english-v3.0",
input_type="search_query",
)
embeddings = embed_model.get_text_embedding("Hello CohereAI!")
print(len(embeddings))
print(embeddings[:5])
embed_model = CohereEmbedding(
cohere_api_key=cohere_api_key,
model_name="embed-english-v3.0",
input_type="search_document",
)
embeddings = embed_model.get_text_embedding("Hello CohereAI!")
print(len(embeddings))
print(embeddings[:5])
embed_model = CohereEmbedding(
cohere_api_key=cohere_api_key, model_name="embed-english-v2.0"
)
embeddings = embed_model.get_text_embedding("Hello CohereAI!")
print(len(embeddings))
print(embeddings[:5])
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.llms.litellm import LiteLLM
from llama_index.core.response.notebook_utils import display_source_node
from IPython.display import Markdown, display
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
llm = | LiteLLM("command-nightly") | llama_index.llms.litellm.LiteLLM |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
openai.api_key = os.environ["OPENAI_API_KEY"]
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.WARNING)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import nest_asyncio
nest_asyncio.apply()
from llama_index.core import SimpleDirectoryReader, get_response_synthesizer
from llama_index.core import DocumentSummaryIndex
from llama_index.llms.openai import OpenAI
from llama_index.core.node_parser import SentenceSplitter
wiki_titles = ["Toronto", "Seattle", "Chicago", "Boston", "Houston"]
from pathlib import Path
import requests
for title in wiki_titles:
response = requests.get(
"https://en.wikipedia.org/w/api.php",
params={
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
},
).json()
page = next(iter(response["query"]["pages"].values()))
wiki_text = page["extract"]
data_path = Path("data")
if not data_path.exists():
Path.mkdir(data_path)
with open(data_path / f"{title}.txt", "w") as fp:
fp.write(wiki_text)
city_docs = []
for wiki_title in wiki_titles:
docs = SimpleDirectoryReader(
input_files=[f"data/{wiki_title}.txt"]
).load_data()
docs[0].doc_id = wiki_title
city_docs.extend(docs)
chatgpt = OpenAI(temperature=0, model="gpt-3.5-turbo")
splitter = SentenceSplitter(chunk_size=1024)
response_synthesizer = get_response_synthesizer(
response_mode="tree_summarize", use_async=True
)
doc_summary_index = DocumentSummaryIndex.from_documents(
city_docs,
llm=chatgpt,
transformations=[splitter],
response_synthesizer=response_synthesizer,
show_progress=True,
)
doc_summary_index.get_document_summary("Boston")
doc_summary_index.storage_context.persist("index")
from llama_index.core import load_index_from_storage
from llama_index.core import StorageContext
storage_context = StorageContext.from_defaults(persist_dir="index")
doc_summary_index = | load_index_from_storage(storage_context) | llama_index.core.load_index_from_storage |
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-4")
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small")
from llama_index.core import SimpleDirectoryReader
wiki_titles = ["Toronto", "Seattle", "Chicago", "Boston", "Houston"]
from pathlib import Path
import requests
for title in wiki_titles:
response = requests.get(
"https://en.wikipedia.org/w/api.php",
params={
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
},
).json()
page = next(iter(response["query"]["pages"].values()))
wiki_text = page["extract"]
data_path = Path("data")
if not data_path.exists():
Path.mkdir(data_path)
with open(data_path / f"{title}.txt", "w") as fp:
fp.write(wiki_text)
city_docs = {}
for wiki_title in wiki_titles:
city_docs[wiki_title] = SimpleDirectoryReader(
input_files=[f"data/{wiki_title}.txt"]
).load_data()
from llama_index.core import VectorStoreIndex
from llama_index.agent.openai import OpenAIAgent
from llama_index.core.tools import QueryEngineTool, ToolMetadata
from llama_index.core import VectorStoreIndex
tool_dict = {}
for wiki_title in wiki_titles:
vector_index = VectorStoreIndex.from_documents(
city_docs[wiki_title],
)
vector_query_engine = vector_index.as_query_engine(llm=llm)
vector_tool = QueryEngineTool(
query_engine=vector_query_engine,
metadata=ToolMetadata(
name=wiki_title,
description=("Useful for questions related to" f" {wiki_title}"),
),
)
tool_dict[wiki_title] = vector_tool
from llama_index.core import VectorStoreIndex
from llama_index.core.objects import ObjectIndex, SimpleToolNodeMapping
tool_mapping = SimpleToolNodeMapping.from_objects(list(tool_dict.values()))
tool_index = ObjectIndex.from_objects(
list(tool_dict.values()),
tool_mapping,
VectorStoreIndex,
)
tool_retriever = tool_index.as_retriever(similarity_top_k=1)
from llama_index.core.llms import ChatMessage
from llama_index.core import ChatPromptTemplate
from typing import List
GEN_SYS_PROMPT_STR = """\
Task information is given below.
Given the task, please generate a system prompt for an OpenAI-powered bot to solve this task:
{task} \
"""
gen_sys_prompt_messages = [
ChatMessage(
role="system",
content="You are helping to build a system prompt for another bot.",
),
ChatMessage(role="user", content=GEN_SYS_PROMPT_STR),
]
GEN_SYS_PROMPT_TMPL = ChatPromptTemplate(gen_sys_prompt_messages)
agent_cache = {}
def create_system_prompt(task: str):
"""Create system prompt for another agent given an input task."""
llm = OpenAI(llm="gpt-4")
fmt_messages = GEN_SYS_PROMPT_TMPL.format_messages(task=task)
response = llm.chat(fmt_messages)
return response.message.content
def get_tools(task: str):
"""Get the set of relevant tools to use given an input task."""
subset_tools = tool_retriever.retrieve(task)
return [t.metadata.name for t in subset_tools]
def create_agent(system_prompt: str, tool_names: List[str]):
"""Create an agent given a system prompt and an input set of tools."""
llm = OpenAI(model="gpt-4")
try:
input_tools = [tool_dict[tn] for tn in tool_names]
agent = | OpenAIAgent.from_tools(input_tools, llm=llm, verbose=True) | llama_index.agent.openai.OpenAIAgent.from_tools |
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning-callbacks')
get_ipython().run_line_magic('pip', 'install llama-index-llms-huggingface')
import nest_asyncio
nest_asyncio.apply()
import os
HUGGING_FACE_TOKEN = os.getenv("HUGGING_FACE_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
import pandas as pd
def display_eval_df(question, source, answer_a, answer_b, result) -> None:
"""Pretty print question/answer + gpt-4 judgement dataset."""
eval_df = pd.DataFrame(
{
"Question": question,
"Source": source,
"Model A": answer_a["model"],
"Answer A": answer_a["text"],
"Model B": answer_b["model"],
"Answer B": answer_b["text"],
"Score": result.score,
"Judgement": result.feedback,
},
index=[0],
)
eval_df = eval_df.style.set_properties(
**{
"inline-size": "300px",
"overflow-wrap": "break-word",
},
subset=["Answer A", "Answer B"]
)
display(eval_df)
get_ipython().system('pip install wikipedia -q')
from llama_index.readers.wikipedia import WikipediaReader
train_cities = [
"San Francisco",
"Toronto",
"New York",
"Vancouver",
"Montreal",
"Boston",
]
test_cities = [
"Tokyo",
"Singapore",
"Paris",
]
train_documents = WikipediaReader().load_data(
pages=[f"History of {x}" for x in train_cities]
)
test_documents = WikipediaReader().load_data(
pages=[f"History of {x}" for x in test_cities]
)
QUESTION_GEN_PROMPT = (
"You are a Teacher/ Professor. Your task is to setup "
"a quiz/examination. Using the provided context, formulate "
"a single question that captures an important fact from the "
"context. Restrict the question to the context information provided."
)
from llama_index.core.evaluation import DatasetGenerator
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3)
train_dataset_generator = DatasetGenerator.from_documents(
train_documents,
question_gen_query=QUESTION_GEN_PROMPT,
llm=llm,
show_progress=True,
num_questions_per_chunk=25,
)
test_dataset_generator = DatasetGenerator.from_documents(
test_documents,
question_gen_query=QUESTION_GEN_PROMPT,
llm=llm,
show_progress=True,
num_questions_per_chunk=25,
)
train_questions = train_dataset_generator.generate_questions_from_nodes(
num=200
)
test_questions = test_dataset_generator.generate_questions_from_nodes(num=150)
len(train_questions), len(test_questions)
train_questions[:3]
test_questions[:3]
from llama_index.core import VectorStoreIndex
from llama_index.core.retrievers import VectorIndexRetriever
train_index = VectorStoreIndex.from_documents(documents=train_documents)
train_retriever = VectorIndexRetriever(
index=train_index,
similarity_top_k=2,
)
test_index = VectorStoreIndex.from_documents(documents=test_documents)
test_retriever = VectorIndexRetriever(
index=test_index,
similarity_top_k=2,
)
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
def create_query_engine(
hf_name: str, retriever: VectorIndexRetriever, hf_llm_generators: dict
) -> RetrieverQueryEngine:
"""Create a RetrieverQueryEngine using the HuggingFaceInferenceAPI LLM"""
if hf_name not in hf_llm_generators:
raise KeyError("model not listed in hf_llm_generators")
llm = HuggingFaceInferenceAPI(
model_name=hf_llm_generators[hf_name],
context_window=2048, # to use refine
token=HUGGING_FACE_TOKEN,
)
return | RetrieverQueryEngine.from_args(retriever=retriever, llm=llm) | llama_index.core.query_engine.RetrieverQueryEngine.from_args |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system("mkdir -p 'data/'")
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pathlib import Path
from llama_index.core import Document, VectorStoreIndex
from llama_index.readers.file import PyMuPDFReader
from llama_index.core.node_parser import SimpleNodeParser
from llama_index.llms.openai import OpenAI
loader = | PyMuPDFReader() | llama_index.readers.file.PyMuPDFReader |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from IPython.display import Markdown, display
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
index = VectorStoreIndex.from_documents(documents, chunk_size=512)
from llama_index.core.output_parsers import LangchainOutputParser
from langchain.output_parsers import StructuredOutputParser, ResponseSchema
response_schemas = [
ResponseSchema(
name="Education",
description=(
"Describes the author's educational experience/background."
),
),
ResponseSchema(
name="Work",
description="Describes the author's work experience/background.",
),
]
lc_output_parser = StructuredOutputParser.from_response_schemas(
response_schemas
)
output_parser = | LangchainOutputParser(lc_output_parser) | llama_index.core.output_parsers.LangchainOutputParser |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-chroma')
get_ipython().system('pip install llama-index')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import os
import getpass
import openai
openai.api_key = "sk-"
import chromadb
chroma_client = chromadb.EphemeralClient()
chroma_collection = chroma_client.create_collection("quickstart")
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.chroma import ChromaVectorStore
from IPython.display import Markdown, display
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text="The Shawshank Redemption",
metadata={
"author": "Stephen King",
"theme": "Friendship",
"year": 1994,
},
),
TextNode(
text="The Godfather",
metadata={
"director": "Francis Ford Coppola",
"theme": "Mafia",
"year": 1972,
},
),
TextNode(
text="Inception",
metadata={
"director": "Christopher Nolan",
"theme": "Fiction",
"year": 2010,
},
),
TextNode(
text="To Kill a Mockingbird",
metadata={
"author": "Harper Lee",
"theme": "Mafia",
"year": 1960,
},
),
TextNode(
text="1984",
metadata={
"author": "George Orwell",
"theme": "Totalitarianism",
"year": 1949,
},
),
TextNode(
text="The Great Gatsby",
metadata={
"author": "F. Scott Fitzgerald",
"theme": "The American Dream",
"year": 1925,
},
),
TextNode(
text="Harry Potter and the Sorcerer's Stone",
metadata={
"author": "J.K. Rowling",
"theme": "Fiction",
"year": 1997,
},
),
]
from llama_index.core import StorageContext
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex(nodes, storage_context=storage_context)
from llama_index.core.vector_stores import (
MetadataFilter,
MetadataFilters,
FilterOperator,
)
filters = MetadataFilters(
filters=[
MetadataFilter(key="theme", operator=FilterOperator.EQ, value="Mafia"),
]
)
retriever = index.as_retriever(filters=filters)
retriever.retrieve("What is inception about?")
from llama_index.core.vector_stores import ExactMatchFilter, MetadataFilters
filters = MetadataFilters(
filters=[
MetadataFilter(key="theme", value="Mafia"),
MetadataFilter(key="year", value=1972),
]
)
retriever = index.as_retriever(filters=filters)
retriever.retrieve("What is inception about?")
from llama_index.core.vector_stores import FilterOperator, FilterCondition
filters = MetadataFilters(
filters=[
MetadataFilter(key="theme", value="Fiction"),
MetadataFilter(key="year", value=1997, operator=FilterOperator.GT),
],
condition=FilterCondition.AND,
)
retriever = index.as_retriever(filters=filters)
retriever.retrieve("Harry Potter?")
from llama_index.core.vector_stores import FilterOperator, FilterCondition
filters = MetadataFilters(
filters=[
| MetadataFilter(key="theme", value="Fiction") | llama_index.core.vector_stores.MetadataFilter |
get_ipython().run_line_magic('pip', 'install llama-index-llms-vertex')
from llama_index.llms.vertex import Vertex
from google.oauth2 import service_account
filename = "vertex-407108-37495ce6c303.json"
credentials: service_account.Credentials = (
service_account.Credentials.from_service_account_file(filename)
)
Vertex(
model="text-bison", project=credentials.project_id, credentials=credentials
)
from llama_index.llms.vertex import Vertex
from llama_index.core.llms import ChatMessage, MessageRole
llm = Vertex(model="text-bison", temperature=0, additional_kwargs={})
llm.complete("Hello this is a sample text").text
(await llm.acomplete("hello")).text
list(llm.stream_complete("hello"))[-1].text
chat = Vertex(model="chat-bison")
messages = [
| ChatMessage(role=MessageRole.SYSTEM, content="Reply everything in french") | llama_index.core.llms.ChatMessage |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-chroma')
get_ipython().system('pip install llama-index')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import os
import getpass
import openai
openai.api_key = "sk-"
import chromadb
chroma_client = chromadb.EphemeralClient()
chroma_collection = chroma_client.create_collection("quickstart")
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.chroma import ChromaVectorStore
from IPython.display import Markdown, display
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text="The Shawshank Redemption",
metadata={
"author": "Stephen King",
"theme": "Friendship",
"year": 1994,
},
),
TextNode(
text="The Godfather",
metadata={
"director": "Francis Ford Coppola",
"theme": "Mafia",
"year": 1972,
},
),
TextNode(
text="Inception",
metadata={
"director": "Christopher Nolan",
"theme": "Fiction",
"year": 2010,
},
),
TextNode(
text="To Kill a Mockingbird",
metadata={
"author": "Harper Lee",
"theme": "Mafia",
"year": 1960,
},
),
TextNode(
text="1984",
metadata={
"author": "George Orwell",
"theme": "Totalitarianism",
"year": 1949,
},
),
TextNode(
text="The Great Gatsby",
metadata={
"author": "F. Scott Fitzgerald",
"theme": "The American Dream",
"year": 1925,
},
),
TextNode(
text="Harry Potter and the Sorcerer's Stone",
metadata={
"author": "J.K. Rowling",
"theme": "Fiction",
"year": 1997,
},
),
]
from llama_index.core import StorageContext
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex(nodes, storage_context=storage_context)
from llama_index.core.vector_stores import (
MetadataFilter,
MetadataFilters,
FilterOperator,
)
filters = MetadataFilters(
filters=[
MetadataFilter(key="theme", operator=FilterOperator.EQ, value="Mafia"),
]
)
retriever = index.as_retriever(filters=filters)
retriever.retrieve("What is inception about?")
from llama_index.core.vector_stores import ExactMatchFilter, MetadataFilters
filters = MetadataFilters(
filters=[
MetadataFilter(key="theme", value="Mafia"),
| MetadataFilter(key="year", value=1972) | llama_index.core.vector_stores.MetadataFilter |
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone')
get_ipython().system('pip install llama-index')
import pinecone
import os
api_key = os.environ["PINECONE_API_KEY"]
pinecone.init(api_key=api_key, environment="us-west4-gcp-free")
import os
import getpass
import openai
openai.api_key = "sk-<your-key>"
try:
pinecone.create_index(
"quickstart-index", dimension=1536, metric="euclidean", pod_type="p1"
)
except Exception:
pass
pinecone_index = pinecone.Index("quickstart-index")
pinecone_index.delete(deleteAll=True, namespace="test")
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.pinecone import PineconeVectorStore
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text=(
"Michael Jordan is a retired professional basketball player,"
" widely regarded as one of the greatest basketball players of all"
" time."
),
metadata={
"category": "Sports",
"country": "United States",
"gender": "male",
"born": 1963,
},
),
TextNode(
text=(
"Angelina Jolie is an American actress, filmmaker, and"
" humanitarian. She has received numerous awards for her acting"
" and is known for her philanthropic work."
),
metadata={
"category": "Entertainment",
"country": "United States",
"gender": "female",
"born": 1975,
},
),
TextNode(
text=(
"Elon Musk is a business magnate, industrial designer, and"
" engineer. He is the founder, CEO, and lead designer of SpaceX,"
" Tesla, Inc., Neuralink, and The Boring Company."
),
metadata={
"category": "Business",
"country": "United States",
"gender": "male",
"born": 1971,
},
),
TextNode(
text=(
"Rihanna is a Barbadian singer, actress, and businesswoman. She"
" has achieved significant success in the music industry and is"
" known for her versatile musical style."
),
metadata={
"category": "Music",
"country": "Barbados",
"gender": "female",
"born": 1988,
},
),
TextNode(
text=(
"Cristiano Ronaldo is a Portuguese professional footballer who is"
" considered one of the greatest football players of all time. He"
" has won numerous awards and set multiple records during his"
" career."
),
metadata={
"category": "Sports",
"country": "Portugal",
"gender": "male",
"born": 1985,
},
),
]
vector_store = PineconeVectorStore(
pinecone_index=pinecone_index, namespace="test"
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex(nodes, storage_context=storage_context)
from llama_index.core.tools import FunctionTool
from llama_index.core.vector_stores import (
VectorStoreInfo,
MetadataInfo,
MetadataFilter,
MetadataFilters,
FilterCondition,
FilterOperator,
)
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from typing import List, Tuple, Any
from pydantic import BaseModel, Field
top_k = 3
vector_store_info = VectorStoreInfo(
content_info="brief biography of celebrities",
metadata_info=[
MetadataInfo(
name="category",
type="str",
description=(
"Category of the celebrity, one of [Sports, Entertainment,"
" Business, Music]"
),
),
MetadataInfo(
name="country",
type="str",
description=(
"Country of the celebrity, one of [United States, Barbados,"
" Portugal]"
),
),
MetadataInfo(
name="gender",
type="str",
description=("Gender of the celebrity, one of [male, female]"),
),
MetadataInfo(
name="born",
type="int",
description=("Born year of the celebrity, could be any integer"),
),
],
)
class AutoRetrieveModel(BaseModel):
query: str = Field(..., description="natural language query string")
filter_key_list: List[str] = Field(
..., description="List of metadata filter field names"
)
filter_value_list: List[Any] = Field(
...,
description=(
"List of metadata filter field values (corresponding to names"
" specified in filter_key_list)"
),
)
filter_operator_list: List[str] = Field(
...,
description=(
"Metadata filters conditions (could be one of <, <=, >, >=, ==, !=)"
),
)
filter_condition: str = Field(
...,
description=("Metadata filters condition values (could be AND or OR)"),
)
description = f"""\
Use this tool to look up biographical information about celebrities.
The vector database schema is given below:
{vector_store_info.json()}
"""
def auto_retrieve_fn(
query: str,
filter_key_list: List[str],
filter_value_list: List[any],
filter_operator_list: List[str],
filter_condition: str,
):
"""Auto retrieval function.
Performs auto-retrieval from a vector database, and then applies a set of filters.
"""
query = query or "Query"
metadata_filters = [
MetadataFilter(key=k, value=v, operator=op)
for k, v, op in zip(
filter_key_list, filter_value_list, filter_operator_list
)
]
retriever = VectorIndexRetriever(
index,
filters=MetadataFilters(
filters=metadata_filters, condition=filter_condition
),
top_k=top_k,
)
query_engine = RetrieverQueryEngine.from_args(retriever)
response = query_engine.query(query)
return str(response)
auto_retrieve_tool = FunctionTool.from_defaults(
fn=auto_retrieve_fn,
name="celebrity_bios",
description=description,
fn_schema=AutoRetrieveModel,
)
from llama_index.agent.openai import OpenAIAgent
from llama_index.llms.openai import OpenAI
agent = OpenAIAgent.from_tools(
[auto_retrieve_tool],
llm=OpenAI(temperature=0, model="gpt-4-0613"),
verbose=True,
)
response = agent.chat("Tell me about two celebrities from the United States. ")
print(str(response))
response = agent.chat("Tell me about two celebrities born after 1980. ")
print(str(response))
response = agent.chat(
"Tell me about few celebrities under category business and born after 1950. "
)
print(str(response))
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
select,
column,
)
from llama_index.core import SQLDatabase
from llama_index.core.indices import SQLStructStoreIndex
engine = create_engine("sqlite:///:memory:", future=True)
metadata_obj = MetaData()
table_name = "city_stats"
city_stats_table = Table(
table_name,
metadata_obj,
Column("city_name", String(16), primary_key=True),
Column("population", Integer),
Column("country", String(16), nullable=False),
)
metadata_obj.create_all(engine)
metadata_obj.tables.keys()
from sqlalchemy import insert
rows = [
{"city_name": "Toronto", "population": 2930000, "country": "Canada"},
{"city_name": "Tokyo", "population": 13960000, "country": "Japan"},
{"city_name": "Berlin", "population": 3645000, "country": "Germany"},
]
for row in rows:
stmt = insert(city_stats_table).values(**row)
with engine.begin() as connection:
cursor = connection.execute(stmt)
with engine.connect() as connection:
cursor = connection.exec_driver_sql("SELECT * FROM city_stats")
print(cursor.fetchall())
sql_database = SQLDatabase(engine, include_tables=["city_stats"])
from llama_index.core.query_engine import NLSQLTableQueryEngine
query_engine = NLSQLTableQueryEngine(
sql_database=sql_database,
tables=["city_stats"],
)
get_ipython().system('pip install wikipedia')
from llama_index.readers.wikipedia import WikipediaReader
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
cities = ["Toronto", "Berlin", "Tokyo"]
wiki_docs = WikipediaReader().load_data(pages=cities)
import pinecone
import os
api_key = os.environ["PINECONE_API_KEY"]
pinecone.init(api_key=api_key, environment="us-west1-gcp")
pinecone_index = pinecone.Index("quickstart")
pinecone_index.delete(deleteAll=True)
from llama_index.core import Settings
from llama_index.core import StorageContext
from llama_index.vector_stores.pinecone import PineconeVectorStore
from llama_index.core.node_parser import TokenTextSplitter
from llama_index.llms.openai import OpenAI
Settings.llm = OpenAI(temperature=0, model="gpt-4")
Settings.node_parser = TokenTextSplitter(chunk_size=1024)
vector_store = PineconeVectorStore(
pinecone_index=pinecone_index, namespace="wiki_cities"
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
vector_index = VectorStoreIndex([], storage_context=storage_context)
for city, wiki_doc in zip(cities, wiki_docs):
nodes = | Settings.node_parser.get_nodes_from_documents([wiki_doc]) | llama_index.core.Settings.node_parser.get_nodes_from_documents |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-colbert')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant')
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-gemini')
get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-vectara')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-google')
get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-google')
get_ipython().run_line_magic('pip', 'install llama-index-response-synthesizers-google')
get_ipython().run_line_magic('pip', 'install llama-index')
get_ipython().run_line_magic('pip', 'install "google-ai-generativelanguage>=0.4,<=1.0"')
get_ipython().run_line_magic('pip', 'install torch sentence-transformers')
get_ipython().run_line_magic('pip', 'install google-auth-oauthlib')
from google.oauth2 import service_account
from llama_index.indices.managed.google import GoogleIndex
from llama_index.vector_stores.google import set_google_config
credentials = service_account.Credentials.from_service_account_file(
"service_account_key.json",
scopes=[
"https://www.googleapis.com/auth/cloud-platform",
"https://www.googleapis.com/auth/generative-language.retriever",
],
)
set_google_config(auth_credentials=credentials)
project_name = "TODO-your-project-name" # @param {type:"string"}
email = "[email protected]" # @param {type:"string"}
client_file_name = "client_secret.json"
get_ipython().system('gcloud config set project $project_name')
get_ipython().system('gcloud config set account $email')
get_ipython().system('gcloud auth application-default login --no-browser --client-id-file=$client_file_name --scopes="https://www.googleapis.com/auth/generative-language.retriever,https://www.googleapis.com/auth/cloud-platform"')
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
import os
GOOGLE_API_KEY = "" # add your GOOGLE API key here
os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
from llama_index.core import SimpleDirectoryReader
from llama_index.indices.managed.google import GoogleIndex
google_index = GoogleIndex.create_corpus(display_name="My first corpus!")
print(f"Newly created corpus ID is {google_index.corpus_id}.")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
google_index.insert_documents(documents)
google_index = GoogleIndex.from_corpus(corpus_id="")
query_engine = google_index.as_query_engine()
response = query_engine.query("which program did this author attend?")
print(response)
from llama_index.core.response.notebook_utils import display_source_node
for r in response.source_nodes:
display_source_node(r, source_length=1000)
from google.ai.generativelanguage import (
GenerateAnswerRequest,
)
query_engine = google_index.as_query_engine(
temperature=0.3,
answer_style=GenerateAnswerRequest.AnswerStyle.VERBOSE,
)
response = query_engine.query("Which program did this author attend?")
print(response)
from llama_index.core.response.notebook_utils import display_source_node
for r in response.source_nodes:
| display_source_node(r, source_length=1000) | llama_index.core.response.notebook_utils.display_source_node |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-together')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
domain = "docs.llamaindex.ai"
docs_url = "https://docs.llamaindex.ai/en/latest/"
get_ipython().system('wget -e robots=off --recursive --no-clobber --page-requisites --html-extension --convert-links --restrict-file-names=windows --domains {domain} --no-parent {docs_url}')
from llama_index.readers.file import UnstructuredReader
from pathlib import Path
from llama_index.llms.openai import OpenAI
from llama_index.core import Document
reader = UnstructuredReader()
all_html_files = [
"docs.llamaindex.ai/en/latest/index.html",
"docs.llamaindex.ai/en/latest/contributing/contributing.html",
"docs.llamaindex.ai/en/latest/understanding/understanding.html",
"docs.llamaindex.ai/en/latest/understanding/using_llms/using_llms.html",
"docs.llamaindex.ai/en/latest/understanding/using_llms/privacy.html",
"docs.llamaindex.ai/en/latest/understanding/loading/llamahub.html",
"docs.llamaindex.ai/en/latest/optimizing/production_rag.html",
"docs.llamaindex.ai/en/latest/module_guides/models/llms.html",
]
doc_limit = 10
docs = []
for idx, f in enumerate(all_html_files):
if idx > doc_limit:
break
print(f"Idx {idx}/{len(all_html_files)}")
loaded_docs = reader.load_data(file=f, split_documents=True)
start_idx = 64
loaded_doc = Document(
id_=str(f),
text="\n\n".join([d.get_content() for d in loaded_docs[start_idx:]]),
metadata={"path": str(f)},
)
print(str(f))
docs.append(loaded_doc)
from llama_index.embeddings.together import TogetherEmbedding
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
api_key = "<api_key>"
embed_model = TogetherEmbedding(
model_name="togethercomputer/m2-bert-80M-32k-retrieval", api_key=api_key
)
llm = OpenAI(temperature=0, model="gpt-3.5-turbo")
from llama_index.core.storage.docstore import SimpleDocumentStore
for doc in docs:
embedding = embed_model.get_text_embedding(doc.get_content())
doc.embedding = embedding
docstore = | SimpleDocumentStore() | llama_index.core.storage.docstore.SimpleDocumentStore |
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning-callbacks')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
from llama_index.core import (
SimpleDirectoryReader,
VectorStoreIndex,
StorageContext,
load_index_from_storage,
)
from llama_index.llms.openai import OpenAI
from llama_index.core.tools import QueryEngineTool, ToolMetadata
llm_35 = OpenAI(model="gpt-3.5-turbo-0613", temperature=0.3)
llm_4 = OpenAI(model="gpt-4-0613", temperature=0.3)
try:
storage_context = StorageContext.from_defaults(
persist_dir="./storage/march"
)
march_index = load_index_from_storage(storage_context)
storage_context = StorageContext.from_defaults(
persist_dir="./storage/june"
)
june_index = load_index_from_storage(storage_context)
storage_context = StorageContext.from_defaults(
persist_dir="./storage/sept"
)
sept_index = load_index_from_storage(storage_context)
index_loaded = True
except:
index_loaded = False
if not index_loaded:
march_docs = SimpleDirectoryReader(
input_files=["../../data/10q/uber_10q_march_2022.pdf"]
).load_data()
june_docs = SimpleDirectoryReader(
input_files=["../../data/10q/uber_10q_june_2022.pdf"]
).load_data()
sept_docs = SimpleDirectoryReader(
input_files=["../../data/10q/uber_10q_sept_2022.pdf"]
).load_data()
march_index = VectorStoreIndex.from_documents(
march_docs,
)
june_index = VectorStoreIndex.from_documents(
june_docs,
)
sept_index = VectorStoreIndex.from_documents(
sept_docs,
)
march_index.storage_context.persist(persist_dir="./storage/march")
june_index.storage_context.persist(persist_dir="./storage/june")
sept_index.storage_context.persist(persist_dir="./storage/sept")
march_engine = march_index.as_query_engine(similarity_top_k=3, llm=llm_35)
june_engine = june_index.as_query_engine(similarity_top_k=3, llm=llm_35)
sept_engine = sept_index.as_query_engine(similarity_top_k=3, llm=llm_35)
from llama_index.core.tools import QueryEngineTool
query_tool_sept = QueryEngineTool.from_defaults(
query_engine=sept_engine,
name="sept_2022",
description=(
f"Provides information about Uber quarterly financials ending"
f" September 2022"
),
)
query_tool_june = QueryEngineTool.from_defaults(
query_engine=june_engine,
name="june_2022",
description=(
f"Provides information about Uber quarterly financials ending June"
f" 2022"
),
)
query_tool_march = QueryEngineTool.from_defaults(
query_engine=march_engine,
name="march_2022",
description=(
f"Provides information about Uber quarterly financials ending March"
f" 2022"
),
)
query_engine_tools = [query_tool_march, query_tool_june, query_tool_sept]
from llama_index.core.agent import ReActAgent
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo-0613")
base_agent = ReActAgent.from_tools(query_engine_tools, llm=llm, verbose=True)
response = base_agent.chat(
"Analyze Uber revenue growth over the last few quarters"
)
print(str(response))
print(str(response))
response = base_agent.chat(
"Can you tell me about the risk factors in the quarter with the highest"
" revenue growth?"
)
print(str(response))
from llama_index.core.evaluation import DatasetGenerator
base_question_gen_query = (
"You are a Teacher/ Professor. Your task is to setup a quiz/examination."
" Using the provided context from the Uber March 10Q filing, formulate a"
" single question that captures an important fact from the context."
" context. Restrict the question to the context information provided."
)
dataset_generator = DatasetGenerator.from_documents(
march_docs,
question_gen_query=base_question_gen_query,
llm=llm_35,
)
questions = dataset_generator.generate_questions_from_nodes(num=20)
questions
from llama_index.llms.openai import OpenAI
from llama_index.core import PromptTemplate
vary_question_tmpl = """\
You are a financial assistant. Given a question over a 2023 Uber 10Q filing, your goal
is to generate up to {num_vary} variations of that question that might span multiple 10Q's.
This can include compare/contrasting different 10Qs, replacing the current quarter with
another quarter, or generating questions that can only be answered over multiple quarters (be creative!)
You are given a valid set of 10Q filings. Please only generate question variations that can be
answered in that set.
For example:
Base Question: What was the free cash flow of Uber in March 2023?
Valid 10Qs: [March 2023, June 2023, September 2023]
Question Variations:
What was the free cash flow of Uber in June 2023?
Can you compare/contrast the free cash flow of Uber in June/September 2023 and offer explanations for the change?
Did the free cash flow of Uber increase of decrease in 2023?
Now let's give it a shot!
Base Question: {base_question}
Valid 10Qs: {valid_10qs}
Question Variations:
"""
def gen_question_variations(base_questions, num_vary=3):
"""Generate question variations."""
VALID_10Q_STR = "[March 2022, June 2022, September 2022]"
llm = | OpenAI(model="gpt-4") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-evaluation-tonic-validate')
import json
import pandas as pd
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.evaluation.tonic_validate import (
AnswerConsistencyEvaluator,
AnswerSimilarityEvaluator,
AugmentationAccuracyEvaluator,
AugmentationPrecisionEvaluator,
RetrievalPrecisionEvaluator,
TonicValidateEvaluator,
)
question = "What makes Sam Altman a good founder?"
reference_answer = "He is smart and has a great force of will."
llm_answer = "He is a good founder because he is smart."
retrieved_context_list = [
"Sam Altman is a good founder. He is very smart.",
"What makes Sam Altman such a good founder is his great force of will.",
]
answer_similarity_evaluator = AnswerSimilarityEvaluator()
score = await answer_similarity_evaluator.aevaluate(
question,
llm_answer,
retrieved_context_list,
reference_response=reference_answer,
)
score
answer_consistency_evaluator = AnswerConsistencyEvaluator()
score = await answer_consistency_evaluator.aevaluate(
question, llm_answer, retrieved_context_list
)
score
augmentation_accuracy_evaluator = AugmentationAccuracyEvaluator()
score = await augmentation_accuracy_evaluator.aevaluate(
question, llm_answer, retrieved_context_list
)
score
augmentation_precision_evaluator = AugmentationPrecisionEvaluator()
score = await augmentation_precision_evaluator.aevaluate(
question, llm_answer, retrieved_context_list
)
score
retrieval_precision_evaluator = RetrievalPrecisionEvaluator()
score = await retrieval_precision_evaluator.aevaluate(
question, llm_answer, retrieved_context_list
)
score
tonic_validate_evaluator = TonicValidateEvaluator()
scores = await tonic_validate_evaluator.aevaluate(
question,
llm_answer,
retrieved_context_list,
reference_response=reference_answer,
)
scores.score_dict
tonic_validate_evaluator = TonicValidateEvaluator()
scores = await tonic_validate_evaluator.aevaluate_run(
[question], [llm_answer], [retrieved_context_list], [reference_answer]
)
scores.run_data[0].scores
get_ipython().system('llamaindex-cli download-llamadataset EvaluatingLlmSurveyPaperDataset --download-dir ./data')
from llama_index.core import SimpleDirectoryReader
from llama_index.core.llama_dataset import LabelledRagDataset
from llama_index.core import VectorStoreIndex
rag_dataset = | LabelledRagDataset.from_json("./data/rag_dataset.json") | llama_index.core.llama_dataset.LabelledRagDataset.from_json |
get_ipython().run_line_magic('pip', 'install llama-index-llms-huggingface')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface')
get_ipython().system('pip install llama-index ipywidgets')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from IPython.display import Markdown, display
import torch
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core import PromptTemplate
LLAMA2_7B = "meta-llama/Llama-2-7b-hf"
LLAMA2_7B_CHAT = "meta-llama/Llama-2-7b-chat-hf"
LLAMA2_13B = "meta-llama/Llama-2-13b-hf"
LLAMA2_13B_CHAT = "meta-llama/Llama-2-13b-chat-hf"
LLAMA2_70B = "meta-llama/Llama-2-70b-hf"
LLAMA2_70B_CHAT = "meta-llama/Llama-2-70b-chat-hf"
selected_model = LLAMA2_13B_CHAT
SYSTEM_PROMPT = """You are an AI assistant that answers questions in a friendly manner, based on the given source documents. Here are some rules you always follow:
- Generate human readable output, avoid creating output with gibberish text.
- Generate only the requested output, don't include any other language before or after the requested output.
- Never say thank you, that you are happy to help, that you are an AI agent, etc. Just answer directly.
- Generate professional language typically used in business documents in North America.
- Never generate offensive or foul language.
"""
query_wrapper_prompt = PromptTemplate(
"[INST]<<SYS>>\n" + SYSTEM_PROMPT + "<</SYS>>\n\n{query_str}[/INST] "
)
llm = HuggingFaceLLM(
context_window=4096,
max_new_tokens=2048,
generate_kwargs={"temperature": 0.0, "do_sample": False},
query_wrapper_prompt=query_wrapper_prompt,
tokenizer_name=selected_model,
model_name=selected_model,
device_map="auto",
model_kwargs={"torch_dtype": torch.float16, "load_in_8bit": True},
)
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
embed_model = | HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") | llama_index.embeddings.huggingface.HuggingFaceEmbedding |
get_ipython().run_line_magic('pip', 'install llama-index-question-gen-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
from IPython.display import Markdown, display
def display_prompt_dict(prompts_dict):
for k, p in prompts_dict.items():
text_md = f"**Prompt Key**: {k}<br>" f"**Text:** <br>"
display(Markdown(text_md))
print(p.get_template())
display(Markdown("<br><br>"))
from llama_index.core.selectors import LLMSingleSelector, LLMMultiSelector
from llama_index.core.selectors import (
PydanticMultiSelector,
PydanticSingleSelector,
)
selector = LLMMultiSelector.from_defaults()
from llama_index.core.tools import ToolMetadata
tool_choices = [
ToolMetadata(
name="covid_nyt",
description=("This tool contains a NYT news article about COVID-19"),
),
ToolMetadata(
name="covid_wiki",
description=("This tool contains the Wikipedia page about COVID-19"),
),
ToolMetadata(
name="covid_tesla",
description=("This tool contains the Wikipedia page about apples"),
),
]
display_prompt_dict(selector.get_prompts())
selector_result = selector.select(
tool_choices, query="Tell me more about COVID-19"
)
selector_result.selections
from llama_index.core import PromptTemplate
from llama_index.llms.openai import OpenAI
query_gen_str = """\
You are a helpful assistant that generates multiple search queries based on a \
single input query. Generate {num_queries} search queries, one on each line, \
related to the following input query:
Query: {query}
Queries:
"""
query_gen_prompt = | PromptTemplate(query_gen_str) | llama_index.core.PromptTemplate |
get_ipython().run_line_magic('pip', 'install llama-index-readers-github')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-weaviate')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import nest_asyncio
nest_asyncio.apply()
import os
os.environ["GITHUB_TOKEN"] = ""
import os
from llama_index.readers.github import GitHubRepositoryIssuesReader, GitHubIssuesClient
github_client = GitHubIssuesClient()
loader = GitHubRepositoryIssuesReader(
github_client,
owner="run-llama",
repo="llama_index",
verbose=True,
)
orig_docs = loader.load_data()
limit = 100
docs = []
for idx, doc in enumerate(orig_docs):
doc.metadata["index_id"] = doc.id_
if idx >= limit:
break
docs.append(doc)
from copy import deepcopy
import asyncio
from tqdm.asyncio import tqdm_asyncio
from llama_index.core.indices import SummaryIndex
from llama_index.core import Document, ServiceContext
from llama_index.llms.openai import OpenAI
from llama_index.core.async_utils import run_jobs
async def aprocess_doc(doc, include_summary: bool = True):
"""Process doc."""
print(f"Processing {doc.id_}")
metadata = doc.metadata
date_tokens = metadata["created_at"].split("T")[0].split("-")
year = int(date_tokens[0])
month = int(date_tokens[1])
day = int(date_tokens[2])
assignee = "" if "assignee" not in doc.metadata else doc.metadata["assignee"]
size = ""
if len(doc.metadata["labels"]) > 0:
size_arr = [l for l in doc.metadata["labels"] if "size:" in l]
size = size_arr[0].split(":")[1] if len(size_arr) > 0 else ""
new_metadata = {
"state": metadata["state"],
"year": year,
"month": month,
"day": day,
"assignee": assignee,
"size": size,
"index_id": doc.id_,
}
summary_index = SummaryIndex.from_documents([doc])
query_str = "Give a one-sentence concise summary of this issue."
query_engine = summary_index.as_query_engine(
service_context=ServiceContext.from_defaults(llm=OpenAI(model="gpt-3.5-turbo"))
)
summary_txt = str(query_engine.query(query_str))
new_doc = Document(text=summary_txt, metadata=new_metadata)
return new_doc
async def aprocess_docs(docs):
"""Process metadata on docs."""
new_docs = []
tasks = []
for doc in docs:
task = aprocess_doc(doc)
tasks.append(task)
new_docs = await | run_jobs(tasks, show_progress=True, workers=5) | llama_index.core.async_utils.run_jobs |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().system('pip install llama-index')
import pandas as pd
pd.set_option("display.max_rows", None)
pd.set_option("display.max_columns", None)
pd.set_option("display.width", None)
pd.set_option("display.max_colwidth", None)
get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm')
get_ipython().system('wget "https://www.dropbox.com/scl/fi/rkw0u959yb4w8vlzz76sa/tesla_2020_10k.htm?rlkey=tfkdshswpoupav5tqigwz1mp7&dl=1" -O tesla_2020_10k.htm')
from llama_index.readers.file import FlatReader
from pathlib import Path
reader = FlatReader()
docs = reader.load_data(Path("./tesla_2020_10k.htm"))
from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.readers.file import FlatReader
from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter
from llama_index.core.ingestion import IngestionPipeline
from pathlib import Path
import nest_asyncio
nest_asyncio.apply()
reader = FlatReader()
docs = reader.load_data(Path("./tesla_2020_10k.htm"))
pipeline = IngestionPipeline(
documents=docs,
transformations=[
HTMLNodeParser.from_defaults(),
SentenceSplitter(chunk_size=1024, chunk_overlap=200),
| OpenAIEmbedding() | llama_index.embeddings.openai.OpenAIEmbedding |
get_ipython().run_line_magic('pip', 'install -q llama-index-vector-stores-chroma llama-index-llms-fireworks llama-index-embeddings-fireworks==0.1.2')
get_ipython().run_line_magic('pip', 'install -q llama-index')
get_ipython().system('pip install llama-index chromadb --quiet')
get_ipython().system('pip install -q chromadb')
get_ipython().system('pip install -q pydantic==1.10.11')
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import StorageContext
from llama_index.embeddings.fireworks import FireworksEmbedding
from llama_index.llms.fireworks import Fireworks
from IPython.display import Markdown, display
import chromadb
import getpass
fw_api_key = getpass.getpass("Fireworks API Key:")
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
from llama_index.llms.fireworks import Fireworks
from llama_index.embeddings.fireworks import FireworksEmbedding
llm = Fireworks(
temperature=0, model="accounts/fireworks/models/mixtral-8x7b-instruct"
)
chroma_client = chromadb.EphemeralClient()
chroma_collection = chroma_client.create_collection("quickstart")
embed_model = FireworksEmbedding(
model_name="nomic-ai/nomic-embed-text-v1.5",
)
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
vector_store = | ChromaVectorStore(chroma_collection=chroma_collection) | llama_index.vector_stores.chroma.ChromaVectorStore |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pgvecto-rs')
get_ipython().run_line_magic('pip', 'install llama-index "pgvecto_rs[sdk]"')
get_ipython().system('docker run --name pgvecto-rs-demo -e POSTGRES_PASSWORD=mysecretpassword -p 5432:5432 -d tensorchord/pgvecto-rs:latest')
import logging
import os
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from pgvecto_rs.sdk import PGVectoRs
URL = "postgresql+psycopg://{username}:{password}@{host}:{port}/{db_name}".format(
port=os.getenv("DB_PORT", "5432"),
host=os.getenv("DB_HOST", "localhost"),
username=os.getenv("DB_USER", "postgres"),
password=os.getenv("DB_PASS", "mysecretpassword"),
db_name=os.getenv("DB_NAME", "postgres"),
)
client = PGVectoRs(
db_url=URL,
collection_name="example",
dimension=1536, # Using OpenAI’s text-embedding-ada-002
)
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
from IPython.display import Markdown, display
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
from llama_index.vector_stores.pgvecto_rs import PGVectoRsStore
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
from llama_index.core import StorageContext
vector_store = | PGVectoRsStore(client=client) | llama_index.vector_stores.pgvecto_rs.PGVectoRsStore |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().system('pip install llama-index')
import pandas as pd
pd.set_option("display.max_rows", None)
pd.set_option("display.max_columns", None)
pd.set_option("display.width", None)
pd.set_option("display.max_colwidth", None)
get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm')
get_ipython().system('wget "https://www.dropbox.com/scl/fi/rkw0u959yb4w8vlzz76sa/tesla_2020_10k.htm?rlkey=tfkdshswpoupav5tqigwz1mp7&dl=1" -O tesla_2020_10k.htm')
from llama_index.readers.file import FlatReader
from pathlib import Path
reader = FlatReader()
docs = reader.load_data(Path("./tesla_2020_10k.htm"))
from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.readers.file import FlatReader
from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter
from llama_index.core.ingestion import IngestionPipeline
from pathlib import Path
import nest_asyncio
nest_asyncio.apply()
reader = FlatReader()
docs = reader.load_data(Path("./tesla_2020_10k.htm"))
pipeline = IngestionPipeline(
documents=docs,
transformations=[
HTMLNodeParser.from_defaults(),
SentenceSplitter(chunk_size=1024, chunk_overlap=200),
OpenAIEmbedding(),
],
)
eval_nodes = pipeline.run(documents=docs)
eval_llm = OpenAI(model="gpt-3.5-turbo")
dataset_generator = DatasetGenerator(
eval_nodes[:100],
llm=eval_llm,
show_progress=True,
num_questions_per_chunk=3,
)
eval_dataset = await dataset_generator.agenerate_dataset_from_nodes(num=100)
len(eval_dataset.qr_pairs)
eval_dataset.save_json("data/tesla10k_eval_dataset.json")
eval_dataset = QueryResponseDataset.from_json(
"data/tesla10k_eval_dataset.json"
)
eval_qs = eval_dataset.questions
qr_pairs = eval_dataset.qr_pairs
ref_response_strs = [r for (_, r) in qr_pairs]
from llama_index.core.evaluation import (
CorrectnessEvaluator,
SemanticSimilarityEvaluator,
)
from llama_index.core.evaluation.eval_utils import (
get_responses,
get_results_df,
)
from llama_index.core.evaluation import BatchEvalRunner
evaluator_c = CorrectnessEvaluator(llm=eval_llm)
evaluator_s = SemanticSimilarityEvaluator(llm=eval_llm)
evaluator_dict = {
"correctness": evaluator_c,
"semantic_similarity": evaluator_s,
}
batch_eval_runner = BatchEvalRunner(
evaluator_dict, workers=2, show_progress=True
)
from llama_index.core import VectorStoreIndex
async def run_evals(
pipeline, batch_eval_runner, docs, eval_qs, eval_responses_ref
):
nodes = pipeline.run(documents=docs)
vector_index = | VectorStoreIndex(nodes) | llama_index.core.VectorStoreIndex |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().system('mkdir data')
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pathlib import Path
from llama_index.readers.file import PyMuPDFReader
loader = | PyMuPDFReader() | llama_index.readers.file.PyMuPDFReader |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-myscale')
get_ipython().system('pip install llama-index')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from os import environ
import clickhouse_connect
environ["OPENAI_API_KEY"] = "sk-*"
client = clickhouse_connect.get_client(
host="YOUR_CLUSTER_HOST",
port=8443,
username="YOUR_USERNAME",
password="YOUR_CLUSTER_PASSWORD",
)
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.myscale import MyScaleVectorStore
from IPython.display import Markdown, display
documents = SimpleDirectoryReader("../data/paul_graham").load_data()
print("Document ID:", documents[0].doc_id)
print("Number of Documents: ", len(documents))
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
loader = SimpleDirectoryReader("./data/paul_graham/")
documents = loader.load_data()
for file in loader.input_files:
print(file)
from llama_index.core import StorageContext
for document in documents:
document.metadata = {"user_id": "123", "favorite_color": "blue"}
vector_store = | MyScaleVectorStore(myscale_client=client) | llama_index.vector_stores.myscale.MyScaleVectorStore |
get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-openai')
get_ipython().system('pip install openai matplotlib')
import os
OPENAI_API_TOKEN = "sk-" # Your OpenAI API token here
os.environ["OPENAI_API_TOKEN"] = OPENAI_API_TOKEN
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
from llama_index.core.multi_modal_llms.generic_utils import load_image_urls
image_urls = [
"https://res.cloudinary.com/hello-tickets/image/upload/c_limit,f_auto,q_auto,w_1920/v1640835927/o3pfl41q7m5bj8jardk0.jpg",
]
image_documents = load_image_urls(image_urls)
openai_mm_llm = OpenAIMultiModal(
model="gpt-4-vision-preview", api_key=OPENAI_API_TOKEN, max_new_tokens=300
)
from PIL import Image
import requests
from io import BytesIO
import matplotlib.pyplot as plt
img_response = requests.get(image_urls[0])
print(image_urls[0])
img = Image.open(BytesIO(img_response.content))
plt.imshow(img)
complete_response = openai_mm_llm.complete(
prompt="Describe the images as an alternative text",
image_documents=image_documents,
)
print(complete_response)
stream_complete_response = openai_mm_llm.stream_complete(
prompt="give me more context for this image",
image_documents=image_documents,
)
for r in stream_complete_response:
print(r.delta, end="")
from llama_index.core.multi_modal_llms.openai_utils import (
generate_openai_multi_modal_chat_message,
)
chat_msg_1 = generate_openai_multi_modal_chat_message(
prompt="Describe the images as an alternative text",
role="user",
image_documents=image_documents,
)
chat_msg_2 = generate_openai_multi_modal_chat_message(
prompt="The image is a graph showing the surge in US mortgage rates. It is a visual representation of data, with a title at the top and labels for the x and y-axes. Unfortunately, without seeing the image, I cannot provide specific details about the data or the exact design of the graph.",
role="assistant",
)
chat_msg_3 = generate_openai_multi_modal_chat_message(
prompt="can I know more?",
role="user",
)
chat_messages = [chat_msg_1, chat_msg_2, chat_msg_3]
chat_response = openai_mm_llm.chat(
messages=chat_messages,
)
for msg in chat_messages:
print(msg.role, msg.content)
print(chat_response)
stream_chat_response = openai_mm_llm.stream_chat(
messages=chat_messages,
)
for r in stream_chat_response:
print(r.delta, end="")
response_acomplete = await openai_mm_llm.acomplete(
prompt="Describe the images as an alternative text",
image_documents=image_documents,
)
print(response_acomplete)
response_astream_complete = await openai_mm_llm.astream_complete(
prompt="Describe the images as an alternative text",
image_documents=image_documents,
)
async for delta in response_astream_complete:
print(delta.delta, end="")
achat_response = await openai_mm_llm.achat(
messages=chat_messages,
)
print(achat_response)
astream_chat_response = await openai_mm_llm.astream_chat(
messages=chat_messages,
)
async for delta in astream_chat_response:
print(delta.delta, end="")
image_urls = [
"https://www.visualcapitalist.com/wp-content/uploads/2023/10/US_Mortgage_Rate_Surge-Sept-11-1.jpg",
"https://www.sportsnet.ca/wp-content/uploads/2023/11/CP1688996471-1040x572.jpg",
]
image_documents_1 = load_image_urls(image_urls)
response_multi = openai_mm_llm.complete(
prompt="is there any relationship between those images?",
image_documents=image_documents_1,
)
print(response_multi)
from llama_index.core import SimpleDirectoryReader
image_documents = | SimpleDirectoryReader("./images_wiki") | llama_index.core.SimpleDirectoryReader |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
from llama_index.llms.openai import OpenAI
resp = OpenAI().complete("Paul Graham is ")
print(resp)
from llama_index.core.llms import ChatMessage
from llama_index.llms.openai import OpenAI
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
ChatMessage(role="user", content="What is your name"),
]
resp = | OpenAI() | llama_index.llms.openai.OpenAI |
import os
import sys
import logging
from dotenv import load_dotenv
logging.basicConfig(stream=sys.stderr, level=logging.INFO)
logger = logging.getLogger(__name__)
load_dotenv() # take environment variables from .env.
logger.debug(f"NewRelic application: {os.getenv('NEW_RELIC_APP_NAME')}")
import os
from time import time
from nr_openai_observability import monitor
from llama_index import VectorStoreIndex, download_loader
if os.getenv("NEW_RELIC_APP_NAME") and os.getenv("NEW_RELIC_LICENSE_KEY"):
monitor.initialization(application_name=os.getenv("NEW_RELIC_APP_NAME"))
RayyanReader = | download_loader("RayyanReader") | llama_index.download_loader |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-bagel')
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.bagel import BagelVectorStore
from llama_index.core import StorageContext
from IPython.display import Markdown, display
import bagel
from bagel import Settings
import os
import getpass
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
import openai
openai.api_key = os.environ["OPENAI_API_KEY"]
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
server_settings = Settings(
bagel_api_impl="rest", bagel_server_host="api.bageldb.ai"
)
client = bagel.Client(server_settings)
collection = client.get_or_create_cluster("testing_embeddings")
embed_model = "local:BAAI/bge-small-en-v1.5"
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
vector_store = BagelVectorStore(collection=collection)
storage_context = | StorageContext.from_defaults(vector_store=vector_store) | llama_index.core.StorageContext.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-llms-clarifai')
get_ipython().system('pip install llama-index')
get_ipython().system('pip install clarifai')
import os
os.environ["CLARIFAI_PAT"] = "<YOUR CLARIFAI PAT>"
from llama_index.llms.clarifai import Clarifai
params = dict(
user_id="clarifai",
app_id="ml",
model_name="llama2-7b-alternative-4k",
model_url=(
"https://clarifai.com/clarifai/ml/models/llama2-7b-alternative-4k"
),
)
llm_model = | Clarifai(model_url=params["model_url"]) | llama_index.llms.clarifai.Clarifai |
get_ipython().system('pip install llama-index llama-index-packs-raptor llama-index-vector-stores-qdrant')
from llama_index.packs.raptor import RaptorPack
get_ipython().system('wget https://arxiv.org/pdf/2401.18059.pdf -O ./raptor_paper.pdf')
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
import nest_asyncio
nest_asyncio.apply()
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader(input_files=["./raptor_paper.pdf"]).load_data()
from llama_index.core.node_parser import SentenceSplitter
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.vector_stores.chroma import ChromaVectorStore
import chromadb
client = chromadb.PersistentClient(path="./raptor_paper_db")
collection = client.get_or_create_collection("raptor")
vector_store = ChromaVectorStore(chroma_collection=collection)
raptor_pack = RaptorPack(
documents,
embed_model=OpenAIEmbedding(
model="text-embedding-3-small"
), # used for embedding clusters
llm=OpenAI(model="gpt-3.5-turbo", temperature=0.1), # used for generating summaries
vector_store=vector_store, # used for storage
similarity_top_k=2, # top k for each layer, or overall top-k for collapsed
mode="collapsed", # sets default mode
transformations=[
SentenceSplitter(chunk_size=400, chunk_overlap=50)
], # transformations applied for ingestion
)
nodes = raptor_pack.run("What baselines is raptor compared against?", mode="collapsed")
print(len(nodes))
print(nodes[0].text)
nodes = raptor_pack.run(
"What baselines is raptor compared against?", mode="tree_traversal"
)
print(len(nodes))
print(nodes[0].text)
from llama_index.packs.raptor import RaptorRetriever
retriever = RaptorRetriever(
[],
embed_model=OpenAIEmbedding(
model="text-embedding-3-small"
), # used for embedding clusters
llm= | OpenAI(model="gpt-3.5-turbo", temperature=0.1) | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
import nest_asyncio
nest_asyncio.apply()
from llama_index.embeddings.huggingface import (
HuggingFaceEmbedding,
HuggingFaceInferenceAPIEmbedding,
)
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
model_name = "jinaai/jina-embeddings-v2-small-en"
embed_model = HuggingFaceEmbedding(
model_name=model_name, trust_remote_code=True
)
Settings.embed_model = embed_model
Settings.chunk_size = 1024
embed_model_base = OpenAIEmbedding()
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
reader = SimpleDirectoryReader("../data/paul_graham")
docs = reader.load_data()
index_jina = VectorStoreIndex.from_documents(docs, embed_model=embed_model)
index_base = VectorStoreIndex.from_documents(
docs, embed_model=embed_model_base
)
from llama_index.core.response.notebook_utils import display_source_node
retriever_jina = index_jina.as_retriever(similarity_top_k=1)
retriever_base = index_base.as_retriever(similarity_top_k=1)
retrieved_nodes = retriever_jina.retrieve(
"What did the author do in art school?"
)
for n in retrieved_nodes:
| display_source_node(n, source_length=2000) | llama_index.core.response.notebook_utils.display_source_node |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-chroma')
get_ipython().system('pip install llama-index')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import os
import getpass
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
import openai
openai.api_key = os.environ["OPENAI_API_KEY"]
import chromadb
chroma_client = chromadb.EphemeralClient()
chroma_collection = chroma_client.create_collection("quickstart")
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text=(
"Michael Jordan is a retired professional basketball player,"
" widely regarded as one of the greatest basketball players of all"
" time."
),
metadata={
"category": "Sports",
"country": "United States",
},
),
TextNode(
text=(
"Angelina Jolie is an American actress, filmmaker, and"
" humanitarian. She has received numerous awards for her acting"
" and is known for her philanthropic work."
),
metadata={
"category": "Entertainment",
"country": "United States",
},
),
TextNode(
text=(
"Elon Musk is a business magnate, industrial designer, and"
" engineer. He is the founder, CEO, and lead designer of SpaceX,"
" Tesla, Inc., Neuralink, and The Boring Company."
),
metadata={
"category": "Business",
"country": "United States",
},
),
| TextNode(
text=(
"Rihanna is a Barbadian singer, actress, and businesswoman. She"
" has achieved significant success in the music industry and is"
" known for her versatile musical style."
) | llama_index.core.schema.TextNode |
from llama_index.agent import OpenAIAgent
import openai
openai.api_key = "sk-api-key"
from llama_index.tools.gmail.base import GmailToolSpec
from llama_index.tools.google_calendar.base import GoogleCalendarToolSpec
from llama_index.tools.google_search.base import GoogleSearchToolSpec
gmail_tools = GmailToolSpec().to_tool_list()
gcal_tools = GoogleCalendarToolSpec().to_tool_list()
gsearch_tools = | GoogleSearchToolSpec(key="api-key", engine="engine") | llama_index.tools.google_search.base.GoogleSearchToolSpec |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-cohere')
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini')
get_ipython().system('pip install "google-generativeai" -q')
import nest_asyncio
nest_asyncio.apply()
from llama_index.core.llama_dataset import download_llama_dataset
pairwise_evaluator_dataset, _ = download_llama_dataset(
"MtBenchHumanJudgementDataset", "./mt_bench_data"
)
pairwise_evaluator_dataset.to_pandas()[:5]
from llama_index.core.evaluation import PairwiseComparisonEvaluator
from llama_index.llms.openai import OpenAI
from llama_index.llms.gemini import Gemini
from llama_index.llms.cohere import Cohere
llm_gpt4 = OpenAI(temperature=0, model="gpt-4")
llm_gpt35 = OpenAI(temperature=0, model="gpt-3.5-turbo")
llm_gemini = Gemini(model="models/gemini-pro", temperature=0)
evaluators = {
"gpt-4": PairwiseComparisonEvaluator(llm=llm_gpt4),
"gpt-3.5": | PairwiseComparisonEvaluator(llm=llm_gpt35) | llama_index.core.evaluation.PairwiseComparisonEvaluator |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
import tiktoken
from llama_index.core.callbacks import CallbackManager, TokenCountingHandler
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
token_counter = TokenCountingHandler(
tokenizer=tiktoken.encoding_for_model("gpt-3.5-turbo").encode
)
Settings.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.2)
Settings.callback_manager = | CallbackManager([token_counter]) | llama_index.core.callbacks.CallbackManager |
get_ipython().run_line_magic('pip', 'install llama-index-llms-monsterapi')
get_ipython().system('python3 -m pip install llama-index --quiet -y')
get_ipython().system('python3 -m pip install monsterapi --quiet')
get_ipython().system('python3 -m pip install sentence_transformers --quiet')
import os
from llama_index.llms.monsterapi import MonsterLLM
from llama_index.core.embeddings import resolve_embed_model
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
os.environ["MONSTER_API_KEY"] = ""
model = "llama2-7b-chat"
llm = MonsterLLM(model=model, temperature=0.75)
result = llm.complete("Who are you?")
print(result)
from llama_index.core.llms import ChatMessage
history_message = ChatMessage(
**{
"role": "user",
"content": (
"When asked 'who are you?' respond as 'I am qblocks llm model'"
" everytime."
),
}
)
current_message = ChatMessage(**{"role": "user", "content": "Who are you?"})
response = llm.chat([history_message, current_message])
print(response)
get_ipython().system('python3 -m pip install pypdf --quiet')
get_ipython().system('rm -r ./data')
get_ipython().system('mkdir -p data&&cd data&&curl \'https://arxiv.org/pdf/2005.11401.pdf\' -o "RAG.pdf"')
documents = SimpleDirectoryReader("./data").load_data()
llm = MonsterLLM(model=model, temperature=0.75, context_window=1024)
embed_model = resolve_embed_model("local:BAAI/bge-small-en-v1.5")
splitter = SentenceSplitter(chunk_size=1024)
index = VectorStoreIndex.from_documents(
documents, transformations=[splitter], embed_model=embed_model
)
query_engine = index.as_query_engine(llm=llm)
response = llm.complete("What is Retrieval-Augmented Generation?")
print(response)
response = query_engine.query("What is Retrieval-Augmented Generation?")
print(response)
deploy_llm = MonsterLLM(
model="deploy-llm",
base_url="https://ecc7deb6-26e0-419b-a7f2-0deb934af29a.monsterapi.ai",
monster_api_key="a0f8a6ba-c32f-4407-af0c-169f1915490c",
temperature=0.75,
)
deploy_llm.complete("What is Retrieval-Augmented Generation?")
from llama_index.core.llms import ChatMessage
history_message = ChatMessage(
**{
"role": "user",
"content": (
"When asked 'who are you?' respond as 'I am qblocks llm model'"
" everytime."
),
}
)
current_message = | ChatMessage(**{"role": "user", "content": "Who are you?"}) | llama_index.core.llms.ChatMessage |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import phoenix as px
px.launch_app()
import llama_index.core
llama_index.core.set_global_handler("arize_phoenix")
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo")
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small")
from llama_index.core import SimpleDirectoryReader
reader = SimpleDirectoryReader("../data/paul_graham")
docs = reader.load_data()
import os
from llama_index.core import (
StorageContext,
VectorStoreIndex,
load_index_from_storage,
)
if not os.path.exists("storage"):
index = VectorStoreIndex.from_documents(docs)
index.set_index_id("vector_index")
index.storage_context.persist("./storage")
else:
storage_context = StorageContext.from_defaults(persist_dir="storage")
index = load_index_from_storage(storage_context, index_id="vector_index")
from llama_index.core.query_pipeline import QueryPipeline
from llama_index.core import PromptTemplate
prompt_str = "Please generate related movies to {movie_name}"
prompt_tmpl = PromptTemplate(prompt_str)
llm = OpenAI(model="gpt-3.5-turbo")
p = QueryPipeline(chain=[prompt_tmpl, llm], verbose=True)
output = p.run(movie_name="The Departed")
print(str(output))
from typing import List
from pydantic import BaseModel, Field
from llama_index.core.output_parsers import PydanticOutputParser
class Movie(BaseModel):
"""Object representing a single movie."""
name: str = Field(..., description="Name of the movie.")
year: int = Field(..., description="Year of the movie.")
class Movies(BaseModel):
"""Object representing a list of movies."""
movies: List[Movie] = Field(..., description="List of movies.")
llm = OpenAI(model="gpt-3.5-turbo")
output_parser = PydanticOutputParser(Movies)
json_prompt_str = """\
Please generate related movies to {movie_name}. Output with the following JSON format:
"""
json_prompt_str = output_parser.format(json_prompt_str)
json_prompt_tmpl = PromptTemplate(json_prompt_str)
p = QueryPipeline(chain=[json_prompt_tmpl, llm, output_parser], verbose=True)
output = p.run(movie_name="Toy Story")
output
prompt_str = "Please generate related movies to {movie_name}"
prompt_tmpl = PromptTemplate(prompt_str)
prompt_str2 = """\
Here's some text:
{text}
Can you rewrite this with a summary of each movie?
"""
prompt_tmpl2 = PromptTemplate(prompt_str2)
llm = OpenAI(model="gpt-3.5-turbo")
llm_c = llm.as_query_component(streaming=True)
p = QueryPipeline(
chain=[prompt_tmpl, llm_c, prompt_tmpl2, llm_c], verbose=True
)
output = p.run(movie_name="The Dark Knight")
for o in output:
print(o.delta, end="")
p = QueryPipeline(
chain=[
json_prompt_tmpl,
llm.as_query_component(streaming=True),
output_parser,
],
verbose=True,
)
output = p.run(movie_name="Toy Story")
print(output)
from llama_index.postprocessor.cohere_rerank import CohereRerank
prompt_str1 = "Please generate a concise question about Paul Graham's life regarding the following topic {topic}"
prompt_tmpl1 = PromptTemplate(prompt_str1)
prompt_str2 = (
"Please write a passage to answer the question\n"
"Try to include as many key details as possible.\n"
"\n"
"\n"
"{query_str}\n"
"\n"
"\n"
'Passage:"""\n'
)
prompt_tmpl2 = PromptTemplate(prompt_str2)
llm = OpenAI(model="gpt-3.5-turbo")
retriever = index.as_retriever(similarity_top_k=5)
p = QueryPipeline(
chain=[prompt_tmpl1, llm, prompt_tmpl2, llm, retriever], verbose=True
)
nodes = p.run(topic="college")
len(nodes)
from llama_index.postprocessor.cohere_rerank import CohereRerank
from llama_index.core.response_synthesizers import TreeSummarize
prompt_str = "Please generate a question about Paul Graham's life regarding the following topic {topic}"
prompt_tmpl = PromptTemplate(prompt_str)
llm = OpenAI(model="gpt-3.5-turbo")
retriever = index.as_retriever(similarity_top_k=3)
reranker = CohereRerank()
summarizer = TreeSummarize(llm=llm)
p = QueryPipeline(verbose=True)
p.add_modules(
{
"llm": llm,
"prompt_tmpl": prompt_tmpl,
"retriever": retriever,
"summarizer": summarizer,
"reranker": reranker,
}
)
p.add_link("prompt_tmpl", "llm")
p.add_link("llm", "retriever")
p.add_link("retriever", "reranker", dest_key="nodes")
p.add_link("llm", "reranker", dest_key="query_str")
p.add_link("reranker", "summarizer", dest_key="nodes")
p.add_link("llm", "summarizer", dest_key="query_str")
print(summarizer.as_query_component().input_keys)
from pyvis.network import Network
net = Network(notebook=True, cdn_resources="in_line", directed=True)
net.from_nx(p.dag)
net.show("rag_dag.html")
response = p.run(topic="YC")
print(str(response))
response = await p.arun(topic="YC")
print(str(response))
from llama_index.postprocessor.cohere_rerank import CohereRerank
from llama_index.core.response_synthesizers import TreeSummarize
from llama_index.core.query_pipeline import InputComponent
retriever = index.as_retriever(similarity_top_k=5)
summarizer = TreeSummarize(llm=OpenAI(model="gpt-3.5-turbo"))
reranker = CohereRerank()
p = | QueryPipeline(verbose=True) | llama_index.core.query_pipeline.QueryPipeline |
get_ipython().run_line_magic('pip', 'install llama-index-llms-konko')
get_ipython().system('pip install llama-index')
import os
os.environ["KONKO_API_KEY"] = "<your-api-key>"
from llama_index.llms.konko import Konko
from llama_index.core.llms import ChatMessage
llm = Konko(model="meta-llama/llama-2-13b-chat")
messages = | ChatMessage(role="user", content="Explain Big Bang Theory briefly") | llama_index.core.llms.ChatMessage |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('mkdir data')
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pathlib import Path
from llama_index.readers.file import PyMuPDFReader
loader = PyMuPDFReader()
documents = loader.load(file_path="./data/llama2.pdf")
from llama_index.core import VectorStoreIndex
from llama_index.core.node_parser import SentenceSplitter
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-4")
node_parser = | SentenceSplitter(chunk_size=1024) | llama_index.core.node_parser.SentenceSplitter |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-docarray')
get_ipython().system('pip install llama-index')
import os
import sys
import logging
import textwrap
import warnings
warnings.filterwarnings("ignore")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from llama_index.core import (
GPTVectorStoreIndex,
SimpleDirectoryReader,
Document,
)
from llama_index.vector_stores.docarray import DocArrayInMemoryVectorStore
from IPython.display import Markdown, display
import os
os.environ["OPENAI_API_KEY"] = "<your openai key>"
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
print(
"Document ID:",
documents[0].doc_id,
"Document Hash:",
documents[0].doc_hash,
)
from llama_index.core import StorageContext
vector_store = DocArrayInMemoryVectorStore()
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = GPTVectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print(textwrap.fill(str(response), 100))
response = query_engine.query("What was a hard moment for the author?")
print(textwrap.fill(str(response), 100))
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text="The Shawshank Redemption",
metadata={
"author": "Stephen King",
"theme": "Friendship",
},
),
TextNode(
text="The Godfather",
metadata={
"director": "Francis Ford Coppola",
"theme": "Mafia",
},
),
TextNode(
text="Inception",
metadata={
"director": "Christopher Nolan",
},
),
]
from llama_index.core import StorageContext
vector_store = DocArrayInMemoryVectorStore()
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = | GPTVectorStoreIndex(nodes, storage_context=storage_context) | llama_index.core.GPTVectorStoreIndex |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('mkdir data')
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pathlib import Path
from llama_index.readers.file import PyMuPDFReader
loader = PyMuPDFReader()
documents = loader.load(file_path="./data/llama2.pdf")
from llama_index.core import VectorStoreIndex
from llama_index.core.node_parser import SentenceSplitter
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-4")
node_parser = SentenceSplitter(chunk_size=1024)
nodes = node_parser.get_nodes_from_documents(documents)
index = VectorStoreIndex(nodes)
query_engine = index.as_query_engine(llm=llm)
from llama_index.core.schema import BaseNode
from llama_index.llms.openai import OpenAI
from llama_index.core.llms import ChatMessage, MessageRole
from llama_index.core import ChatPromptTemplate, PromptTemplate
from typing import Tuple, List
import re
llm = OpenAI(model="gpt-4")
QA_PROMPT = PromptTemplate(
"Context information is below.\n"
"---------------------\n"
"{context_str}\n"
"---------------------\n"
"Given the context information and not prior knowledge, "
"answer the query.\n"
"Query: {query_str}\n"
"Answer: "
)
def generate_answers_for_questions(
questions: List[str], context: str, llm: OpenAI
) -> str:
"""Generate answers for questions given context."""
answers = []
for question in questions:
fmt_qa_prompt = QA_PROMPT.format(
context_str=context, query_str=question
)
response_obj = llm.complete(fmt_qa_prompt)
answers.append(str(response_obj))
return answers
QUESTION_GEN_USER_TMPL = (
"Context information is below.\n"
"---------------------\n"
"{context_str}\n"
"---------------------\n"
"Given the context information and not prior knowledge, "
"generate the relevant questions. "
)
QUESTION_GEN_SYS_TMPL = """\
You are a Teacher/ Professor. Your task is to setup \
{num_questions_per_chunk} questions for an upcoming \
quiz/examination. The questions should be diverse in nature \
across the document. Restrict the questions to the \
context information provided.\
"""
question_gen_template = ChatPromptTemplate(
message_templates=[
ChatMessage(role=MessageRole.SYSTEM, content=QUESTION_GEN_SYS_TMPL),
ChatMessage(role=MessageRole.USER, content=QUESTION_GEN_USER_TMPL),
]
)
def generate_qa_pairs(
nodes: List[BaseNode], llm: OpenAI, num_questions_per_chunk: int = 10
) -> List[Tuple[str, str]]:
"""Generate questions."""
qa_pairs = []
for idx, node in enumerate(nodes):
print(f"Node {idx}/{len(nodes)}")
context_str = node.get_content(metadata_mode="all")
fmt_messages = question_gen_template.format_messages(
num_questions_per_chunk=10,
context_str=context_str,
)
chat_response = llm.chat(fmt_messages)
raw_output = chat_response.message.content
result_list = str(raw_output).strip().split("\n")
cleaned_questions = [
re.sub(r"^\d+[\).\s]", "", question).strip()
for question in result_list
]
answers = generate_answers_for_questions(
cleaned_questions, context_str, llm
)
cur_qa_pairs = list(zip(cleaned_questions, answers))
qa_pairs.extend(cur_qa_pairs)
return qa_pairs
qa_pairs
qa_pairs = generate_qa_pairs(
nodes,
llm,
num_questions_per_chunk=10,
)
import pickle
pickle.dump(qa_pairs, open("eval_dataset.pkl", "wb"))
import pickle
qa_pairs = pickle.load(open("eval_dataset.pkl", "rb"))
from llama_index.core.llms import ChatMessage, MessageRole
from llama_index.core import ChatPromptTemplate, PromptTemplate
from typing import Dict
CORRECTNESS_SYS_TMPL = """
You are an expert evaluation system for a question answering chatbot.
You are given the following information:
- a user query,
- a reference answer, and
- a generated answer.
Your job is to judge the relevance and correctness of the generated answer.
Output a single score that represents a holistic evaluation.
You must return your response in a line with only the score.
Do not return answers in any other format.
On a separate line provide your reasoning for the score as well.
Follow these guidelines for scoring:
- Your score has to be between 1 and 5, where 1 is the worst and 5 is the best.
- If the generated answer is not relevant to the user query, \
you should give a score of 1.
- If the generated answer is relevant but contains mistakes, \
you should give a score between 2 and 3.
- If the generated answer is relevant and fully correct, \
you should give a score between 4 and 5.
"""
CORRECTNESS_USER_TMPL = """
{query}
{reference_answer}
{generated_answer}
"""
eval_chat_template = ChatPromptTemplate(
message_templates=[
ChatMessage(role=MessageRole.SYSTEM, content=CORRECTNESS_SYS_TMPL),
| ChatMessage(role=MessageRole.USER, content=CORRECTNESS_USER_TMPL) | llama_index.core.llms.ChatMessage |
from llama_index.llms.openai import OpenAI
from llama_index.core import VectorStoreIndex
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core.postprocessor import LLMRerank
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.pinecone import PineconeVectorStore
from llama_index.core import Settings
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.packs.koda_retriever import KodaRetriever
import os
from pinecone import Pinecone
pc = Pinecone(api_key=os.environ.get("PINECONE_API_KEY"))
index = pc.Index("sample-movies")
Settings.llm = OpenAI()
Settings.embed_model = | OpenAIEmbedding() | llama_index.embeddings.openai.OpenAIEmbedding |
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant')
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-firestore')
get_ipython().run_line_magic('pip', 'install llama-index-retrievers-bm25')
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-redis')
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-dynamodb')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "./llama2.pdf"')
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/1706.03762.pdf" -O "./attention.pdf"')
from llama_index.core import download_loader
from llama_index.readers.file import PyMuPDFReader
llama2_docs = PyMuPDFReader().load_data(
file_path="./llama2.pdf", metadata=True
)
attention_docs = PyMuPDFReader().load_data(
file_path="./attention.pdf", metadata=True
)
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.core.node_parser import TokenTextSplitter
nodes = TokenTextSplitter(
chunk_size=1024, chunk_overlap=128
).get_nodes_from_documents(llama2_docs + attention_docs)
from llama_index.core.storage.docstore import SimpleDocumentStore
from llama_index.storage.docstore.redis import RedisDocumentStore
from llama_index.storage.docstore.mongodb import MongoDocumentStore
from llama_index.storage.docstore.firestore import FirestoreDocumentStore
from llama_index.storage.docstore.dynamodb import DynamoDBDocumentStore
docstore = SimpleDocumentStore()
docstore.add_documents(nodes)
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.retrievers.bm25 import BM25Retriever
from llama_index.vector_stores.qdrant import QdrantVectorStore
from qdrant_client import QdrantClient
client = QdrantClient(path="./qdrant_data")
vector_store = QdrantVectorStore("composable", client=client)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = | VectorStoreIndex(nodes=nodes) | llama_index.core.VectorStoreIndex |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-program-openai')
from llama_index.llms.openai import OpenAI
llm = | OpenAI(model="gpt-3.5-turbo-1106") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-txtai')
get_ipython().system('pip install llama-index')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import txtai
txtai_index = txtai.ann.ANNFactory.create({"backend": "numpy"})
from llama_index.core import (
SimpleDirectoryReader,
load_index_from_storage,
VectorStoreIndex,
StorageContext,
)
from llama_index.vector_stores.txtai import TxtaiVectorStore
from IPython.display import Markdown, display
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = | SimpleDirectoryReader("./data/paul_graham/") | llama_index.core.SimpleDirectoryReader |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-docarray')
get_ipython().system('pip install llama-index')
import os
import sys
import logging
import textwrap
import warnings
warnings.filterwarnings("ignore")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from llama_index.core import (
GPTVectorStoreIndex,
SimpleDirectoryReader,
Document,
)
from llama_index.vector_stores.docarray import DocArrayInMemoryVectorStore
from IPython.display import Markdown, display
import os
os.environ["OPENAI_API_KEY"] = "<your openai key>"
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = | SimpleDirectoryReader("./data/paul_graham/") | llama_index.core.SimpleDirectoryReader |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-epsilla')
get_ipython().system('pip/pip3 install pyepsilla')
get_ipython().system('pip install llama-index')
import logging
import sys
from llama_index.core import SimpleDirectoryReader, Document, StorageContext
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.epsilla import EpsillaVectorStore
import textwrap
import openai
import getpass
OPENAI_API_KEY = getpass.getpass("OpenAI API Key:")
openai.api_key = OPENAI_API_KEY
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
print(f"Total documents: {len(documents)}")
print(f"First document, id: {documents[0].doc_id}")
print(f"First document, hash: {documents[0].hash}")
from pyepsilla import vectordb
client = vectordb.Client()
vector_store = EpsillaVectorStore(client=client, db_path="/tmp/llamastore")
storage_context = | StorageContext.from_defaults(vector_store=vector_store) | llama_index.core.StorageContext.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-hub-llama-packs-agents-llm-compiler-step')
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import phoenix as px
px.launch_app()
import llama_index.core
llama_index.core.set_global_handler("arize_phoenix")
import nest_asyncio
nest_asyncio.apply()
from llama_index.packs.agents.llm_compiler.step import LLMCompilerAgentWorker
from llama_index.core.llama_pack import download_llama_pack
download_llama_pack(
"LLMCompilerAgentPack",
"./agent_pack",
skip_load=True,
)
from agent_pack.step import LLMCompilerAgentWorker
import json
from typing import Sequence, List
from llama_index.llms.openai import OpenAI
from llama_index.core.llms import ChatMessage
from llama_index.core.tools import BaseTool, FunctionTool
import nest_asyncio
nest_asyncio.apply()
def multiply(a: int, b: int) -> int:
"""Multiple two integers and returns the result integer"""
return a * b
multiply_tool = FunctionTool.from_defaults(fn=multiply)
def add(a: int, b: int) -> int:
"""Add two integers and returns the result integer"""
return a + b
add_tool = FunctionTool.from_defaults(fn=add)
tools = [multiply_tool, add_tool]
multiply_tool.metadata.fn_schema_str
from llama_index.core.agent import AgentRunner
llm = OpenAI(model="gpt-4")
callback_manager = llm.callback_manager
agent_worker = LLMCompilerAgentWorker.from_tools(
tools, llm=llm, verbose=True, callback_manager=callback_manager
)
agent = AgentRunner(agent_worker, callback_manager=callback_manager)
response = agent.chat("What is (121 * 3) + 42?")
response
agent.memory.get_all()
get_ipython().system('pip install llama-index-readers-wikipedia')
from llama_index.readers.wikipedia import WikipediaReader
wiki_titles = ["Toronto", "Seattle", "Chicago", "Boston", "Miami"]
city_docs = {}
reader = | WikipediaReader() | llama_index.readers.wikipedia.WikipediaReader |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-weaviate')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface')
get_ipython().system('pip install llama-index')
from llama_index.core.ingestion.cache import RedisCache
from llama_index.core.ingestion import IngestionCache
ingest_cache = IngestionCache(
cache=RedisCache.from_host_and_port(host="127.0.0.1", port=6379),
collection="my_test_cache",
)
get_ipython().system('pip install weaviate-client')
import weaviate
auth_config = weaviate.AuthApiKey(api_key="...")
client = weaviate.Client(url="https://...", auth_client_secret=auth_config)
from llama_index.vector_stores.weaviate import WeaviateVectorStore
vector_store = WeaviateVectorStore(
weaviate_client=client, index_name="CachingTest"
)
from llama_index.core.node_parser import TokenTextSplitter
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
text_splitter = TokenTextSplitter(chunk_size=512)
embed_model = | HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") | llama_index.embeddings.huggingface.HuggingFaceEmbedding |
from llama_index.core import VectorStoreIndex
from llama_index.core.objects import ObjectIndex, SimpleObjectNodeMapping
obj1 = {"input": "Hey, how's it going"}
obj2 = ["a", "b", "c", "d"]
obj3 = "llamaindex is an awesome library!"
arbitrary_objects = [obj1, obj2, obj3]
obj_node_mapping = SimpleObjectNodeMapping.from_objects(arbitrary_objects)
nodes = obj_node_mapping.to_nodes(arbitrary_objects)
object_index = ObjectIndex(
index= | VectorStoreIndex(nodes=nodes) | llama_index.core.VectorStoreIndex |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('wget "https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip" -O data.zip')
get_ipython().system('unzip data.zip')
import pandas as pd
from pathlib import Path
data_dir = Path("./WikiTableQuestions/csv/200-csv")
csv_files = sorted([f for f in data_dir.glob("*.csv")])
dfs = []
for csv_file in csv_files:
print(f"processing file: {csv_file}")
try:
df = pd.read_csv(csv_file)
dfs.append(df)
except Exception as e:
print(f"Error parsing {csv_file}: {str(e)}")
tableinfo_dir = "WikiTableQuestions_TableInfo"
get_ipython().system('mkdir {tableinfo_dir}')
from llama_index.core.program import LLMTextCompletionProgram
from llama_index.core.bridge.pydantic import BaseModel, Field
from llama_index.llms.openai import OpenAI
class TableInfo(BaseModel):
"""Information regarding a structured table."""
table_name: str = Field(
..., description="table name (must be underscores and NO spaces)"
)
table_summary: str = Field(
..., description="short, concise summary/caption of the table"
)
prompt_str = """\
Give me a summary of the table with the following JSON format.
- The table name must be unique to the table and describe it while being concise.
- Do NOT output a generic table name (e.g. table, my_table).
Do NOT make the table name one of the following: {exclude_table_name_list}
Table:
{table_str}
Summary: """
program = LLMTextCompletionProgram.from_defaults(
output_cls=TableInfo,
llm=OpenAI(model="gpt-3.5-turbo"),
prompt_template_str=prompt_str,
)
import json
def _get_tableinfo_with_index(idx: int) -> str:
results_gen = Path(tableinfo_dir).glob(f"{idx}_*")
results_list = list(results_gen)
if len(results_list) == 0:
return None
elif len(results_list) == 1:
path = results_list[0]
return TableInfo.parse_file(path)
else:
raise ValueError(
f"More than one file matching index: {list(results_gen)}"
)
table_names = set()
table_infos = []
for idx, df in enumerate(dfs):
table_info = _get_tableinfo_with_index(idx)
if table_info:
table_infos.append(table_info)
else:
while True:
df_str = df.head(10).to_csv()
table_info = program(
table_str=df_str,
exclude_table_name_list=str(list(table_names)),
)
table_name = table_info.table_name
print(f"Processed table: {table_name}")
if table_name not in table_names:
table_names.add(table_name)
break
else:
print(f"Table name {table_name} already exists, trying again.")
pass
out_file = f"{tableinfo_dir}/{idx}_{table_name}.json"
json.dump(table_info.dict(), open(out_file, "w"))
table_infos.append(table_info)
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
)
import re
def sanitize_column_name(col_name):
return re.sub(r"\W+", "_", col_name)
def create_table_from_dataframe(
df: pd.DataFrame, table_name: str, engine, metadata_obj
):
sanitized_columns = {col: sanitize_column_name(col) for col in df.columns}
df = df.rename(columns=sanitized_columns)
columns = [
Column(col, String if dtype == "object" else Integer)
for col, dtype in zip(df.columns, df.dtypes)
]
table = Table(table_name, metadata_obj, *columns)
metadata_obj.create_all(engine)
with engine.connect() as conn:
for _, row in df.iterrows():
insert_stmt = table.insert().values(**row.to_dict())
conn.execute(insert_stmt)
conn.commit()
engine = create_engine("sqlite:///:memory:")
metadata_obj = MetaData()
for idx, df in enumerate(dfs):
tableinfo = _get_tableinfo_with_index(idx)
print(f"Creating table: {tableinfo.table_name}")
create_table_from_dataframe(df, tableinfo.table_name, engine, metadata_obj)
import phoenix as px
import llama_index.core
px.launch_app()
llama_index.core.set_global_handler("arize_phoenix")
from llama_index.core.objects import (
SQLTableNodeMapping,
ObjectIndex,
SQLTableSchema,
)
from llama_index.core import SQLDatabase, VectorStoreIndex
sql_database = SQLDatabase(engine)
table_node_mapping = SQLTableNodeMapping(sql_database)
table_schema_objs = [
SQLTableSchema(table_name=t.table_name, context_str=t.table_summary)
for t in table_infos
] # add a SQLTableSchema for each table
obj_index = ObjectIndex.from_objects(
table_schema_objs,
table_node_mapping,
VectorStoreIndex,
)
obj_retriever = obj_index.as_retriever(similarity_top_k=3)
from llama_index.core.retrievers import SQLRetriever
from typing import List
from llama_index.core.query_pipeline import FnComponent
sql_retriever = SQLRetriever(sql_database)
def get_table_context_str(table_schema_objs: List[SQLTableSchema]):
"""Get table context string."""
context_strs = []
for table_schema_obj in table_schema_objs:
table_info = sql_database.get_single_table_info(
table_schema_obj.table_name
)
if table_schema_obj.context_str:
table_opt_context = " The table description is: "
table_opt_context += table_schema_obj.context_str
table_info += table_opt_context
context_strs.append(table_info)
return "\n\n".join(context_strs)
table_parser_component = | FnComponent(fn=get_table_context_str) | llama_index.core.query_pipeline.FnComponent |
get_ipython().system('pip install llama_index')
get_ipython().system('pip install llama_hub')
get_ipython().system('pip install torch_geometric')
import os
from pprint import pprint
from llama_index import (
ServiceContext,
VectorStoreIndex,
SummaryIndex,
)
import llama_hub.docstring_walker as docstring_walker
walker = docstring_walker.DocstringWalker()
path_to_docstring_walker = os.path.dirname(docstring_walker.__file__)
example1_docs = walker.load_data(path_to_docstring_walker)
print(example1_docs[0].text)
example1_index = | VectorStoreIndex(example1_docs) | llama_index.VectorStoreIndex |
get_ipython().run_line_magic('pip', 'install llama-index-readers-notion')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
get_ipython().system('pip install llama-index')
from llama_index.core import SummaryIndex
from llama_index.readers.notion import NotionPageReader
from IPython.display import Markdown, display
import os
integration_token = os.getenv("NOTION_INTEGRATION_TOKEN")
page_ids = ["<page_id>"]
documents = | NotionPageReader(integration_token=integration_token) | llama_index.readers.notion.NotionPageReader |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-weaviate')
get_ipython().system('pip install llama-index weaviate-client')
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-<your key here>"
openai.api_key = os.environ["OPENAI_API_KEY"]
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import weaviate
resource_owner_config = weaviate.AuthClientPassword(
username="",
password="",
)
client = weaviate.Client(
"https://test.weaviate.network",
auth_client_secret=resource_owner_config,
)
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.weaviate import WeaviateVectorStore
from IPython.display import Markdown, display
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text="The Shawshank Redemption",
metadata={
"author": "Stephen King",
"theme": "Friendship",
"year": 1994,
},
),
TextNode(
text="The Godfather",
metadata={
"director": "Francis Ford Coppola",
"theme": "Mafia",
"year": 1972,
},
),
TextNode(
text="Inception",
metadata={
"director": "Christopher Nolan",
"theme": "Fiction",
"year": 2010,
},
),
TextNode(
text="To Kill a Mockingbird",
metadata={
"author": "Harper Lee",
"theme": "Mafia",
"year": 1960,
},
),
TextNode(
text="1984",
metadata={
"author": "George Orwell",
"theme": "Totalitarianism",
"year": 1949,
},
),
TextNode(
text="The Great Gatsby",
metadata={
"author": "F. Scott Fitzgerald",
"theme": "The American Dream",
"year": 1925,
},
),
TextNode(
text="Harry Potter and the Sorcerer's Stone",
metadata={
"author": "J.K. Rowling",
"theme": "Fiction",
"year": 1997,
},
),
]
from llama_index.core import StorageContext
vector_store = WeaviateVectorStore(
weaviate_client=client, index_name="LlamaIndex_filter"
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = | VectorStoreIndex(nodes, storage_context=storage_context) | llama_index.core.VectorStoreIndex |
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-google')
get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-google')
get_ipython().run_line_magic('pip', 'install llama-index-response-synthesizers-google')
get_ipython().run_line_magic('pip', 'install llama-index')
get_ipython().run_line_magic('pip', 'install "google-ai-generativelanguage>=0.4,<=1.0"')
get_ipython().run_line_magic('pip', 'install google-auth-oauthlib')
from google.oauth2 import service_account
from llama_index.vector_stores.google import set_google_config
credentials = service_account.Credentials.from_service_account_file(
"service_account_key.json",
scopes=[
"https://www.googleapis.com/auth/generative-language.retriever",
],
)
set_google_config(auth_credentials=credentials)
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
import llama_index.core.vector_stores.google.generativeai.genai_extension as genaix
from typing import Iterable
from random import randrange
LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX = f"llama-index-colab"
SESSION_CORPUS_ID_PREFIX = (
f"{LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX}-{randrange(1000000)}"
)
def corpus_id(num_id: int) -> str:
return f"{SESSION_CORPUS_ID_PREFIX}-{num_id}"
SESSION_CORPUS_ID = corpus_id(1)
def list_corpora() -> Iterable[genaix.Corpus]:
client = genaix.build_semantic_retriever()
yield from genaix.list_corpora(client=client)
def delete_corpus(*, corpus_id: str) -> None:
client = genaix.build_semantic_retriever()
genaix.delete_corpus(corpus_id=corpus_id, client=client)
def cleanup_colab_corpora():
for corpus in list_corpora():
if corpus.corpus_id.startswith(LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX):
try:
delete_corpus(corpus_id=corpus.corpus_id)
print(f"Deleted corpus {corpus.corpus_id}.")
except Exception:
pass
cleanup_colab_corpora()
from llama_index.core import SimpleDirectoryReader
from llama_index.indices.managed.google import GoogleIndex
from llama_index.core import Response
import time
index = GoogleIndex.create_corpus(
corpus_id=SESSION_CORPUS_ID, display_name="My first corpus!"
)
print(f"Newly created corpus ID is {index.corpus_id}.")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
index.insert_documents(documents)
for corpus in list_corpora():
print(corpus)
query_engine = index.as_query_engine()
response = query_engine.query("What did Paul Graham do growing up?")
assert isinstance(response, Response)
print(f"Response is {response.response}")
for cited_text in [node.text for node in response.source_nodes]:
print(f"Cited text: {cited_text}")
if response.metadata:
print(
f"Answerability: {response.metadata.get('answerable_probability', 0)}"
)
index = GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID)
query_engine = index.as_query_engine()
response = query_engine.query("Which company did Paul Graham build?")
assert isinstance(response, Response)
print(f"Response is {response.response}")
from llama_index.core.schema import NodeRelationship, RelatedNodeInfo, TextNode
index = GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID)
index.insert_nodes(
[
TextNode(
text="It was the best of times.",
relationships={
NodeRelationship.SOURCE: RelatedNodeInfo(
node_id="123",
metadata={"file_name": "Tale of Two Cities"},
)
},
),
TextNode(
text="It was the worst of times.",
relationships={
NodeRelationship.SOURCE: RelatedNodeInfo(
node_id="123",
metadata={"file_name": "Tale of Two Cities"},
)
},
),
TextNode(
text="Bugs Bunny: Wassup doc?",
relationships={
NodeRelationship.SOURCE: RelatedNodeInfo(
node_id="456",
metadata={"file_name": "Bugs Bunny Adventure"},
)
},
),
]
)
from google.ai.generativelanguage import (
GenerateAnswerRequest,
HarmCategory,
SafetySetting,
)
index = GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID)
query_engine = index.as_query_engine(
temperature=0.2,
answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE,
safety_setting=[
SafetySetting(
category=HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT,
threshold=SafetySetting.HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
),
SafetySetting(
category=HarmCategory.HARM_CATEGORY_VIOLENCE,
threshold=SafetySetting.HarmBlockThreshold.BLOCK_ONLY_HIGH,
),
],
)
response = query_engine.query("What was Bugs Bunny's favorite saying?")
print(response)
from llama_index.core import Response
response = query_engine.query("What were Paul Graham's achievements?")
assert isinstance(response, Response)
print(f"Response is {response.response}")
for cited_text in [node.text for node in response.source_nodes]:
print(f"Cited text: {cited_text}")
if response.metadata:
print(
f"Answerability: {response.metadata.get('answerable_probability', 0)}"
)
from llama_index.llms.gemini import Gemini
GEMINI_API_KEY = "" # @param {type:"string"}
gemini = Gemini(api_key=GEMINI_API_KEY)
from llama_index.response_synthesizers.google import GoogleTextSynthesizer
from llama_index.vector_stores.google import GoogleVectorStore
from llama_index.core import VectorStoreIndex
from llama_index.core.postprocessor import LLMRerank
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.retrievers import VectorIndexRetriever
store = GoogleVectorStore.from_corpus(corpus_id=SESSION_CORPUS_ID)
index = VectorStoreIndex.from_vector_store(
vector_store=store,
)
response_synthesizer = GoogleTextSynthesizer.from_defaults(
temperature=0.2,
answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE,
)
reranker = LLMRerank(
top_n=10,
llm=gemini,
)
query_engine = RetrieverQueryEngine.from_args(
retriever=VectorIndexRetriever(
index=index,
similarity_top_k=20,
),
node_postprocessors=[reranker],
response_synthesizer=response_synthesizer,
)
response = query_engine.query("What were Paul Graham's achievements?")
print(response)
from llama_index.core.indices.query.query_transform.base import (
StepDecomposeQueryTransform,
)
from llama_index.core.query_engine import MultiStepQueryEngine
store = GoogleVectorStore.from_corpus(corpus_id=SESSION_CORPUS_ID)
index = VectorStoreIndex.from_vector_store(
vector_store=store,
)
response_synthesizer = GoogleTextSynthesizer.from_defaults(
temperature=0.2,
answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE,
)
single_step_query_engine = index.as_query_engine(
similarity_top_k=10,
response_synthesizer=response_synthesizer,
)
step_decompose_transform = StepDecomposeQueryTransform(
llm=gemini,
verbose=True,
)
query_engine = MultiStepQueryEngine(
query_engine=single_step_query_engine,
query_transform=step_decompose_transform,
response_synthesizer=response_synthesizer,
index_summary="Ask me anything.",
num_steps=6,
)
response = query_engine.query("What were Paul Graham's achievements?")
print(response)
from llama_index.core.indices.query.query_transform import HyDEQueryTransform
from llama_index.core.query_engine import TransformQueryEngine
store = | GoogleVectorStore.from_corpus(corpus_id=SESSION_CORPUS_ID) | llama_index.vector_stores.google.GoogleVectorStore.from_corpus |
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import json
from typing import Sequence, List
from llama_index.llms.openai import OpenAI
from llama_index.core.llms import ChatMessage
from llama_index.core.tools import BaseTool, FunctionTool
import nest_asyncio
nest_asyncio.apply()
def multiply(a: int, b: int) -> int:
"""Multiple two integers and returns the result integer"""
return a * b
multiply_tool = FunctionTool.from_defaults(fn=multiply)
def add(a: int, b: int) -> int:
"""Add two integers and returns the result integer"""
return a + b
add_tool = FunctionTool.from_defaults(fn=add)
tools = [multiply_tool, add_tool]
llm = OpenAI(model="gpt-3.5-turbo")
from llama_index.core.agent import AgentRunner
from llama_index.agent.openai import OpenAIAgentWorker, OpenAIAgent
agent = OpenAIAgent.from_tools(tools, llm=llm, verbose=True)
agent.chat("Hi")
response = agent.chat("What is (121 * 3) + 42?")
response
task = agent.create_task("What is (121 * 3) + 42?")
step_output = agent.run_step(task.task_id)
step_output
step_output = agent.run_step(task.task_id)
step_output = agent.run_step(task.task_id)
print(step_output.is_last)
response = agent.finalize_response(task.task_id)
print(str(response))
llm = OpenAI(model="gpt-4-1106-preview")
from llama_index.core.agent import AgentRunner, ReActAgentWorker, ReActAgent
agent = | ReActAgent.from_tools(tools, llm=llm, verbose=True) | llama_index.core.agent.ReActAgent.from_tools |
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb')
get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-mongodb')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
import os
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex
from llama_index.core import SummaryIndex
from llama_index.core import ComposableGraph
from llama_index.llms.openai import OpenAI
from llama_index.core.response.notebook_utils import display_response
from llama_index.core import Settings
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
reader = SimpleDirectoryReader("./data/paul_graham/")
documents = reader.load_data()
from llama_index.core.node_parser import SentenceSplitter
nodes = SentenceSplitter().get_nodes_from_documents(documents)
MONGO_URI = os.environ["MONGO_URI"]
from llama_index.storage.docstore.mongodb import MongoDocumentStore
from llama_index.storage.index_store.mongodb import MongoIndexStore
storage_context = StorageContext.from_defaults(
docstore=MongoDocumentStore.from_uri(uri=MONGO_URI),
index_store= | MongoIndexStore.from_uri(uri=MONGO_URI) | llama_index.storage.index_store.mongodb.MongoIndexStore.from_uri |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
get_ipython().system('pip install llama_hub')
from pathlib import Path
from llama_index.readers.file import PyMuPDFReader
from llama_index.core import Document
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.schema import IndexNode
docs0 = PyMuPDFReader().load(file_path=Path("./data/llama2.pdf"))
doc_text = "\n\n".join([d.get_content() for d in docs0])
docs = [Document(text=doc_text)]
node_parser = SentenceSplitter(chunk_size=1024)
base_nodes = node_parser.get_nodes_from_documents(docs)
from llama_index.core import VectorStoreIndex
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo")
index = VectorStoreIndex(base_nodes)
query_engine = index.as_query_engine(similarity_top_k=2)
get_ipython().system('wget "https://www.dropbox.com/scl/fi/fh9vsmmm8vu0j50l3ss38/llama2_eval_qr_dataset.json?rlkey=kkoaez7aqeb4z25gzc06ak6kb&dl=1" -O data/llama2_eval_qr_dataset.json')
from llama_index.core.evaluation import QueryResponseDataset
eval_dataset = QueryResponseDataset.from_json(
"data/llama2_eval_qr_dataset.json"
)
from llama_index.core.evaluation.eval_utils import get_responses
from llama_index.core.evaluation import CorrectnessEvaluator, BatchEvalRunner
evaluator_c = CorrectnessEvaluator()
evaluator_dict = {"correctness": evaluator_c}
batch_runner = BatchEvalRunner(evaluator_dict, workers=2, show_progress=True)
import numpy as np
async def get_correctness(query_engine, eval_qa_pairs, batch_runner):
eval_qs = [q for q, _ in eval_qa_pairs]
eval_answers = [a for _, a in eval_qa_pairs]
pred_responses = | get_responses(eval_qs, query_engine, show_progress=True) | llama_index.core.evaluation.eval_utils.get_responses |
get_ipython().system('pip install llama-index')
get_ipython().system('pip install duckdb')
get_ipython().system('pip install llama-index-vector-stores-duckdb')
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.duckdb import DuckDBVectorStore
from llama_index.core import StorageContext
from IPython.display import Markdown, display
import os
import openai
openai.api_key = os.environ["OPENAI_API_KEY"]
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("data/paul_graham/").load_data()
vector_store = DuckDBVectorStore()
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
display(Markdown(f"<b>{response}</b>"))
documents = SimpleDirectoryReader("data/paul_graham/").load_data()
vector_store = DuckDBVectorStore("pg.duckdb", persist_dir="./persist/")
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
vector_store = DuckDBVectorStore.from_local("./persist/pg.duckdb")
index = VectorStoreIndex.from_vector_store(vector_store)
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
display(Markdown(f"<b>{response}</b>"))
from llama_index.core.schema import TextNode
nodes = [
TextNode(
**{
"text": "The Shawshank Redemption",
"metadata": {
"author": "Stephen King",
"theme": "Friendship",
"year": 1994,
"ref_doc_id": "doc_1",
},
}
),
TextNode(
**{
"text": "The Godfather",
"metadata": {
"director": "Francis Ford Coppola",
"theme": "Mafia",
"year": 1972,
"ref_doc_id": "doc_1",
},
}
),
TextNode(
**{
"text": "Inception",
"metadata": {
"director": "Christopher Nolan",
"theme": "Sci-fi",
"year": 2010,
"ref_doc_id": "doc_2",
},
}
),
]
vector_store = DuckDBVectorStore()
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex(nodes, storage_context=storage_context)
from llama_index.core.vector_stores import ExactMatchFilter, MetadataFilters
filters = MetadataFilters(
filters=[ | ExactMatchFilter(key="theme", value="Mafia") | llama_index.core.vector_stores.ExactMatchFilter |
import openai
openai.api_key = "sk-key"
from llama_index.agent import OpenAIAgent
from llama_index.tools.code_interpreter.base import CodeInterpreterToolSpec
code_spec = | CodeInterpreterToolSpec() | llama_index.tools.code_interpreter.base.CodeInterpreterToolSpec |
get_ipython().system('pip install llama-index')
get_ipython().system('pip install duckdb')
get_ipython().system('pip install llama-index-vector-stores-duckdb')
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.duckdb import DuckDBVectorStore
from llama_index.core import StorageContext
from IPython.display import Markdown, display
import os
import openai
openai.api_key = os.environ["OPENAI_API_KEY"]
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("data/paul_graham/").load_data()
vector_store = DuckDBVectorStore()
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
display(Markdown(f"<b>{response}</b>"))
documents = SimpleDirectoryReader("data/paul_graham/").load_data()
vector_store = DuckDBVectorStore("pg.duckdb", persist_dir="./persist/")
storage_context = | StorageContext.from_defaults(vector_store=vector_store) | llama_index.core.StorageContext.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-program-evaporate')
get_ipython().system('pip install llama-index')
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
wiki_titles = ["Toronto", "Seattle", "Chicago", "Boston", "Houston"]
from pathlib import Path
import requests
for title in wiki_titles:
response = requests.get(
"https://en.wikipedia.org/w/api.php",
params={
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
},
).json()
page = next(iter(response["query"]["pages"].values()))
wiki_text = page["extract"]
data_path = Path("data")
if not data_path.exists():
Path.mkdir(data_path)
with open(data_path / f"{title}.txt", "w") as fp:
fp.write(wiki_text)
from llama_index.core import SimpleDirectoryReader
city_docs = {}
for wiki_title in wiki_titles:
city_docs[wiki_title] = SimpleDirectoryReader(
input_files=[f"data/{wiki_title}.txt"]
).load_data()
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
Settings.llm = OpenAI(temperature=0, model="gpt-3.5-turbo")
Settings.chunk_size = 512
city_nodes = {}
for wiki_title in wiki_titles:
docs = city_docs[wiki_title]
nodes = Settings.node_parser.get_nodes_from_documents(docs)
city_nodes[wiki_title] = nodes
from llama_index.program.evaporate import DFEvaporateProgram
program = DFEvaporateProgram.from_defaults(
fields_to_extract=["population"],
)
program.fit_fields(city_nodes["Toronto"][:1])
print(program.get_function_str("population"))
seattle_df = program(nodes=city_nodes["Seattle"][:1])
seattle_df
Settings.llm = OpenAI(temperature=0, model="gpt-4")
Settings.chunk_size = 1024
Settings.chunk_overlap = 0
from llama_index.core.data_structs import Node
train_text = """
<table class="wikitable sortable" style="margin-top:0; text-align:center; font-size:90%;">
<tbody><tr>
<th>Team (IOC code)
</th>
<th>No. Summer
</th>
<th>No. Winter
</th>
<th>No. Games
</th></tr>
<tr>
<td align="left"><span id="ALB"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/36/Flag_of_Albania.svg/22px-Flag_of_Albania.svg.png" decoding="async" width="22" height="16" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/36/Flag_of_Albania.svg/33px-Flag_of_Albania.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/36/Flag_of_Albania.svg/44px-Flag_of_Albania.svg.png 2x" data-file-width="980" data-file-height="700" /> <a href="/wiki/Albania_at_the_Olympics" title="Albania at the Olympics">Albania</a> <span style="font-size:90%;">(ALB)</span></span>
</td>
<td style="background:#f2f2ce;">9</td>
<td style="background:#cedff2;">5</td>
<td>14
</td></tr>
<tr>
<td align="left"><span id="ASA"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Flag_of_American_Samoa.svg/22px-Flag_of_American_Samoa.svg.png" decoding="async" width="22" height="11" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Flag_of_American_Samoa.svg/33px-Flag_of_American_Samoa.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Flag_of_American_Samoa.svg/44px-Flag_of_American_Samoa.svg.png 2x" data-file-width="1000" data-file-height="500" /> <a href="/wiki/American_Samoa_at_the_Olympics" title="American Samoa at the Olympics">American Samoa</a> <span style="font-size:90%;">(ASA)</span></span>
</td>
<td style="background:#f2f2ce;">9</td>
<td style="background:#cedff2;">2</td>
<td>11
</td></tr>
<tr>
<td align="left"><span id="AND"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/19/Flag_of_Andorra.svg/22px-Flag_of_Andorra.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/19/Flag_of_Andorra.svg/33px-Flag_of_Andorra.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/19/Flag_of_Andorra.svg/44px-Flag_of_Andorra.svg.png 2x" data-file-width="1000" data-file-height="700" /> <a href="/wiki/Andorra_at_the_Olympics" title="Andorra at the Olympics">Andorra</a> <span style="font-size:90%;">(AND)</span></span>
</td>
<td style="background:#f2f2ce;">12</td>
<td style="background:#cedff2;">13</td>
<td>25
</td></tr>
<tr>
<td align="left"><span id="ANG"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Flag_of_Angola.svg/22px-Flag_of_Angola.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Flag_of_Angola.svg/33px-Flag_of_Angola.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Flag_of_Angola.svg/44px-Flag_of_Angola.svg.png 2x" data-file-width="900" data-file-height="600" /> <a href="/wiki/Angola_at_the_Olympics" title="Angola at the Olympics">Angola</a> <span style="font-size:90%;">(ANG)</span></span>
</td>
<td style="background:#f2f2ce;">10</td>
<td style="background:#cedff2;">0</td>
<td>10
</td></tr>
<tr>
<td align="left"><span id="ANT"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Flag_of_Antigua_and_Barbuda.svg/22px-Flag_of_Antigua_and_Barbuda.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Flag_of_Antigua_and_Barbuda.svg/33px-Flag_of_Antigua_and_Barbuda.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/89/Flag_of_Antigua_and_Barbuda.svg/44px-Flag_of_Antigua_and_Barbuda.svg.png 2x" data-file-width="900" data-file-height="600" /> <a href="/wiki/Antigua_and_Barbuda_at_the_Olympics" title="Antigua and Barbuda at the Olympics">Antigua and Barbuda</a> <span style="font-size:90%;">(ANT)</span></span>
</td>
<td style="background:#f2f2ce;">11</td>
<td style="background:#cedff2;">0</td>
<td>11
</td></tr>
<tr>
<td align="left"><span id="ARU"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f6/Flag_of_Aruba.svg/22px-Flag_of_Aruba.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f6/Flag_of_Aruba.svg/33px-Flag_of_Aruba.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f6/Flag_of_Aruba.svg/44px-Flag_of_Aruba.svg.png 2x" data-file-width="900" data-file-height="600" /> <a href="/wiki/Aruba_at_the_Olympics" title="Aruba at the Olympics">Aruba</a> <span style="font-size:90%;">(ARU)</span></span>
</td>
<td style="background:#f2f2ce;">9</td>
<td style="background:#cedff2;">0</td>
<td>9
</td></tr>
"""
train_nodes = [Node(text=train_text)]
infer_text = """
<td align="left"><span id="BAN"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Flag_of_Bangladesh.svg/22px-Flag_of_Bangladesh.svg.png" decoding="async" width="22" height="13" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Flag_of_Bangladesh.svg/33px-Flag_of_Bangladesh.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Flag_of_Bangladesh.svg/44px-Flag_of_Bangladesh.svg.png 2x" data-file-width="1000" data-file-height="600" /> <a href="/wiki/Bangladesh_at_the_Olympics" title="Bangladesh at the Olympics">Bangladesh</a> <span style="font-size:90%;">(BAN)</span></span>
</td>
<td style="background:#f2f2ce;">10</td>
<td style="background:#cedff2;">0</td>
<td>10
</td></tr>
<tr>
<td align="left"><span id="BIZ"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Flag_of_Belize.svg/22px-Flag_of_Belize.svg.png" decoding="async" width="22" height="13" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Flag_of_Belize.svg/33px-Flag_of_Belize.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Flag_of_Belize.svg/44px-Flag_of_Belize.svg.png 2x" data-file-width="1000" data-file-height="600" /> <a href="/wiki/Belize_at_the_Olympics" title="Belize at the Olympics">Belize</a> <span style="font-size:90%;">(BIZ)</span></span> <sup class="reference" id="ref_BIZBIZ"><a href="#endnote_BIZBIZ">[BIZ]</a></sup>
</td>
<td style="background:#f2f2ce;">13</td>
<td style="background:#cedff2;">0</td>
<td>13
</td></tr>
<tr>
<td align="left"><span id="BEN"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Flag_of_Benin.svg/22px-Flag_of_Benin.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Flag_of_Benin.svg/33px-Flag_of_Benin.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Flag_of_Benin.svg/44px-Flag_of_Benin.svg.png 2x" data-file-width="900" data-file-height="600" /> <a href="/wiki/Benin_at_the_Olympics" title="Benin at the Olympics">Benin</a> <span style="font-size:90%;">(BEN)</span></span> <sup class="reference" id="ref_BENBEN"><a href="#endnote_BENBEN">[BEN]</a></sup>
</td>
<td style="background:#f2f2ce;">12</td>
<td style="background:#cedff2;">0</td>
<td>12
</td></tr>
<tr>
<td align="left"><span id="BHU"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/91/Flag_of_Bhutan.svg/22px-Flag_of_Bhutan.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/91/Flag_of_Bhutan.svg/33px-Flag_of_Bhutan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/91/Flag_of_Bhutan.svg/44px-Flag_of_Bhutan.svg.png 2x" data-file-width="900" data-file-height="600" /> <a href="/wiki/Bhutan_at_the_Olympics" title="Bhutan at the Olympics">Bhutan</a> <span style="font-size:90%;">(BHU)</span></span>
</td>
<td style="background:#f2f2ce;">10</td>
<td style="background:#cedff2;">0</td>
<td>10
</td></tr>
<tr>
<td align="left"><span id="BOL"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Flag_of_Bolivia.svg/22px-Flag_of_Bolivia.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Flag_of_Bolivia.svg/33px-Flag_of_Bolivia.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Flag_of_Bolivia.svg/44px-Flag_of_Bolivia.svg.png 2x" data-file-width="1100" data-file-height="750" /> <a href="/wiki/Bolivia_at_the_Olympics" title="Bolivia at the Olympics">Bolivia</a> <span style="font-size:90%;">(BOL)</span></span>
</td>
<td style="background:#f2f2ce;">15</td>
<td style="background:#cedff2;">7</td>
<td>22
</td></tr>
<tr>
<td align="left"><span id="BIH"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Flag_of_Bosnia_and_Herzegovina.svg/22px-Flag_of_Bosnia_and_Herzegovina.svg.png" decoding="async" width="22" height="11" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Flag_of_Bosnia_and_Herzegovina.svg/33px-Flag_of_Bosnia_and_Herzegovina.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Flag_of_Bosnia_and_Herzegovina.svg/44px-Flag_of_Bosnia_and_Herzegovina.svg.png 2x" data-file-width="800" data-file-height="400" /> <a href="/wiki/Bosnia_and_Herzegovina_at_the_Olympics" title="Bosnia and Herzegovina at the Olympics">Bosnia and Herzegovina</a> <span style="font-size:90%;">(BIH)</span></span>
</td>
<td style="background:#f2f2ce;">8</td>
<td style="background:#cedff2;">8</td>
<td>16
</td></tr>
<tr>
<td align="left"><span id="IVB"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/42/Flag_of_the_British_Virgin_Islands.svg/22px-Flag_of_the_British_Virgin_Islands.svg.png" decoding="async" width="22" height="11" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/42/Flag_of_the_British_Virgin_Islands.svg/33px-Flag_of_the_British_Virgin_Islands.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/42/Flag_of_the_British_Virgin_Islands.svg/44px-Flag_of_the_British_Virgin_Islands.svg.png 2x" data-file-width="1200" data-file-height="600" /> <a href="/wiki/British_Virgin_Islands_at_the_Olympics" title="British Virgin Islands at the Olympics">British Virgin Islands</a> <span style="font-size:90%;">(IVB)</span></span>
</td>
<td style="background:#f2f2ce;">10</td>
<td style="background:#cedff2;">2</td>
<td>12
</td></tr>
<tr>
<td align="left"><span id="BRU"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Flag_of_Brunei.svg/22px-Flag_of_Brunei.svg.png" decoding="async" width="22" height="11" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Flag_of_Brunei.svg/33px-Flag_of_Brunei.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Flag_of_Brunei.svg/44px-Flag_of_Brunei.svg.png 2x" data-file-width="1440" data-file-height="720" /> <a href="/wiki/Brunei_at_the_Olympics" title="Brunei at the Olympics">Brunei</a> <span style="font-size:90%;">(BRU)</span></span> <sup class="reference" id="ref_AA"><a href="#endnote_AA">[A]</a></sup>
</td>
<td style="background:#f2f2ce;">6</td>
<td style="background:#cedff2;">0</td>
<td>6
</td></tr>
<tr>
<td align="left"><span id="CAM"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Flag_of_Cambodia.svg/22px-Flag_of_Cambodia.svg.png" decoding="async" width="22" height="14" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Flag_of_Cambodia.svg/33px-Flag_of_Cambodia.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Flag_of_Cambodia.svg/44px-Flag_of_Cambodia.svg.png 2x" data-file-width="1000" data-file-height="640" /> <a href="/wiki/Cambodia_at_the_Olympics" title="Cambodia at the Olympics">Cambodia</a> <span style="font-size:90%;">(CAM)</span></span>
</td>
<td style="background:#f2f2ce;">10</td>
<td style="background:#cedff2;">0</td>
<td>10
</td></tr>
<tr>
<td align="left"><span id="CPV"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/38/Flag_of_Cape_Verde.svg/22px-Flag_of_Cape_Verde.svg.png" decoding="async" width="22" height="13" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/38/Flag_of_Cape_Verde.svg/33px-Flag_of_Cape_Verde.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/38/Flag_of_Cape_Verde.svg/44px-Flag_of_Cape_Verde.svg.png 2x" data-file-width="1020" data-file-height="600" /> <a href="/wiki/Cape_Verde_at_the_Olympics" title="Cape Verde at the Olympics">Cape Verde</a> <span style="font-size:90%;">(CPV)</span></span>
</td>
<td style="background:#f2f2ce;">7</td>
<td style="background:#cedff2;">0</td>
<td>7
</td></tr>
<tr>
<td align="left"><span id="CAY"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Flag_of_the_Cayman_Islands.svg/22px-Flag_of_the_Cayman_Islands.svg.png" decoding="async" width="22" height="11" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Flag_of_the_Cayman_Islands.svg/33px-Flag_of_the_Cayman_Islands.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Flag_of_the_Cayman_Islands.svg/44px-Flag_of_the_Cayman_Islands.svg.png 2x" data-file-width="1200" data-file-height="600" /> <a href="/wiki/Cayman_Islands_at_the_Olympics" title="Cayman Islands at the Olympics">Cayman Islands</a> <span style="font-size:90%;">(CAY)</span></span>
</td>
<td style="background:#f2f2ce;">11</td>
<td style="background:#cedff2;">2</td>
<td>13
</td></tr>
<tr>
<td align="left"><span id="CAF"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Flag_of_the_Central_African_Republic.svg/22px-Flag_of_the_Central_African_Republic.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Flag_of_the_Central_African_Republic.svg/33px-Flag_of_the_Central_African_Republic.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Flag_of_the_Central_African_Republic.svg/44px-Flag_of_the_Central_African_Republic.svg.png 2x" data-file-width="900" data-file-height="600" /> <a href="/wiki/Central_African_Republic_at_the_Olympics" title="Central African Republic at the Olympics">Central African Republic</a> <span style="font-size:90%;">(CAF)</span></span>
</td>
<td style="background:#f2f2ce;">11</td>
<td style="background:#cedff2;">0</td>
<td>11
</td></tr>
<tr>
<td align="left"><span id="CHA"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Flag_of_Chad.svg/22px-Flag_of_Chad.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Flag_of_Chad.svg/33px-Flag_of_Chad.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Flag_of_Chad.svg/44px-Flag_of_Chad.svg.png 2x" data-file-width="900" data-file-height="600" /> <a href="/wiki/Chad_at_the_Olympics" title="Chad at the Olympics">Chad</a> <span style="font-size:90%;">(CHA)</span></span>
</td>
<td style="background:#f2f2ce;">13</td>
<td style="background:#cedff2;">0</td>
<td>13
</td></tr>
<tr>
<td align="left"><span id="COM"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/94/Flag_of_the_Comoros.svg/22px-Flag_of_the_Comoros.svg.png" decoding="async" width="22" height="13" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/94/Flag_of_the_Comoros.svg/33px-Flag_of_the_Comoros.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/94/Flag_of_the_Comoros.svg/44px-Flag_of_the_Comoros.svg.png 2x" data-file-width="1000" data-file-height="600" /> <a href="/wiki/Comoros_at_the_Olympics" title="Comoros at the Olympics">Comoros</a> <span style="font-size:90%;">(COM)</span></span>
</td>
<td style="background:#f2f2ce;">7</td>
<td style="background:#cedff2;">0</td>
<td>7
</td></tr>
<tr>
<td align="left"><span id="CGO"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/Flag_of_the_Republic_of_the_Congo.svg/22px-Flag_of_the_Republic_of_the_Congo.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/Flag_of_the_Republic_of_the_Congo.svg/33px-Flag_of_the_Republic_of_the_Congo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/92/Flag_of_the_Republic_of_the_Congo.svg/44px-Flag_of_the_Republic_of_the_Congo.svg.png 2x" data-file-width="900" data-file-height="600" /> <a href="/wiki/Republic_of_the_Congo_at_the_Olympics" title="Republic of the Congo at the Olympics">Republic of the Congo</a> <span style="font-size:90%;">(CGO)</span></span>
</td>
<td style="background:#f2f2ce;">13</td>
<td style="background:#cedff2;">0</td>
<td>13
</td></tr>
<tr>
<td align="left"><span id="COD"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Flag_of_the_Democratic_Republic_of_the_Congo.svg/22px-Flag_of_the_Democratic_Republic_of_the_Congo.svg.png" decoding="async" width="22" height="17" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Flag_of_the_Democratic_Republic_of_the_Congo.svg/33px-Flag_of_the_Democratic_Republic_of_the_Congo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Flag_of_the_Democratic_Republic_of_the_Congo.svg/44px-Flag_of_the_Democratic_Republic_of_the_Congo.svg.png 2x" data-file-width="800" data-file-height="600" /> <a href="/wiki/Democratic_Republic_of_the_Congo_at_the_Olympics" title="Democratic Republic of the Congo at the Olympics">Democratic Republic of the Congo</a> <span style="font-size:90%;">(COD)</span></span> <sup class="reference" id="ref_CODCOD"><a href="#endnote_CODCOD">[COD]</a></sup>
</td>
<td style="background:#f2f2ce;">11</td>
<td style="background:#cedff2;">0</td>
<td>11
</td></tr>
"""
infer_nodes = [ | Node(text=infer_text) | llama_index.core.data_structs.Node |
get_ipython().run_line_magic('pip', 'install llama-index llama-index-vector-stores-qdrant -q')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system('mkdir data')
get_ipython().system('wget "https://arxiv.org/pdf/2402.09353.pdf" -O "./data/dorav1.pdf"')
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-4")
response = llm.complete("What is DoRA?")
print(response.text)
"""Load the data.
With llama-index, before any transformations are applied,
data is loaded in the `Document` abstraction, which is
a container that holds the text of the document.
"""
from llama_index.core import SimpleDirectoryReader
loader = SimpleDirectoryReader(input_dir="./data")
documents = loader.load_data()
"""Chunk, Encode, and Store into a Vector Store.
To streamline the process, we can make use of the IngestionPipeline
class that will apply your specified transformations to the
Document's.
"""
from llama_index.core.ingestion import IngestionPipeline
from llama_index.core.node_parser import SentenceSplitter
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.vector_stores.qdrant import QdrantVectorStore
import qdrant_client
client = qdrant_client.QdrantClient(location=":memory:")
vector_store = QdrantVectorStore(client=client, collection_name="test_store")
pipeline = IngestionPipeline(
transformations=[
SentenceSplitter(),
| OpenAIEmbedding() | llama_index.embeddings.openai.OpenAIEmbedding |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import logging
import sys
import pandas as pd
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core.evaluation import DatasetGenerator, RelevancyEvaluator
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, Response
from llama_index.llms.openai import OpenAI
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
reader = SimpleDirectoryReader("./data/paul_graham/")
documents = reader.load_data()
data_generator = DatasetGenerator.from_documents(documents)
eval_questions = data_generator.generate_questions_from_nodes()
eval_questions
gpt4 = OpenAI(temperature=0, model="gpt-4")
evaluator_gpt4 = | RelevancyEvaluator(llm=gpt4) | llama_index.core.evaluation.RelevancyEvaluator |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-program-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
from llama_index.core import PromptTemplate
choices = [
"Useful for questions related to apples",
"Useful for questions related to oranges",
]
def get_choice_str(choices):
choices_str = "\n\n".join(
[f"{idx+1}. {c}" for idx, c in enumerate(choices)]
)
return choices_str
choices_str = get_choice_str(choices)
router_prompt0 = PromptTemplate(
"Some choices are given below. It is provided in a numbered list (1 to"
" {num_choices}), where each item in the list corresponds to a"
" summary.\n---------------------\n{context_list}\n---------------------\nUsing"
" only the choices above and not prior knowledge, return the top choices"
" (no more than {max_outputs}, but only select what is needed) that are"
" most relevant to the question: '{query_str}'\n"
)
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo")
def get_formatted_prompt(query_str):
fmt_prompt = router_prompt0.format(
num_choices=len(choices),
max_outputs=2,
context_list=choices_str,
query_str=query_str,
)
return fmt_prompt
query_str = "Can you tell me more about the amount of Vitamin C in apples"
fmt_prompt = get_formatted_prompt(query_str)
response = llm.complete(fmt_prompt)
print(str(response))
query_str = "What are the health benefits of eating orange peels?"
fmt_prompt = get_formatted_prompt(query_str)
response = llm.complete(fmt_prompt)
print(str(response))
query_str = (
"Can you tell me more about the amount of Vitamin C in apples and oranges."
)
fmt_prompt = get_formatted_prompt(query_str)
response = llm.complete(fmt_prompt)
print(str(response))
from dataclasses import fields
from pydantic import BaseModel
import json
class Answer(BaseModel):
choice: int
reason: str
print(json.dumps(Answer.schema(), indent=2))
from llama_index.core.types import BaseOutputParser
FORMAT_STR = """The output should be formatted as a JSON instance that conforms to
the JSON schema below.
Here is the output schema:
{
"type": "array",
"items": {
"type": "object",
"properties": {
"choice": {
"type": "integer"
},
"reason": {
"type": "string"
}
},
"required": [
"choice",
"reason"
],
"additionalProperties": false
}
}
"""
def _escape_curly_braces(input_string: str) -> str:
escaped_string = input_string.replace("{", "{{").replace("}", "}}")
return escaped_string
def _marshal_output_to_json(output: str) -> str:
output = output.strip()
left = output.find("[")
right = output.find("]")
output = output[left : right + 1]
return output
from typing import List
class RouterOutputParser(BaseOutputParser):
def parse(self, output: str) -> List[Answer]:
"""Parse string."""
json_output = _marshal_output_to_json(output)
json_dicts = json.loads(json_output)
answers = [Answer.from_dict(json_dict) for json_dict in json_dicts]
return answers
def format(self, prompt_template: str) -> str:
return prompt_template + "\n\n" + _escape_curly_braces(FORMAT_STR)
output_parser = RouterOutputParser()
from typing import List
def route_query(
query_str: str, choices: List[str], output_parser: RouterOutputParser
):
choices_str
fmt_base_prompt = router_prompt0.format(
num_choices=len(choices),
max_outputs=len(choices),
context_list=choices_str,
query_str=query_str,
)
fmt_json_prompt = output_parser.format(fmt_base_prompt)
raw_output = llm.complete(fmt_json_prompt)
parsed = output_parser.parse(str(raw_output))
return parsed
from pydantic import Field
class Answer(BaseModel):
"Represents a single choice with a reason."
choice: int
reason: str
class Answers(BaseModel):
"""Represents a list of answers."""
answers: List[Answer]
Answers.schema()
from llama_index.program.openai import OpenAIPydanticProgram
router_prompt1 = router_prompt0.partial_format(
num_choices=len(choices),
max_outputs=len(choices),
)
program = OpenAIPydanticProgram.from_defaults(
output_cls=Answers,
prompt=router_prompt1,
verbose=True,
)
query_str = "What are the health benefits of eating orange peels?"
output = program(context_list=choices_str, query_str=query_str)
output
get_ipython().system('mkdir data')
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pathlib import Path
from llama_index.readers.file import PyMuPDFReader
loader = PyMuPDFReader()
documents = loader.load(file_path="./data/llama2.pdf")
from llama_index.core import VectorStoreIndex
from llama_index.core import SummaryIndex
from llama_index.core.node_parser import SentenceSplitter
splitter = SentenceSplitter(chunk_size=1024)
vector_index = VectorStoreIndex.from_documents(
documents, transformations=[splitter]
)
summary_index = SummaryIndex.from_documents(
documents, transformations=[splitter]
)
vector_query_engine = vector_index.as_query_engine(llm=llm)
summary_query_engine = summary_index.as_query_engine(llm=llm)
from llama_index.core.query_engine import CustomQueryEngine, BaseQueryEngine
from llama_index.core.response_synthesizers import TreeSummarize
class RouterQueryEngine(CustomQueryEngine):
"""Use our Pydantic program to perform routing."""
query_engines: List[BaseQueryEngine]
choice_descriptions: List[str]
verbose: bool = False
router_prompt: PromptTemplate
llm: OpenAI
summarizer: TreeSummarize = Field(default_factory=TreeSummarize)
def custom_query(self, query_str: str):
"""Define custom query."""
program = OpenAIPydanticProgram.from_defaults(
output_cls=Answers,
prompt=router_prompt1,
verbose=self.verbose,
llm=self.llm,
)
choices_str = get_choice_str(self.choice_descriptions)
output = program(context_list=choices_str, query_str=query_str)
if self.verbose:
print(f"Selected choice(s):")
for answer in output.answers:
print(f"Choice: {answer.choice}, Reason: {answer.reason}")
responses = []
for answer in output.answers:
choice_idx = answer.choice - 1
query_engine = self.query_engines[choice_idx]
response = query_engine.query(query_str)
responses.append(response)
if len(responses) == 1:
return responses[0]
else:
response_strs = [str(r) for r in responses]
result_response = self.summarizer.get_response(
query_str, response_strs
)
return result_response
choices = [
(
"Useful for answering questions about specific sections of the Llama 2"
" paper"
),
"Useful for questions that ask for a summary of the whole paper",
]
router_query_engine = RouterQueryEngine(
query_engines=[vector_query_engine, summary_query_engine],
choice_descriptions=choices,
verbose=True,
router_prompt=router_prompt1,
llm= | OpenAI(model="gpt-4") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai-legacy')
get_ipython().system('pip install llama-index')
import json
from typing import Sequence
from llama_index.core import (
SimpleDirectoryReader,
VectorStoreIndex,
StorageContext,
load_index_from_storage,
)
from llama_index.core.tools import QueryEngineTool, ToolMetadata
try:
storage_context = StorageContext.from_defaults(
persist_dir="./storage/march"
)
march_index = load_index_from_storage(storage_context)
storage_context = StorageContext.from_defaults(
persist_dir="./storage/june"
)
june_index = | load_index_from_storage(storage_context) | llama_index.core.load_index_from_storage |
get_ipython().run_line_magic('pip', 'install llama-index-llms-anthropic')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.llms.openai import OpenAI
from llama_index.llms.anthropic import Anthropic
llm = OpenAI()
data = SimpleDirectoryReader(input_dir="./data/paul_graham/").load_data()
index = | VectorStoreIndex.from_documents(data) | llama_index.core.VectorStoreIndex.from_documents |
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
from llama_index.agent.openai import OpenAIAgent
from llama_index.llms.openai import OpenAI
from llama_index.core.tools import BaseTool, FunctionTool
def multiply(a: int, b: int) -> int:
"""Multiple two integers and returns the result integer"""
return a * b
multiply_tool = FunctionTool.from_defaults(fn=multiply)
def add(a: int, b: int) -> int:
"""Add two integers and returns the result integer"""
return a + b
add_tool = FunctionTool.from_defaults(fn=add)
llm = OpenAI(model="gpt-3.5-turbo-1106")
agent = OpenAIAgent.from_tools(
[multiply_tool, add_tool], llm=llm, verbose=True
)
response = agent.chat("What is (121 * 3) + 42?")
print(str(response))
response = agent.stream_chat("What is (121 * 3) + 42?")
import nest_asyncio
nest_asyncio.apply()
response = await agent.achat("What is (121 * 3) + 42?")
print(str(response))
response = await agent.astream_chat("What is (121 * 3) + 42?")
response_gen = response.response_gen
async for token in response.async_response_gen():
print(token, end="")
import json
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps(
{"location": location, "temperature": "10", "unit": "celsius"}
)
elif "san francisco" in location.lower():
return json.dumps(
{"location": location, "temperature": "72", "unit": "fahrenheit"}
)
else:
return json.dumps(
{"location": location, "temperature": "22", "unit": "celsius"}
)
weather_tool = FunctionTool.from_defaults(fn=get_current_weather)
llm = OpenAI(model="gpt-3.5-turbo-1106")
agent = | OpenAIAgent.from_tools([weather_tool], llm=llm, verbose=True) | llama_index.agent.openai.OpenAIAgent.from_tools |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant')
get_ipython().run_line_magic('pip', 'install llama_index ftfy regex tqdm')
get_ipython().run_line_magic('pip', 'install git+https://github.com/openai/CLIP.git')
get_ipython().run_line_magic('pip', 'install torch torchvision')
get_ipython().run_line_magic('pip', 'install matplotlib scikit-image')
get_ipython().run_line_magic('pip', 'install -U qdrant_client')
from pathlib import Path
import requests
wiki_titles = [
"batman",
"Vincent van Gogh",
"San Francisco",
"iPhone",
"Tesla Model S",
"BTS",
]
data_path = Path("data_wiki")
for title in wiki_titles:
response = requests.get(
"https://en.wikipedia.org/w/api.php",
params={
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
},
).json()
page = next(iter(response["query"]["pages"].values()))
wiki_text = page["extract"]
if not data_path.exists():
Path.mkdir(data_path)
with open(data_path / f"{title}.txt", "w") as fp:
fp.write(wiki_text)
import wikipedia
import urllib.request
image_path = Path("data_wiki")
image_uuid = 0
image_metadata_dict = {}
MAX_IMAGES_PER_WIKI = 30
wiki_titles = [
"San Francisco",
"Batman",
"Vincent van Gogh",
"iPhone",
"Tesla Model S",
"BTS band",
]
if not image_path.exists():
Path.mkdir(image_path)
for title in wiki_titles:
images_per_wiki = 0
print(title)
try:
page_py = wikipedia.page(title)
list_img_urls = page_py.images
for url in list_img_urls:
if url.endswith(".jpg") or url.endswith(".png"):
image_uuid += 1
image_file_name = title + "_" + url.split("/")[-1]
image_metadata_dict[image_uuid] = {
"filename": image_file_name,
"img_path": "./" + str(image_path / f"{image_uuid}.jpg"),
}
urllib.request.urlretrieve(
url, image_path / f"{image_uuid}.jpg"
)
images_per_wiki += 1
if images_per_wiki > MAX_IMAGES_PER_WIKI:
break
except:
print(str(Exception("No images found for Wikipedia page: ")) + title)
continue
import os
os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY"
import qdrant_client
from llama_index.core import SimpleDirectoryReader
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.core.indices import MultiModalVectorStoreIndex
client = qdrant_client.QdrantClient(path="qdrant_db")
text_store = QdrantVectorStore(
client=client, collection_name="text_collection"
)
image_store = QdrantVectorStore(
client=client, collection_name="image_collection"
)
storage_context = StorageContext.from_defaults(
vector_store=text_store, image_store=image_store
)
documents = SimpleDirectoryReader("./data_wiki/").load_data()
index = MultiModalVectorStoreIndex.from_documents(
documents,
storage_context=storage_context,
)
from PIL import Image
import matplotlib.pyplot as plt
import os
def plot_images(image_metadata_dict):
original_images_urls = []
images_shown = 0
for image_id in image_metadata_dict:
img_path = image_metadata_dict[image_id]["img_path"]
if os.path.isfile(img_path):
filename = image_metadata_dict[image_id]["filename"]
image = Image.open(img_path).convert("RGB")
plt.subplot(8, 8, len(original_images_urls) + 1)
plt.imshow(image)
plt.xticks([])
plt.yticks([])
original_images_urls.append(filename)
images_shown += 1
if images_shown >= 64:
break
plt.tight_layout()
plot_images(image_metadata_dict)
def plot_images(image_paths):
images_shown = 0
plt.figure(figsize=(16, 9))
for img_path in image_paths:
if os.path.isfile(img_path):
image = Image.open(img_path)
plt.subplot(2, 3, images_shown + 1)
plt.imshow(image)
plt.xticks([])
plt.yticks([])
images_shown += 1
if images_shown >= 9:
break
test_query = "who are BTS team members"
retriever = index.as_retriever(similarity_top_k=3, image_similarity_top_k=5)
retrieval_results = retriever.retrieve(test_query)
from llama_index.core.response.notebook_utils import display_source_node
from llama_index.core.schema import ImageNode
retrieved_image = []
for res_node in retrieval_results:
if isinstance(res_node.node, ImageNode):
retrieved_image.append(res_node.node.metadata["file_path"])
else:
| display_source_node(res_node, source_length=200) | llama_index.core.response.notebook_utils.display_source_node |
get_ipython().run_line_magic('pip', 'install llama-index-llms-konko')
get_ipython().system('pip install llama-index')
import os
os.environ["KONKO_API_KEY"] = "<your-api-key>"
from llama_index.llms.konko import Konko
from llama_index.core.llms import ChatMessage
llm = Konko(model="meta-llama/llama-2-13b-chat")
messages = ChatMessage(role="user", content="Explain Big Bang Theory briefly")
resp = llm.chat([messages])
print(resp)
import os
os.environ["OPENAI_API_KEY"] = "<your-api-key>"
llm = Konko(model="gpt-3.5-turbo")
message = | ChatMessage(role="user", content="Explain Big Bang Theory briefly") | llama_index.core.llms.ChatMessage |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
from llama_index.core.query_pipeline import (
QueryPipeline as QP,
Link,
InputComponent,
)
from llama_index.core.query_engine.pandas import PandasInstructionParser
from llama_index.llms.openai import OpenAI
from llama_index.core import PromptTemplate
get_ipython().system("wget 'https://raw.githubusercontent.com/jerryjliu/llama_index/main/docs/examples/data/csv/titanic_train.csv' -O 'titanic_train.csv'")
import pandas as pd
df = pd.read_csv("./titanic_train.csv")
instruction_str = (
"1. Convert the query to executable Python code using Pandas.\n"
"2. The final line of code should be a Python expression that can be called with the `eval()` function.\n"
"3. The code should represent a solution to the query.\n"
"4. PRINT ONLY THE EXPRESSION.\n"
"5. Do not quote the expression.\n"
)
pandas_prompt_str = (
"You are working with a pandas dataframe in Python.\n"
"The name of the dataframe is `df`.\n"
"This is the result of `print(df.head())`:\n"
"{df_str}\n\n"
"Follow these instructions:\n"
"{instruction_str}\n"
"Query: {query_str}\n\n"
"Expression:"
)
response_synthesis_prompt_str = (
"Given an input question, synthesize a response from the query results.\n"
"Query: {query_str}\n\n"
"Pandas Instructions (optional):\n{pandas_instructions}\n\n"
"Pandas Output: {pandas_output}\n\n"
"Response: "
)
pandas_prompt = | PromptTemplate(pandas_prompt_str) | llama_index.core.PromptTemplate |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
from llama_index.core.response.pprint_utils import pprint_response
from llama_index.llms.openai import OpenAI
from llama_index.core.tools import QueryEngineTool, ToolMetadata
from llama_index.core.query_engine import SubQuestionQueryEngine
import os
os.environ["OPENAI_API_KEY"] = "OPENAI_API_KEY"
from llama_index.core import Settings
Settings.llm = OpenAI(temperature=0.2, model="gpt-3.5-turbo")
get_ipython().system("mkdir -p 'data/10q/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10q/uber_10q_march_2022.pdf' -O 'data/10q/uber_10q_march_2022.pdf'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10q/uber_10q_june_2022.pdf' -O 'data/10q/uber_10q_june_2022.pdf'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10q/uber_10q_sept_2022.pdf' -O 'data/10q/uber_10q_sept_2022.pdf'")
march_2022 = SimpleDirectoryReader(
input_files=["./data/10q/uber_10q_march_2022.pdf"]
).load_data()
june_2022 = SimpleDirectoryReader(
input_files=["./data/10q/uber_10q_june_2022.pdf"]
).load_data()
sept_2022 = SimpleDirectoryReader(
input_files=["./data/10q/uber_10q_sept_2022.pdf"]
).load_data()
march_index = VectorStoreIndex.from_documents(march_2022)
june_index = VectorStoreIndex.from_documents(june_2022)
sept_index = | VectorStoreIndex.from_documents(sept_2022) | llama_index.core.VectorStoreIndex.from_documents |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-cohere')
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini')
get_ipython().system('pip install "google-generativeai" -q')
import nest_asyncio
nest_asyncio.apply()
from llama_index.core.llama_dataset import download_llama_dataset
pairwise_evaluator_dataset, _ = download_llama_dataset(
"MtBenchHumanJudgementDataset", "./mt_bench_data"
)
pairwise_evaluator_dataset.to_pandas()[:5]
from llama_index.core.evaluation import PairwiseComparisonEvaluator
from llama_index.llms.openai import OpenAI
from llama_index.llms.gemini import Gemini
from llama_index.llms.cohere import Cohere
llm_gpt4 = | OpenAI(temperature=0, model="gpt-4") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-readers-github')
get_ipython().system('pip install llama-index')
get_ipython().system('pip install nest_asyncio httpx')
import nest_asyncio
nest_asyncio.apply()
get_ipython().run_line_magic('env', 'OPENAI_API_KEY=sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx')
from llama_index.core import VectorStoreIndex
from llama_index.readers.github import GithubRepositoryReader
from IPython.display import Markdown, display
import os
get_ipython().run_line_magic('env', 'GITHUB_TOKEN=github_pat_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx')
github_token = os.environ.get("GITHUB_TOKEN")
owner = "jerryjliu"
repo = "llama_index"
branch = "main"
documents = GithubRepositoryReader(
github_token=github_token,
owner=owner,
repo=repo,
use_parser=False,
verbose=False,
ignore_directories=["examples"],
).load_data(branch=branch)
index = | VectorStoreIndex.from_documents(documents) | llama_index.core.VectorStoreIndex.from_documents |
get_ipython().run_line_magic('pip', 'install llama-index-llms-fireworks')
get_ipython().run_line_magic('pip', 'install llama-index')
from llama_index.llms.fireworks import Fireworks
resp = Fireworks().complete("Paul Graham is ")
print(resp)
from llama_index.core.llms import ChatMessage
from llama_index.llms.fireworks import Fireworks
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
ChatMessage(role="user", content="What is your name"),
]
resp = | Fireworks() | llama_index.llms.fireworks.Fireworks |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone')
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import openai
import os
os.environ["OPENAI_API_KEY"] = "[You API key]"
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import pinecone
import os
api_key = os.environ["PINECONE_API_KEY"]
pinecone.init(api_key=api_key, environment="us-west1-gcp-free")
pinecone_index = pinecone.Index("quickstart")
pinecone_index.delete(deleteAll=True)
from llama_index.core import StorageContext
from llama_index.vector_stores.pinecone import PineconeVectorStore
from llama_index.core import VectorStoreIndex
vector_store = PineconeVectorStore(
pinecone_index=pinecone_index, namespace="wiki_cities"
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
vector_index = VectorStoreIndex([], storage_context=storage_context)
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
select,
column,
)
engine = create_engine("sqlite:///:memory:", future=True)
metadata_obj = MetaData()
table_name = "city_stats"
city_stats_table = Table(
table_name,
metadata_obj,
Column("city_name", String(16), primary_key=True),
Column("population", Integer),
Column("country", String(16), nullable=False),
)
metadata_obj.create_all(engine)
metadata_obj.tables.keys()
from sqlalchemy import insert
rows = [
{"city_name": "Toronto", "population": 2930000, "country": "Canada"},
{"city_name": "Tokyo", "population": 13960000, "country": "Japan"},
{"city_name": "Berlin", "population": 3645000, "country": "Germany"},
]
for row in rows:
stmt = insert(city_stats_table).values(**row)
with engine.begin() as connection:
cursor = connection.execute(stmt)
with engine.connect() as connection:
cursor = connection.exec_driver_sql("SELECT * FROM city_stats")
print(cursor.fetchall())
get_ipython().system('pip install wikipedia')
from llama_index.readers.wikipedia import WikipediaReader
cities = ["Toronto", "Berlin", "Tokyo"]
wiki_docs = WikipediaReader().load_data(pages=cities)
from llama_index.core import SQLDatabase
sql_database = SQLDatabase(engine, include_tables=["city_stats"])
from llama_index.core.query_engine import NLSQLTableQueryEngine
sql_query_engine = NLSQLTableQueryEngine(
sql_database=sql_database,
tables=["city_stats"],
)
from llama_index.core import Settings
for city, wiki_doc in zip(cities, wiki_docs):
nodes = Settings.node_parser.get_nodes_from_documents([wiki_doc])
for node in nodes:
node.metadata = {"title": city}
vector_index.insert_nodes(nodes)
from llama_index.llms.openai import OpenAI
from llama_index.core.retrievers import VectorIndexAutoRetriever
from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo
from llama_index.core.query_engine import RetrieverQueryEngine
vector_store_info = VectorStoreInfo(
content_info="articles about different cities",
metadata_info=[
MetadataInfo(
name="title", type="str", description="The name of the city"
),
],
)
vector_auto_retriever = VectorIndexAutoRetriever(
vector_index, vector_store_info=vector_store_info
)
retriever_query_engine = RetrieverQueryEngine.from_args(
vector_auto_retriever, llm= | OpenAI(model="gpt-4") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-readers-github')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-weaviate')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index llama-hub')
import nest_asyncio
nest_asyncio.apply()
import os
os.environ["GITHUB_TOKEN"] = "ghp_..."
os.environ["OPENAI_API_KEY"] = "sk-..."
import os
from llama_index.readers.github import (
GitHubRepositoryIssuesReader,
GitHubIssuesClient,
)
github_client = GitHubIssuesClient()
loader = GitHubRepositoryIssuesReader(
github_client,
owner="run-llama",
repo="llama_index",
verbose=True,
)
orig_docs = loader.load_data()
limit = 100
docs = []
for idx, doc in enumerate(orig_docs):
doc.metadata["index_id"] = int(doc.id_)
if idx >= limit:
break
docs.append(doc)
import weaviate
auth_config = weaviate.AuthApiKey(
api_key="XRa15cDIkYRT7AkrpqT6jLfE4wropK1c1TGk"
)
client = weaviate.Client(
"https://llama-index-test-v0oggsoz.weaviate.network",
auth_client_secret=auth_config,
)
class_name = "LlamaIndex_docs"
client.schema.delete_class(class_name)
from llama_index.vector_stores.weaviate import WeaviateVectorStore
from llama_index.core import VectorStoreIndex, StorageContext
vector_store = WeaviateVectorStore(
weaviate_client=client, index_name=class_name
)
storage_context = | StorageContext.from_defaults(vector_store=vector_store) | llama_index.core.StorageContext.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo-instruct", temperature=0.1)
Settings.embed_model = | HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5") | llama_index.embeddings.huggingface.HuggingFaceEmbedding |
get_ipython().system('pip install llama-index')
import openai
import os
os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY"
openai.api_key = os.environ["OPENAI_API_KEY"]
from typing import Any, List
from InstructorEmbedding import INSTRUCTOR
from llama_index.core.bridge.pydantic import PrivateAttr
from llama_index.core.embeddings import BaseEmbedding
class InstructorEmbeddings(BaseEmbedding):
_model: INSTRUCTOR = PrivateAttr()
_instruction: str = PrivateAttr()
def __init__(
self,
instructor_model_name: str = "hkunlp/instructor-large",
instruction: str = "Represent a document for semantic search:",
**kwargs: Any,
) -> None:
self._model = INSTRUCTOR(instructor_model_name)
self._instruction = instruction
super().__init__(**kwargs)
@classmethod
def class_name(cls) -> str:
return "instructor"
async def _aget_query_embedding(self, query: str) -> List[float]:
return self._get_query_embedding(query)
async def _aget_text_embedding(self, text: str) -> List[float]:
return self._get_text_embedding(text)
def _get_query_embedding(self, query: str) -> List[float]:
embeddings = self._model.encode([[self._instruction, query]])
return embeddings[0]
def _get_text_embedding(self, text: str) -> List[float]:
embeddings = self._model.encode([[self._instruction, text]])
return embeddings[0]
def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
embeddings = self._model.encode(
[[self._instruction, text] for text in texts]
)
return embeddings
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
from llama_index.core import Settings
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = | SimpleDirectoryReader("./data/paul_graham/") | llama_index.core.SimpleDirectoryReader |
from llama_index.core import SQLDatabase
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
select,
column,
)
engine = create_engine("sqlite:///chinook.db")
sql_database = SQLDatabase(engine)
from llama_index.core.query_pipeline import QueryPipeline
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('curl "https://www.sqlitetutorial.net/wp-content/uploads/2018/03/chinook.zip" -O ./chinook.zip')
get_ipython().system('unzip ./chinook.zip')
from llama_index.core.settings import Settings
from llama_index.core.callbacks import CallbackManager
callback_manager = CallbackManager()
Settings.callback_manager = callback_manager
import phoenix as px
import llama_index.core
px.launch_app()
llama_index.core.set_global_handler("arize_phoenix")
from llama_index.core.query_engine import NLSQLTableQueryEngine
from llama_index.core.tools import QueryEngineTool
sql_query_engine = NLSQLTableQueryEngine(
sql_database=sql_database,
tables=["albums", "tracks", "artists"],
verbose=True,
)
sql_tool = QueryEngineTool.from_defaults(
query_engine=sql_query_engine,
name="sql_tool",
description=(
"Useful for translating a natural language query into a SQL query"
),
)
from llama_index.core.query_pipeline import QueryPipeline as QP
qp = QP(verbose=True)
from llama_index.core.agent.react.types import (
ActionReasoningStep,
ObservationReasoningStep,
ResponseReasoningStep,
)
from llama_index.core.agent import Task, AgentChatResponse
from llama_index.core.query_pipeline import (
AgentInputComponent,
AgentFnComponent,
CustomAgentComponent,
QueryComponent,
ToolRunnerComponent,
)
from llama_index.core.llms import MessageRole
from typing import Dict, Any, Optional, Tuple, List, cast
def agent_input_fn(task: Task, state: Dict[str, Any]) -> Dict[str, Any]:
"""Agent input function.
Returns:
A Dictionary of output keys and values. If you are specifying
src_key when defining links between this component and other
components, make sure the src_key matches the specified output_key.
"""
if "current_reasoning" not in state:
state["current_reasoning"] = []
reasoning_step = ObservationReasoningStep(observation=task.input)
state["current_reasoning"].append(reasoning_step)
return {"input": task.input}
agent_input_component = AgentInputComponent(fn=agent_input_fn)
from llama_index.core.agent import ReActChatFormatter
from llama_index.core.query_pipeline import InputComponent, Link
from llama_index.core.llms import ChatMessage
from llama_index.core.tools import BaseTool
def react_prompt_fn(
task: Task, state: Dict[str, Any], input: str, tools: List[BaseTool]
) -> List[ChatMessage]:
chat_formatter = ReActChatFormatter()
return chat_formatter.format(
tools,
chat_history=task.memory.get() + state["memory"].get_all(),
current_reasoning=state["current_reasoning"],
)
react_prompt_component = AgentFnComponent(
fn=react_prompt_fn, partial_dict={"tools": [sql_tool]}
)
from typing import Set, Optional
from llama_index.core.agent.react.output_parser import ReActOutputParser
from llama_index.core.llms import ChatResponse
from llama_index.core.agent.types import Task
def parse_react_output_fn(
task: Task, state: Dict[str, Any], chat_response: ChatResponse
):
"""Parse ReAct output into a reasoning step."""
output_parser = ReActOutputParser()
reasoning_step = output_parser.parse(chat_response.message.content)
return {"done": reasoning_step.is_done, "reasoning_step": reasoning_step}
parse_react_output = AgentFnComponent(fn=parse_react_output_fn)
def run_tool_fn(
task: Task, state: Dict[str, Any], reasoning_step: ActionReasoningStep
):
"""Run tool and process tool output."""
tool_runner_component = ToolRunnerComponent(
[sql_tool], callback_manager=task.callback_manager
)
tool_output = tool_runner_component.run_component(
tool_name=reasoning_step.action,
tool_input=reasoning_step.action_input,
)
observation_step = ObservationReasoningStep(observation=str(tool_output))
state["current_reasoning"].append(observation_step)
return {"response_str": observation_step.get_content(), "is_done": False}
run_tool = AgentFnComponent(fn=run_tool_fn)
def process_response_fn(
task: Task, state: Dict[str, Any], response_step: ResponseReasoningStep
):
"""Process response."""
state["current_reasoning"].append(response_step)
response_str = response_step.response
state["memory"].put(ChatMessage(content=task.input, role=MessageRole.USER))
state["memory"].put(
ChatMessage(content=response_str, role=MessageRole.ASSISTANT)
)
return {"response_str": response_str, "is_done": True}
process_response = AgentFnComponent(fn=process_response_fn)
def process_agent_response_fn(
task: Task, state: Dict[str, Any], response_dict: dict
):
"""Process agent response."""
return (
AgentChatResponse(response_dict["response_str"]),
response_dict["is_done"],
)
process_agent_response = AgentFnComponent(fn=process_agent_response_fn)
from llama_index.core.query_pipeline import QueryPipeline as QP
from llama_index.llms.openai import OpenAI
qp.add_modules(
{
"agent_input": agent_input_component,
"react_prompt": react_prompt_component,
"llm": OpenAI(model="gpt-4-1106-preview"),
"react_output_parser": parse_react_output,
"run_tool": run_tool,
"process_response": process_response,
"process_agent_response": process_agent_response,
}
)
qp.add_chain(["agent_input", "react_prompt", "llm", "react_output_parser"])
qp.add_link(
"react_output_parser",
"run_tool",
condition_fn=lambda x: not x["done"],
input_fn=lambda x: x["reasoning_step"],
)
qp.add_link(
"react_output_parser",
"process_response",
condition_fn=lambda x: x["done"],
input_fn=lambda x: x["reasoning_step"],
)
qp.add_link("process_response", "process_agent_response")
qp.add_link("run_tool", "process_agent_response")
from pyvis.network import Network
net = Network(notebook=True, cdn_resources="in_line", directed=True)
net.from_nx(qp.clean_dag)
net.show("agent_dag.html")
from llama_index.core.agent import QueryPipelineAgentWorker, AgentRunner
from llama_index.core.callbacks import CallbackManager
agent_worker = QueryPipelineAgentWorker(qp)
agent = AgentRunner(
agent_worker, callback_manager=CallbackManager([]), verbose=True
)
task = agent.create_task(
"What are some tracks from the artist AC/DC? Limit it to 3"
)
step_output = agent.run_step(task.task_id)
step_output = agent.run_step(task.task_id)
step_output.is_last
response = agent.finalize_response(task.task_id)
print(str(response))
agent.reset()
response = agent.chat(
"What are some tracks from the artist AC/DC? Limit it to 3"
)
print(str(response))
from llama_index.llms.openai import OpenAI
llm = | OpenAI(model="gpt-4-1106-preview") | llama_index.llms.openai.OpenAI |
get_ipython().system('pip install llama-index')
get_ipython().system('pip install llama-index-core')
get_ipython().system('pip install --quiet transformers torch')
get_ipython().system('pip install llama-index-embeddings-openai')
get_ipython().system('pip install llama-index-llms-openai')
get_ipython().system('pip install llama-index-postprocessor-colbert-rerank')
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
)
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
import os
os.environ["OPENAI_API_KEY"] = "sk-"
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
index = | VectorStoreIndex.from_documents(documents=documents) | llama_index.core.VectorStoreIndex.from_documents |
get_ipython().run_line_magic('pip', 'install llama-index-llms-gradient')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().system('pip install llama-index gradientai -q')
import os
from llama_index.llms.gradient import GradientBaseModelLLM
from llama_index.finetuning import GradientFinetuneEngine
os.environ["GRADIENT_ACCESS_TOKEN"] = os.getenv("GRADIENT_API_KEY")
os.environ["GRADIENT_WORKSPACE_ID"] = "<insert_workspace_id>"
from pydantic import BaseModel
class Album(BaseModel):
"""Data model for an album."""
name: str
artist: str
from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler
from llama_index.llms.openai import OpenAI
from llama_index.llms.gradient import GradientBaseModelLLM
from llama_index.core.program import LLMTextCompletionProgram
from llama_index.core.output_parsers import PydanticOutputParser
openai_handler = LlamaDebugHandler()
openai_callback = CallbackManager([openai_handler])
openai_llm = OpenAI(model="gpt-4", callback_manager=openai_callback)
gradient_handler = LlamaDebugHandler()
gradient_callback = CallbackManager([gradient_handler])
base_model_slug = "llama2-7b-chat"
gradient_llm = GradientBaseModelLLM(
base_model_slug=base_model_slug,
max_tokens=300,
callback_manager=gradient_callback,
is_chat_model=True,
)
from llama_index.core.llms import LLMMetadata
prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
"""
openai_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=prompt_template_str,
llm=openai_llm,
verbose=True,
)
gradient_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=prompt_template_str,
llm=gradient_llm,
verbose=True,
)
response = openai_program(movie_name="The Shining")
print(str(response))
tmp = openai_handler.get_llm_inputs_outputs()
print(tmp[0][0].payload["messages"][0])
response = gradient_program(movie_name="The Shining")
print(str(response))
tmp = gradient_handler.get_llm_inputs_outputs()
print(tmp[0][0].payload["messages"][0])
from llama_index.core.program import LLMTextCompletionProgram
from pydantic import BaseModel
from llama_index.llms.openai import OpenAI
from llama_index.core.callbacks import GradientAIFineTuningHandler
from llama_index.core.callbacks import CallbackManager
from llama_index.core.output_parsers import PydanticOutputParser
from typing import List
class Song(BaseModel):
"""Data model for a song."""
title: str
length_seconds: int
class Album(BaseModel):
"""Data model for an album."""
name: str
artist: str
songs: List[Song]
finetuning_handler = GradientAIFineTuningHandler()
callback_manager = CallbackManager([finetuning_handler])
llm_gpt4 = OpenAI(model="gpt-4", callback_manager=callback_manager)
prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
"""
openai_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=prompt_template_str,
llm=llm_gpt4,
verbose=True,
)
movie_names = [
"The Shining",
"The Departed",
"Titanic",
"Goodfellas",
"Pretty Woman",
"Home Alone",
"Caged Fury",
"Edward Scissorhands",
"Total Recall",
"Ghost",
"Tremors",
"RoboCop",
"Rocky V",
]
from tqdm.notebook import tqdm
for movie_name in tqdm(movie_names):
output = openai_program(movie_name=movie_name)
print(output.json())
events = finetuning_handler.get_finetuning_events()
events
finetuning_handler.save_finetuning_events("mock_finetune_songs.jsonl")
get_ipython().system('cat mock_finetune_songs.jsonl')
base_model_slug = "llama2-7b-chat"
base_llm = GradientBaseModelLLM(
base_model_slug=base_model_slug, max_tokens=500, is_chat_model=True
)
from llama_index.finetuning import GradientFinetuneEngine
finetune_engine = GradientFinetuneEngine(
base_model_slug=base_model_slug,
name="movies_structured",
data_path="mock_finetune_songs.jsonl",
verbose=True,
max_steps=200,
batch_size=1,
)
finetune_engine.model_adapter_id
epochs = 2
for i in range(epochs):
print(f"** EPOCH {i} **")
finetune_engine.finetune()
ft_llm = finetune_engine.get_finetuned_model(
max_tokens=500, is_chat_model=True
)
from llama_index.llms.gradient import GradientModelAdapterLLM
new_prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
Please only generate one album.
"""
gradient_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=new_prompt_template_str,
llm=ft_llm,
verbose=True,
)
gradient_program(movie_name="Goodfellas")
gradient_program(movie_name="Chucky")
base_gradient_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=prompt_template_str,
llm=base_llm,
verbose=True,
)
base_gradient_program(movie_name="Goodfellas")
get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pydantic import Field
from typing import List
class Citation(BaseModel):
"""Citation class."""
author: str = Field(
..., description="Inferred first author (usually last name"
)
year: int = Field(..., description="Inferred year")
desc: str = Field(
...,
description=(
"Inferred description from the text of the work that the author is"
" cited for"
),
)
class Response(BaseModel):
"""List of author citations.
Extracted over unstructured text.
"""
citations: List[Citation] = Field(
...,
description=(
"List of author citations (organized by author, year, and"
" description)."
),
)
from llama_index.readers.file import PyMuPDFReader
from llama_index.core import Document
from llama_index.core.node_parser import SimpleNodeParser
from pathlib import Path
from llama_index.core.callbacks import GradientAIFineTuningHandler
loader = PyMuPDFReader()
docs0 = loader.load(file_path=Path("./data/llama2.pdf"))
doc_text = "\n\n".join([d.get_content() for d in docs0])
metadata = {
"paper_title": "Llama 2: Open Foundation and Fine-Tuned Chat Models"
}
docs = [Document(text=doc_text, metadata=metadata)]
chunk_size = 1024
node_parser = SimpleNodeParser.from_defaults(chunk_size=chunk_size)
nodes = node_parser.get_nodes_from_documents(docs)
len(nodes)
finetuning_handler = GradientAIFineTuningHandler()
callback_manager = CallbackManager([finetuning_handler])
llm_gpt4 = OpenAI(model="gpt-4-0613", temperature=0.3)
llm_gpt4.pydantic_program_mode = "llm"
base_model_slug = "llama2-7b-chat"
base_llm = GradientBaseModelLLM(
base_model_slug=base_model_slug, max_tokens=500, is_chat_model=True
)
base_llm.pydantic_program_mode = "llm"
eval_llm = OpenAI(model="gpt-4-0613", temperature=0)
from llama_index.core.evaluation import DatasetGenerator
from llama_index.core import SummaryIndex
from llama_index.core import PromptTemplate
from tqdm.notebook import tqdm
from tqdm.asyncio import tqdm_asyncio
fp = open("data/qa_pairs.jsonl", "w")
question_gen_prompt = PromptTemplate(
"""
{query_str}
Context:
{context_str}
Questions:
"""
)
question_gen_query = """\
Snippets from a research paper is given below. It contains citations.
Please generate questions from the text asking about these citations.
For instance, here are some sample questions:
Which citations correspond to related works on transformer models?
Tell me about authors that worked on advancing RLHF.
Can you tell me citations corresponding to all computer vision works? \
"""
qr_pairs = []
node_questions_tasks = []
for idx, node in enumerate(nodes[:39]):
num_questions = 1 # change this number to increase number of nodes
dataset_generator = DatasetGenerator(
[node],
question_gen_query=question_gen_query,
text_question_template=question_gen_prompt,
llm=eval_llm,
metadata_mode="all",
num_questions_per_chunk=num_questions,
)
task = dataset_generator.agenerate_questions_from_nodes(num=num_questions)
node_questions_tasks.append(task)
node_questions_lists = await tqdm_asyncio.gather(*node_questions_tasks)
len(node_questions_lists)
node_questions_lists[1]
import pickle
pickle.dump(node_questions_lists, open("llama2_questions.pkl", "wb"))
node_questions_lists = pickle.load(open("llama2_questions.pkl", "rb"))
from llama_index.core import VectorStoreIndex
gpt4_index = VectorStoreIndex(nodes[:39], callback_manager=callback_manager)
gpt4_query_engine = gpt4_index.as_query_engine(
output_cls=Response, llm=llm_gpt4, similarity_top_k=1
)
from json import JSONDecodeError
for idx, node in enumerate(tqdm(nodes[:39])):
node_questions_0 = node_questions_lists[idx]
for question in node_questions_0:
try:
gpt4_query_engine.query(question)
except Exception as e:
print(f"Error for question {question}, {repr(e)}")
pass
finetuning_handler.save_finetuning_events("llama2_citation_events.jsonl")
from llama_index.finetuning import GradientFinetuneEngine
finetune_engine = GradientFinetuneEngine(
base_model_slug=base_model_slug,
name="llama2_structured",
data_path="llama2_citation_events.jsonl",
verbose=True,
max_steps=200,
batch_size=1,
)
finetune_engine.model_adapter_id
epochs = 2
for i in range(epochs):
print(f"** EPOCH {i} **")
finetune_engine.finetune()
ft_llm = finetune_engine.get_finetuned_model(max_tokens=500)
from llama_index.core import VectorStoreIndex
vector_index = VectorStoreIndex(nodes)
query_engine = vector_index.as_query_engine(
output_cls=Response, llm=ft_llm, similarity_top_k=1
)
base_index = | VectorStoreIndex(nodes) | llama_index.core.VectorStoreIndex |
get_ipython().run_line_magic('pip', 'install llama-index-llms-portkey')
get_ipython().system('pip install llama-index')
get_ipython().system('pip install -U llama_index')
get_ipython().system('pip install -U portkey-ai')
from llama_index.llms.portkey import Portkey
from llama_index.core.llms import ChatMessage
import portkey as pk
import os
os.environ["PORTKEY_API_KEY"] = "PORTKEY_API_KEY"
openai_virtual_key_a = ""
openai_virtual_key_b = ""
anthropic_virtual_key_a = ""
anthropic_virtual_key_b = ""
cohere_virtual_key_a = ""
cohere_virtual_key_b = ""
os.environ["OPENAI_API_KEY"] = ""
os.environ["ANTHROPIC_API_KEY"] = ""
portkey_client = Portkey(
mode="single",
)
openai_llm = pk.LLMOptions(
provider="openai",
model="gpt-4",
virtual_key=openai_virtual_key_a,
)
portkey_client.add_llms(openai_llm)
messages = [
| ChatMessage(role="system", content="You are a helpful assistant") | llama_index.core.llms.ChatMessage |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-azurecosmosmongo')
get_ipython().run_line_magic('pip', 'install llama-index-llms-azure-openai')
get_ipython().system('pip install llama-index')
import os
import json
import openai
from llama_index.llms.azure_openai import AzureOpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
import os
llm = AzureOpenAI(
model_name=os.getenv("OPENAI_MODEL_COMPLETION"),
deployment_name=os.getenv("OPENAI_MODEL_COMPLETION"),
api_base=os.getenv("OPENAI_API_BASE"),
api_key=os.getenv("OPENAI_API_KEY"),
api_type=os.getenv("OPENAI_API_TYPE"),
api_version=os.getenv("OPENAI_API_VERSION"),
temperature=0,
)
embed_model = OpenAIEmbedding(
model=os.getenv("OPENAI_MODEL_EMBEDDING"),
deployment_name=os.getenv("OPENAI_DEPLOYMENT_EMBEDDING"),
api_base=os.getenv("OPENAI_API_BASE"),
api_key=os.getenv("OPENAI_API_KEY"),
api_type=os.getenv("OPENAI_API_TYPE"),
api_version=os.getenv("OPENAI_API_VERSION"),
)
from llama_index.core import Settings
Settings.llm = llm
Settings.embed_model = embed_model
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = | SimpleDirectoryReader("./data/paul_graham/") | llama_index.core.SimpleDirectoryReader |
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-rankgpt-rerank')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-packs-infer-retrieve-rerank')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import datasets
dataset = datasets.load_dataset("BioDEX/BioDEX-ICSR")
dataset
from llama_index.core import get_tokenizer
import re
from typing import Set, List
tokenizer = get_tokenizer()
sample_size = 5
def get_reactions_row(raw_target: str) -> List[str]:
"""Get reactions from a single row."""
reaction_pattern = re.compile(r"reactions:\s*(.*)")
reaction_match = reaction_pattern.search(raw_target)
if reaction_match:
reactions = reaction_match.group(1).split(",")
reactions = [r.strip().lower() for r in reactions]
else:
reactions = []
return reactions
def get_reactions_set(dataset) -> Set[str]:
"""Get set of all reactions."""
reactions = set()
for data in dataset["train"]:
reactions.update(set(get_reactions_row(data["target"])))
return reactions
def get_samples(dataset, sample_size: int = 5):
"""Get processed sample.
Contains source text and also the reaction label.
Parse reaction text to specifically extract reactions.
"""
samples = []
for idx, data in enumerate(dataset["train"]):
if idx >= sample_size:
break
text = data["fulltext_processed"]
raw_target = data["target"]
reactions = get_reactions_row(raw_target)
samples.append({"text": text, "reactions": reactions})
return samples
from llama_index.packs.infer_retrieve_rerank import InferRetrieveRerankPack
from llama_index.core.llama_pack import download_llama_pack
InferRetrieveRerankPack = download_llama_pack(
"InferRetrieveRerankPack",
"./irr_pack",
)
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo-16k")
pred_context = """\
The output predictins should be a list of comma-separated adverse \
drug reactions. \
"""
reranker_top_n = 10
pack = InferRetrieveRerankPack(
get_reactions_set(dataset),
llm=llm,
pred_context=pred_context,
reranker_top_n=reranker_top_n,
verbose=True,
)
samples = get_samples(dataset, sample_size=5)
pred_reactions = pack.run(inputs=[s["text"] for s in samples])
gt_reactions = [s["reactions"] for s in samples]
pred_reactions[2]
gt_reactions[2]
from llama_index.core.retrievers import BaseRetriever
from llama_index.core.llms import LLM
from llama_index.llms.openai import OpenAI
from llama_index.core import PromptTemplate
from llama_index.core.query_pipeline import QueryPipeline
from llama_index.core.postprocessor.types import BaseNodePostprocessor
from llama_index.postprocessor.rankgpt_rerank import RankGPTRerank
from llama_index.core.output_parsers import ChainableOutputParser
from typing import List
import random
all_reactions = get_reactions_set(dataset)
random.sample(all_reactions, 5)
from llama_index.core.schema import TextNode
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core.ingestion import IngestionPipeline
from llama_index.core import VectorStoreIndex
reaction_nodes = [TextNode(text=r) for r in all_reactions]
pipeline = IngestionPipeline(transformations=[ | OpenAIEmbedding() | llama_index.embeddings.openai.OpenAIEmbedding |
get_ipython().run_line_magic('pip', 'install llama-index-llms-litellm')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-cohere')
get_ipython().system('pip install llama-index')
import os
cohere_api_key = "YOUR_API_KEY"
os.environ["COHERE_API_KEY"] = cohere_api_key
from llama_index.embeddings.cohere import CohereEmbedding
embed_model = CohereEmbedding(
cohere_api_key=cohere_api_key,
model_name="embed-english-v3.0",
input_type="search_query",
)
embeddings = embed_model.get_text_embedding("Hello CohereAI!")
print(len(embeddings))
print(embeddings[:5])
embed_model = CohereEmbedding(
cohere_api_key=cohere_api_key,
model_name="embed-english-v3.0",
input_type="search_document",
)
embeddings = embed_model.get_text_embedding("Hello CohereAI!")
print(len(embeddings))
print(embeddings[:5])
embed_model = CohereEmbedding(
cohere_api_key=cohere_api_key, model_name="embed-english-v2.0"
)
embeddings = embed_model.get_text_embedding("Hello CohereAI!")
print(len(embeddings))
print(embeddings[:5])
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.llms.litellm import LiteLLM
from llama_index.core.response.notebook_utils import display_source_node
from IPython.display import Markdown, display
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = | SimpleDirectoryReader("./data/paul_graham/") | llama_index.core.SimpleDirectoryReader |
from llama_index.core import VectorStoreIndex
from llama_index.core.objects import ObjectIndex, SimpleObjectNodeMapping
obj1 = {"input": "Hey, how's it going"}
obj2 = ["a", "b", "c", "d"]
obj3 = "llamaindex is an awesome library!"
arbitrary_objects = [obj1, obj2, obj3]
obj_node_mapping = SimpleObjectNodeMapping.from_objects(arbitrary_objects)
nodes = obj_node_mapping.to_nodes(arbitrary_objects)
object_index = ObjectIndex(
index=VectorStoreIndex(nodes=nodes), object_node_mapping=obj_node_mapping
)
object_retriever = object_index.as_retriever(similarity_top_k=1)
object_retriever.retrieve("llamaindex")
object_index.persist()
reloaded_object_index = ObjectIndex.from_persist_dir()
reloaded_object_index._object_node_mapping.obj_node_mapping
object_index._object_node_mapping.obj_node_mapping
from llama_index.core.tools import FunctionTool
from llama_index.core import SummaryIndex
from llama_index.core.objects import SimpleToolNodeMapping
def add(a: int, b: int) -> int:
"""Add two integers and returns the result integer"""
return a + b
def multiply(a: int, b: int) -> int:
"""Multiple two integers and returns the result integer"""
return a * b
multiply_tool = | FunctionTool.from_defaults(fn=multiply) | llama_index.core.tools.FunctionTool.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant')
get_ipython().run_line_magic('pip', 'install llama_index ftfy regex tqdm')
get_ipython().run_line_magic('pip', 'install git+https://github.com/openai/CLIP.git')
get_ipython().run_line_magic('pip', 'install torch torchvision')
get_ipython().run_line_magic('pip', 'install matplotlib scikit-image')
get_ipython().run_line_magic('pip', 'install -U qdrant_client')
from pathlib import Path
import requests
wiki_titles = [
"batman",
"Vincent van Gogh",
"San Francisco",
"iPhone",
"Tesla Model S",
"BTS",
]
data_path = Path("data_wiki")
for title in wiki_titles:
response = requests.get(
"https://en.wikipedia.org/w/api.php",
params={
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
},
).json()
page = next(iter(response["query"]["pages"].values()))
wiki_text = page["extract"]
if not data_path.exists():
Path.mkdir(data_path)
with open(data_path / f"{title}.txt", "w") as fp:
fp.write(wiki_text)
import wikipedia
import urllib.request
image_path = Path("data_wiki")
image_uuid = 0
image_metadata_dict = {}
MAX_IMAGES_PER_WIKI = 30
wiki_titles = [
"San Francisco",
"Batman",
"Vincent van Gogh",
"iPhone",
"Tesla Model S",
"BTS band",
]
if not image_path.exists():
Path.mkdir(image_path)
for title in wiki_titles:
images_per_wiki = 0
print(title)
try:
page_py = wikipedia.page(title)
list_img_urls = page_py.images
for url in list_img_urls:
if url.endswith(".jpg") or url.endswith(".png"):
image_uuid += 1
image_file_name = title + "_" + url.split("/")[-1]
image_metadata_dict[image_uuid] = {
"filename": image_file_name,
"img_path": "./" + str(image_path / f"{image_uuid}.jpg"),
}
urllib.request.urlretrieve(
url, image_path / f"{image_uuid}.jpg"
)
images_per_wiki += 1
if images_per_wiki > MAX_IMAGES_PER_WIKI:
break
except:
print(str(Exception("No images found for Wikipedia page: ")) + title)
continue
import os
os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY"
import qdrant_client
from llama_index.core import SimpleDirectoryReader
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.core.indices import MultiModalVectorStoreIndex
client = qdrant_client.QdrantClient(path="qdrant_db")
text_store = QdrantVectorStore(
client=client, collection_name="text_collection"
)
image_store = QdrantVectorStore(
client=client, collection_name="image_collection"
)
storage_context = StorageContext.from_defaults(
vector_store=text_store, image_store=image_store
)
documents = SimpleDirectoryReader("./data_wiki/").load_data()
index = MultiModalVectorStoreIndex.from_documents(
documents,
storage_context=storage_context,
)
from PIL import Image
import matplotlib.pyplot as plt
import os
def plot_images(image_metadata_dict):
original_images_urls = []
images_shown = 0
for image_id in image_metadata_dict:
img_path = image_metadata_dict[image_id]["img_path"]
if os.path.isfile(img_path):
filename = image_metadata_dict[image_id]["filename"]
image = Image.open(img_path).convert("RGB")
plt.subplot(8, 8, len(original_images_urls) + 1)
plt.imshow(image)
plt.xticks([])
plt.yticks([])
original_images_urls.append(filename)
images_shown += 1
if images_shown >= 64:
break
plt.tight_layout()
plot_images(image_metadata_dict)
def plot_images(image_paths):
images_shown = 0
plt.figure(figsize=(16, 9))
for img_path in image_paths:
if os.path.isfile(img_path):
image = Image.open(img_path)
plt.subplot(2, 3, images_shown + 1)
plt.imshow(image)
plt.xticks([])
plt.yticks([])
images_shown += 1
if images_shown >= 9:
break
test_query = "who are BTS team members"
retriever = index.as_retriever(similarity_top_k=3, image_similarity_top_k=5)
retrieval_results = retriever.retrieve(test_query)
from llama_index.core.response.notebook_utils import display_source_node
from llama_index.core.schema import ImageNode
retrieved_image = []
for res_node in retrieval_results:
if isinstance(res_node.node, ImageNode):
retrieved_image.append(res_node.node.metadata["file_path"])
else:
display_source_node(res_node, source_length=200)
plot_images(retrieved_image)
test_query = "what are Vincent van Gogh's famous paintings"
retriever = index.as_retriever(similarity_top_k=3, image_similarity_top_k=5)
retrieval_results = retriever.retrieve(test_query)
retrieved_image = []
for res_node in retrieval_results:
if isinstance(res_node.node, ImageNode):
retrieved_image.append(res_node.node.metadata["file_path"])
else:
display_source_node(res_node, source_length=200)
plot_images(retrieved_image)
test_query = "what is the popular tourist attraction in San Francisco"
retriever = index.as_retriever(similarity_top_k=3, image_similarity_top_k=5)
retrieval_results = retriever.retrieve(test_query)
retrieved_image = []
for res_node in retrieval_results:
if isinstance(res_node.node, ImageNode):
retrieved_image.append(res_node.node.metadata["file_path"])
else:
| display_source_node(res_node, source_length=200) | llama_index.core.response.notebook_utils.display_source_node |