prompt
stringlengths
70
19.8k
completion
stringlengths
8
1.03k
api
stringlengths
23
93
import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] get_ipython().system('curl https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter03.pdf --output IPCC_AR6_WGII_Chapter03.pdf') from llama_index.core import SimpleDirectoryReader from llama_index.llms.openai import OpenAI from llama_index.core.evaluation import DatasetGenerator documents = SimpleDirectoryReader( input_files=["IPCC_AR6_WGII_Chapter03.pdf"] ).load_data() import random random.seed(42) random.shuffle(documents) gpt_35_llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3) question_gen_query = ( "You are a Teacher/ Professor. Your task is to setup " "a quiz/examination. Using the provided context from a " "report on climate change and the oceans, formulate " "a single question that captures an important fact from the " "context. Restrict the question to the context information provided." ) dataset_generator = DatasetGenerator.from_documents( documents[:50], question_gen_query=question_gen_query, llm=gpt_35_llm, ) questions = dataset_generator.generate_questions_from_nodes(num=40) print("Generated ", len(questions), " questions") with open("train_questions.txt", "w") as f: for question in questions: f.write(question + "\n") dataset_generator = DatasetGenerator.from_documents( documents[ 50: ], # since we generated ~1 question for 40 documents, we can skip the first 40 question_gen_query=question_gen_query, llm=gpt_35_llm, ) questions = dataset_generator.generate_questions_from_nodes(num=40) print("Generated ", len(questions), " questions") with open("eval_questions.txt", "w") as f: for question in questions: f.write(question + "\n") questions = [] with open("eval_questions.txt", "r") as f: for line in f: questions.append(line.strip()) from llama_index.core import VectorStoreIndex, Settings Settings.context_window = 2048 gpt_35_llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3) index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine(similarity_top_k=2, llm=gpt_35_llm) contexts = [] answers = [] for question in questions: response = query_engine.query(question) contexts.append([x.node.get_content() for x in response.source_nodes]) answers.append(str(response)) from datasets import Dataset from ragas import evaluate from ragas.metrics import answer_relevancy, faithfulness ds = Dataset.from_dict( { "question": questions, "answer": answers, "contexts": contexts, } ) result = evaluate(ds, [answer_relevancy, faithfulness]) print(result) from llama_index.llms.openai import OpenAI from llama_index.core.callbacks import OpenAIFineTuningHandler from llama_index.core.callbacks import CallbackManager finetuning_handler = OpenAIFineTuningHandler() callback_manager = CallbackManager([finetuning_handler]) llm = OpenAI(model="gpt-4", temperature=0.3) Settings.callback_manager = (callback_manager,) questions = [] with open("train_questions.txt", "r") as f: for line in f: questions.append(line.strip()) from llama_index.core import VectorStoreIndex index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine(similarity_top_k=2, llm=llm) for question in questions: response = query_engine.query(question) finetuning_handler.save_finetuning_events("finetuning_events.jsonl") get_ipython().system('python ./launch_training.py ./finetuning_events.jsonl') ft_model_name = "ft:gpt-3.5-turbo-0613:..." from llama_index.llms.openai import OpenAI ft_llm = OpenAI(model=ft_model_name, temperature=0.3) questions = [] with open("eval_questions.txt", "r") as f: for line in f: questions.append(line.strip()) from llama_index import VectorStoreIndex index =
VectorStoreIndex.from_documents(documents)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.readers.file import PDFReader reader = PDFReader() get_ipython().system("mkdir -p 'data/10k/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/lyft_2021.pdf' -O 'data/10k/lyft_2021.pdf'") docs = reader.load_data("./data/10k/lyft_2021.pdf") from llama_index.core.node_parser import SentenceSplitter node_parser =
SentenceSplitter()
llama_index.core.node_parser.SentenceSplitter
get_ipython().run_line_magic('pip', 'install llama-hub-llama-packs-agents-llm-compiler-step') get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import phoenix as px px.launch_app() import llama_index.core llama_index.core.set_global_handler("arize_phoenix") import nest_asyncio nest_asyncio.apply() from llama_index.packs.agents.llm_compiler.step import LLMCompilerAgentWorker from llama_index.core.llama_pack import download_llama_pack download_llama_pack( "LLMCompilerAgentPack", "./agent_pack", skip_load=True, ) from agent_pack.step import LLMCompilerAgentWorker import json from typing import Sequence, List from llama_index.llms.openai import OpenAI from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool, FunctionTool import nest_asyncio nest_asyncio.apply() def multiply(a: int, b: int) -> int: """Multiple two integers and returns the result integer""" return a * b multiply_tool = FunctionTool.from_defaults(fn=multiply) def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b add_tool = FunctionTool.from_defaults(fn=add) tools = [multiply_tool, add_tool] multiply_tool.metadata.fn_schema_str from llama_index.core.agent import AgentRunner llm = OpenAI(model="gpt-4") callback_manager = llm.callback_manager agent_worker = LLMCompilerAgentWorker.from_tools( tools, llm=llm, verbose=True, callback_manager=callback_manager ) agent = AgentRunner(agent_worker, callback_manager=callback_manager) response = agent.chat("What is (121 * 3) + 42?") response agent.memory.get_all() get_ipython().system('pip install llama-index-readers-wikipedia') from llama_index.readers.wikipedia import WikipediaReader wiki_titles = ["Toronto", "Seattle", "Chicago", "Boston", "Miami"] city_docs = {} reader = WikipediaReader() for wiki_title in wiki_titles: docs = reader.load_data(pages=[wiki_title]) city_docs[wiki_title] = docs from llama_index.core import ServiceContext from llama_index.llms.openai import OpenAI from llama_index.core.callbacks import CallbackManager llm = OpenAI(temperature=0, model="gpt-4") service_context = ServiceContext.from_defaults(llm=llm) callback_manager = CallbackManager([]) from llama_index.core import load_index_from_storage, StorageContext from llama_index.core.node_parser import SentenceSplitter from llama_index.core.tools import QueryEngineTool, ToolMetadata from llama_index.core import VectorStoreIndex import os node_parser = SentenceSplitter() query_engine_tools = [] for idx, wiki_title in enumerate(wiki_titles): nodes = node_parser.get_nodes_from_documents(city_docs[wiki_title]) if not os.path.exists(f"./data/{wiki_title}"): vector_index = VectorStoreIndex( nodes, service_context=service_context, callback_manager=callback_manager ) vector_index.storage_context.persist(persist_dir=f"./data/{wiki_title}") else: vector_index = load_index_from_storage( StorageContext.from_defaults(persist_dir=f"./data/{wiki_title}"), service_context=service_context, callback_manager=callback_manager, ) vector_query_engine = vector_index.as_query_engine() query_engine_tools.append( QueryEngineTool( query_engine=vector_query_engine, metadata=ToolMetadata( name=f"vector_tool_{wiki_title}", description=( "Useful for questions related to specific aspects of" f" {wiki_title} (e.g. the history, arts and culture," " sports, demographics, or more)." ), ), ) ) from llama_index.core.agent import AgentRunner from llama_index.llms.openai import OpenAI llm =
OpenAI(model="gpt-4")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-cohere') get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini') import nest_asyncio nest_asyncio.apply() get_ipython().system('pip install "google-generativeai" -q') from llama_index.core.llama_dataset import download_llama_dataset evaluator_dataset, _ = download_llama_dataset( "MiniMtBenchSingleGradingDataset", "./mini_mt_bench_data" ) evaluator_dataset.to_pandas()[:5] from llama_index.core.evaluation import CorrectnessEvaluator from llama_index.llms.openai import OpenAI from llama_index.llms.gemini import Gemini from llama_index.llms.cohere import Cohere llm_gpt4 = OpenAI(temperature=0, model="gpt-4") llm_gpt35 = OpenAI(temperature=0, model="gpt-3.5-turbo") llm_gemini = Gemini(model="models/gemini-pro", temperature=0) evaluators = { "gpt-4":
CorrectnessEvaluator(llm=llm_gpt4)
llama_index.core.evaluation.CorrectnessEvaluator
get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, load_index_from_storage, StorageContext, ) from IPython.display import Markdown, display get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine(response_mode="tree_summarize") def display_prompt_dict(prompts_dict): for k, p in prompts_dict.items(): text_md = f"**Prompt Key**: {k}<br>" f"**Text:** <br>" display(Markdown(text_md)) print(p.get_template()) display(Markdown("<br><br>")) prompts_dict = query_engine.get_prompts() display_prompt_dict(prompts_dict) prompts_dict = query_engine.response_synthesizer.get_prompts() display_prompt_dict(prompts_dict) query_engine = index.as_query_engine(response_mode="compact") prompts_dict = query_engine.get_prompts() display_prompt_dict(prompts_dict) response = query_engine.query("What did the author do growing up?") print(str(response)) from llama_index.core import PromptTemplate query_engine = index.as_query_engine(response_mode="tree_summarize") new_summary_tmpl_str = ( "Context information is below.\n" "---------------------\n" "{context_str}\n" "---------------------\n" "Given the context information and not prior knowledge, " "answer the query in the style of a Shakespeare play.\n" "Query: {query_str}\n" "Answer: " ) new_summary_tmpl = PromptTemplate(new_summary_tmpl_str) query_engine.update_prompts( {"response_synthesizer:summary_template": new_summary_tmpl} ) prompts_dict = query_engine.get_prompts() display_prompt_dict(prompts_dict) response = query_engine.query("What did the author do growing up?") print(str(response)) from llama_index.core.query_engine import ( RouterQueryEngine, FLAREInstructQueryEngine, ) from llama_index.core.selectors import LLMMultiSelector from llama_index.core.evaluation import FaithfulnessEvaluator, DatasetGenerator from llama_index.core.postprocessor import LLMRerank from llama_index.core.tools import QueryEngineTool query_tool = QueryEngineTool.from_defaults( query_engine=query_engine, description="test description" ) router_query_engine = RouterQueryEngine.from_defaults([query_tool]) prompts_dict = router_query_engine.get_prompts() display_prompt_dict(prompts_dict) flare_query_engine = FLAREInstructQueryEngine(query_engine) prompts_dict = flare_query_engine.get_prompts() display_prompt_dict(prompts_dict) from llama_index.core.selectors import LLMSingleSelector selector = LLMSingleSelector.from_defaults() prompts_dict = selector.get_prompts() display_prompt_dict(prompts_dict) evaluator =
FaithfulnessEvaluator()
llama_index.core.evaluation.FaithfulnessEvaluator
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import nest_asyncio nest_asyncio.apply() import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response from llama_index.llms.openai import OpenAI from llama_index.core.evaluation import ( FaithfulnessEvaluator, RelevancyEvaluator, CorrectnessEvaluator, ) from llama_index.core.node_parser import SentenceSplitter import pandas as pd pd.set_option("display.max_colwidth", 0) gpt4 = OpenAI(temperature=0, model="gpt-4") faithfulness_gpt4 = FaithfulnessEvaluator(llm=gpt4) relevancy_gpt4 = RelevancyEvaluator(llm=gpt4) correctness_gpt4 = CorrectnessEvaluator(llm=gpt4) documents = SimpleDirectoryReader("./test_wiki_data/").load_data() llm = OpenAI(temperature=0.3, model="gpt-3.5-turbo") splitter =
SentenceSplitter(chunk_size=512)
llama_index.core.node_parser.SentenceSplitter
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-huggingface') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core.postprocessor import ( PIINodePostprocessor, NERPIINodePostprocessor, ) from llama_index.llms.huggingface import HuggingFaceLLM from llama_index.core import Document, VectorStoreIndex from llama_index.core.schema import TextNode text = """ Hello Paulo Santos. The latest statement for your credit card account \ 1111-0000-1111-0000 was mailed to 123 Any Street, Seattle, WA 98109. """ node = TextNode(text=text) processor = NERPIINodePostprocessor() from llama_index.core.schema import NodeWithScore new_nodes = processor.postprocess_nodes([NodeWithScore(node=node)]) new_nodes[0].node.get_text() new_nodes[0].node.metadata["__pii_node_info__"] from llama_index.llms.openai import OpenAI processor = PIINodePostprocessor(llm=
OpenAI()
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import phoenix as px px.launch_app() import llama_index.core llama_index.core.set_global_handler("arize_phoenix") from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") from llama_index.core import SimpleDirectoryReader reader = SimpleDirectoryReader("../data/paul_graham") docs = reader.load_data() import os from llama_index.core import ( StorageContext, VectorStoreIndex, load_index_from_storage, ) if not os.path.exists("storage"): index = VectorStoreIndex.from_documents(docs) index.set_index_id("vector_index") index.storage_context.persist("./storage") else: storage_context = StorageContext.from_defaults(persist_dir="storage") index = load_index_from_storage(storage_context, index_id="vector_index") from llama_index.core.query_pipeline import QueryPipeline from llama_index.core import PromptTemplate prompt_str = "Please generate related movies to {movie_name}" prompt_tmpl = PromptTemplate(prompt_str) llm = OpenAI(model="gpt-3.5-turbo") p = QueryPipeline(chain=[prompt_tmpl, llm], verbose=True) output = p.run(movie_name="The Departed") print(str(output)) from typing import List from pydantic import BaseModel, Field from llama_index.core.output_parsers import PydanticOutputParser class Movie(BaseModel): """Object representing a single movie.""" name: str = Field(..., description="Name of the movie.") year: int = Field(..., description="Year of the movie.") class Movies(BaseModel): """Object representing a list of movies.""" movies: List[Movie] = Field(..., description="List of movies.") llm = OpenAI(model="gpt-3.5-turbo") output_parser = PydanticOutputParser(Movies) json_prompt_str = """\ Please generate related movies to {movie_name}. Output with the following JSON format: """ json_prompt_str = output_parser.format(json_prompt_str) json_prompt_tmpl = PromptTemplate(json_prompt_str) p = QueryPipeline(chain=[json_prompt_tmpl, llm, output_parser], verbose=True) output = p.run(movie_name="Toy Story") output prompt_str = "Please generate related movies to {movie_name}" prompt_tmpl = PromptTemplate(prompt_str) prompt_str2 = """\ Here's some text: {text} Can you rewrite this with a summary of each movie? """ prompt_tmpl2 = PromptTemplate(prompt_str2) llm = OpenAI(model="gpt-3.5-turbo") llm_c = llm.as_query_component(streaming=True) p = QueryPipeline( chain=[prompt_tmpl, llm_c, prompt_tmpl2, llm_c], verbose=True ) output = p.run(movie_name="The Dark Knight") for o in output: print(o.delta, end="") p = QueryPipeline( chain=[ json_prompt_tmpl, llm.as_query_component(streaming=True), output_parser, ], verbose=True, ) output = p.run(movie_name="Toy Story") print(output) from llama_index.postprocessor.cohere_rerank import CohereRerank prompt_str1 = "Please generate a concise question about Paul Graham's life regarding the following topic {topic}" prompt_tmpl1 = PromptTemplate(prompt_str1) prompt_str2 = ( "Please write a passage to answer the question\n" "Try to include as many key details as possible.\n" "\n" "\n" "{query_str}\n" "\n" "\n" 'Passage:"""\n' ) prompt_tmpl2 = PromptTemplate(prompt_str2) llm = OpenAI(model="gpt-3.5-turbo") retriever = index.as_retriever(similarity_top_k=5) p = QueryPipeline( chain=[prompt_tmpl1, llm, prompt_tmpl2, llm, retriever], verbose=True ) nodes = p.run(topic="college") len(nodes) from llama_index.postprocessor.cohere_rerank import CohereRerank from llama_index.core.response_synthesizers import TreeSummarize prompt_str = "Please generate a question about Paul Graham's life regarding the following topic {topic}" prompt_tmpl = PromptTemplate(prompt_str) llm =
OpenAI(model="gpt-3.5-turbo")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-llms-azure-openai') get_ipython().run_line_magic('pip', 'install llama-index-graph-stores-nebula') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-azure-openai') get_ipython().system('pip install llama-index') import os os.environ["OPENAI_API_KEY"] = "sk-..." import logging import sys logging.basicConfig( stream=sys.stdout, level=logging.INFO ) # logging.DEBUG for more verbose output from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(temperature=0, model="gpt-3.5-turbo") Settings.chunk_size = 512 from llama_index.llms.azure_openai import AzureOpenAI from llama_index.embeddings.azure_openai import AzureOpenAIEmbedding api_key = "<api-key>" azure_endpoint = "https://<your-resource-name>.openai.azure.com/" api_version = "2023-07-01-preview" llm = AzureOpenAI( model="gpt-35-turbo-16k", deployment_name="my-custom-llm", api_key=api_key, azure_endpoint=azure_endpoint, api_version=api_version, ) embed_model = AzureOpenAIEmbedding( model="text-embedding-ada-002", deployment_name="my-custom-embedding", api_key=api_key, azure_endpoint=azure_endpoint, api_version=api_version, ) from llama_index.core import Settings Settings.llm = llm Settings.embed_model = embed_model Settings.chunk_size = 512 get_ipython().run_line_magic('pip', 'install ipython-ngql nebula3-python') os.environ["NEBULA_USER"] = "root" os.environ["NEBULA_PASSWORD"] = "nebula" # default is "nebula" os.environ[ "NEBULA_ADDRESS" ] = "127.0.0.1:9669" # assumed we have NebulaGraph installed locally space_name = "llamaindex" edge_types, rel_prop_names = ["relationship"], [ "relationship" ] # default, could be omit if create from an empty kg tags = ["entity"] # default, could be omit if create from an empty kg from llama_index.core import StorageContext from llama_index.graph_stores.nebula import NebulaGraphStore graph_store = NebulaGraphStore( space_name=space_name, edge_types=edge_types, rel_prop_names=rel_prop_names, tags=tags, ) storage_context = StorageContext.from_defaults(graph_store=graph_store) from llama_index.core import download_loader from llama_index.readers.wikipedia import WikipediaReader loader =
WikipediaReader()
llama_index.readers.wikipedia.WikipediaReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().handlers = [] logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, ) from llama_index.core import SummaryIndex from llama_index.core.response.notebook_utils import display_response from llama_index.llms.openai import OpenAI get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.core import Document from llama_index.readers.file import PyMuPDFReader loader = PyMuPDFReader() docs0 = loader.load(file_path=Path("./data/llama2.pdf")) doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] llm = OpenAI(model="gpt-4") chunk_sizes = [128, 256, 512, 1024] nodes_list = [] vector_indices = [] for chunk_size in chunk_sizes: print(f"Chunk Size: {chunk_size}") splitter = SentenceSplitter(chunk_size=chunk_size) nodes = splitter.get_nodes_from_documents(docs) for node in nodes: node.metadata["chunk_size"] = chunk_size node.excluded_embed_metadata_keys = ["chunk_size"] node.excluded_llm_metadata_keys = ["chunk_size"] nodes_list.append(nodes) vector_index = VectorStoreIndex(nodes) vector_indices.append(vector_index) from llama_index.core.tools import RetrieverTool from llama_index.core.schema import IndexNode retriever_dict = {} retriever_nodes = [] for chunk_size, vector_index in zip(chunk_sizes, vector_indices): node_id = f"chunk_{chunk_size}" node = IndexNode( text=( "Retrieves relevant context from the Llama 2 paper (chunk size" f" {chunk_size})" ), index_id=node_id, ) retriever_nodes.append(node) retriever_dict[node_id] = vector_index.as_retriever() from llama_index.core.selectors import PydanticMultiSelector from llama_index.core.retrievers import RouterRetriever from llama_index.core.retrievers import RecursiveRetriever from llama_index.core import SummaryIndex summary_index = SummaryIndex(retriever_nodes) retriever = RecursiveRetriever( root_id="root", retriever_dict={"root": summary_index.as_retriever(), **retriever_dict}, ) nodes = await retriever.aretrieve( "Tell me about the main aspects of safety fine-tuning" ) print(f"Number of nodes: {len(nodes)}") for node in nodes: print(node.node.metadata["chunk_size"]) print(node.node.get_text()) from llama_index.core.postprocessor import LLMRerank, SentenceTransformerRerank from llama_index.postprocessor.cohere_rerank import CohereRerank reranker = CohereRerank(top_n=10) from llama_index.core.query_engine import RetrieverQueryEngine query_engine =
RetrieverQueryEngine(retriever, node_postprocessors=[reranker])
llama_index.core.query_engine.RetrieverQueryEngine
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import nest_asyncio nest_asyncio.apply() from llama_index.core.evaluation import generate_question_context_pairs from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.openai import OpenAI get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() node_parser = SentenceSplitter(chunk_size=512) nodes = node_parser.get_nodes_from_documents(documents) for idx, node in enumerate(nodes): node.id_ = f"node_{idx}" llm = OpenAI(model="gpt-4") vector_index =
VectorStoreIndex(nodes)
llama_index.core.VectorStoreIndex
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-program-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.core import PromptTemplate choices = [ "Useful for questions related to apples", "Useful for questions related to oranges", ] def get_choice_str(choices): choices_str = "\n\n".join( [f"{idx+1}. {c}" for idx, c in enumerate(choices)] ) return choices_str choices_str = get_choice_str(choices) router_prompt0 = PromptTemplate( "Some choices are given below. It is provided in a numbered list (1 to" " {num_choices}), where each item in the list corresponds to a" " summary.\n---------------------\n{context_list}\n---------------------\nUsing" " only the choices above and not prior knowledge, return the top choices" " (no more than {max_outputs}, but only select what is needed) that are" " most relevant to the question: '{query_str}'\n" ) from llama_index.llms.openai import OpenAI llm =
OpenAI(model="gpt-3.5-turbo")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-tencentvectordb') get_ipython().system('pip install llama-index') get_ipython().system('pip install tcvectordb') from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, ) from llama_index.vector_stores.tencentvectordb import TencentVectorDB from llama_index.core.vector_stores.tencentvectordb import ( CollectionParams, FilterField, ) import tcvectordb tcvectordb.debug.DebugEnable = False import openai OPENAI_API_KEY = getpass.getpass("OpenAI API Key:") openai.api_key = OPENAI_API_KEY get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham").load_data() print(f"Total documents: {len(documents)}") print(f"First document, id: {documents[0].doc_id}") print(f"First document, hash: {documents[0].hash}") print( f"First document, text ({len(documents[0].text)} characters):\n{'='*20}\n{documents[0].text[:360]} ..." ) vector_store = TencentVectorDB( url="http://10.0.X.X", key="eC4bLRy2va******************************", collection_params=CollectionParams(dimension=1536, drop_exists=True), ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("Why did the author choose to work on AI?") print(response) query_engine = index.as_query_engine(vector_store_query_mode="mmr") response = query_engine.query("Why did the author choose to work on AI?") print(response) new_vector_store = TencentVectorDB( url="http://10.0.X.X", key="eC4bLRy2va******************************", collection_params=
CollectionParams(dimension=1536, drop_exists=False)
llama_index.core.vector_stores.tencentvectordb.CollectionParams
get_ipython().run_line_magic('pip', 'install llama-index-callbacks-aim') get_ipython().system('pip install llama-index') from llama_index.core.callbacks import CallbackManager from llama_index.callbacks.aim import AimCallback from llama_index.core import SummaryIndex from llama_index.core import SimpleDirectoryReader get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") docs =
SimpleDirectoryReader("./data/paul_graham")
llama_index.core.SimpleDirectoryReader
get_ipython().system('pip install llama-index-llms-dashscope') get_ipython().run_line_magic('env', 'DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY') import os os.environ["DASHSCOPE_API_KEY"] = "YOUR_DASHSCOPE_API_KEY" from llama_index.llms.dashscope import DashScope, DashScopeGenerationModels dashscope_llm =
DashScope(model_name=DashScopeGenerationModels.QWEN_MAX)
llama_index.llms.dashscope.DashScope
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core.node_parser import SentenceWindowNodeParser from llama_index.core.node_parser import SentenceSplitter node_parser = SentenceWindowNodeParser.from_defaults( window_size=3, window_metadata_key="window", original_text_metadata_key="original_text", ) text_splitter = SentenceSplitter() llm = OpenAI(model="gpt-3.5-turbo", temperature=0.1) embed_model = HuggingFaceEmbedding( model_name="sentence-transformers/all-mpnet-base-v2", max_length=512 ) from llama_index.core import Settings Settings.llm = llm Settings.embed_model = embed_model Settings.text_splitter = text_splitter get_ipython().system('curl https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter03.pdf --output IPCC_AR6_WGII_Chapter03.pdf') from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader( input_files=["./IPCC_AR6_WGII_Chapter03.pdf"] ).load_data() nodes = node_parser.get_nodes_from_documents(documents) base_nodes = text_splitter.get_nodes_from_documents(documents) from llama_index.core import VectorStoreIndex sentence_index = VectorStoreIndex(nodes) base_index = VectorStoreIndex(base_nodes) from llama_index.core.postprocessor import MetadataReplacementPostProcessor query_engine = sentence_index.as_query_engine( similarity_top_k=2, node_postprocessors=[ MetadataReplacementPostProcessor(target_metadata_key="window") ], ) window_response = query_engine.query( "What are the concerns surrounding the AMOC?" ) print(window_response) window = window_response.source_nodes[0].node.metadata["window"] sentence = window_response.source_nodes[0].node.metadata["original_text"] print(f"Window: {window}") print("------------------") print(f"Original Sentence: {sentence}") query_engine = base_index.as_query_engine(similarity_top_k=2) vector_response = query_engine.query( "What are the concerns surrounding the AMOC?" ) print(vector_response) query_engine = base_index.as_query_engine(similarity_top_k=5) vector_response = query_engine.query( "What are the concerns surrounding the AMOC?" ) print(vector_response) for source_node in window_response.source_nodes: print(source_node.node.metadata["original_text"]) print("--------") for node in vector_response.source_nodes: print("AMOC mentioned?", "AMOC" in node.node.text) print("--------") print(vector_response.source_nodes[2].node.text) from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset from llama_index.llms.openai import OpenAI import nest_asyncio import random nest_asyncio.apply() len(base_nodes) num_nodes_eval = 30 sample_eval_nodes = random.sample(base_nodes[:200], num_nodes_eval) dataset_generator = DatasetGenerator( sample_eval_nodes, llm=OpenAI(model="gpt-4"), show_progress=True, num_questions_per_chunk=2, ) eval_dataset = await dataset_generator.agenerate_dataset_from_nodes() eval_dataset.save_json("data/ipcc_eval_qr_dataset.json") eval_dataset = QueryResponseDataset.from_json("data/ipcc_eval_qr_dataset.json") import asyncio import nest_asyncio nest_asyncio.apply() from llama_index.core.evaluation import ( CorrectnessEvaluator, SemanticSimilarityEvaluator, RelevancyEvaluator, FaithfulnessEvaluator, PairwiseComparisonEvaluator, ) from collections import defaultdict import pandas as pd evaluator_c = CorrectnessEvaluator(llm=OpenAI(model="gpt-4")) evaluator_s = SemanticSimilarityEvaluator() evaluator_r = RelevancyEvaluator(llm=OpenAI(model="gpt-4")) evaluator_f = FaithfulnessEvaluator(llm=OpenAI(model="gpt-4")) from llama_index.core.evaluation.eval_utils import ( get_responses, get_results_df, ) from llama_index.core.evaluation import BatchEvalRunner max_samples = 30 eval_qs = eval_dataset.questions ref_response_strs = [r for (_, r) in eval_dataset.qr_pairs] base_query_engine = base_index.as_query_engine(similarity_top_k=2) query_engine = sentence_index.as_query_engine( similarity_top_k=2, node_postprocessors=[
MetadataReplacementPostProcessor(target_metadata_key="window")
llama_index.core.postprocessor.MetadataReplacementPostProcessor
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') from pydantic import BaseModel from unstructured.partition.html import partition_html import pandas as pd pd.set_option("display.max_rows", None) pd.set_option("display.max_columns", None) pd.set_option("display.width", None) pd.set_option("display.max_colwidth", None) get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm') get_ipython().system('wget "https://www.dropbox.com/scl/fi/rkw0u959yb4w8vlzz76sa/tesla_2020_10k.htm?rlkey=tfkdshswpoupav5tqigwz1mp7&dl=1" -O tesla_2020_10k.htm') from llama_index.readers.file import FlatReader from pathlib import Path reader = FlatReader() docs_2021 = reader.load_data(Path("tesla_2021_10k.htm")) docs_2020 = reader.load_data(Path("tesla_2020_10k.htm")) from llama_index.core.node_parser import UnstructuredElementNodeParser node_parser = UnstructuredElementNodeParser() import os import pickle if not os.path.exists("2021_nodes.pkl"): raw_nodes_2021 = node_parser.get_nodes_from_documents(docs_2021) pickle.dump(raw_nodes_2021, open("2021_nodes.pkl", "wb")) else: raw_nodes_2021 = pickle.load(open("2021_nodes.pkl", "rb")) base_nodes_2021, node_mappings_2021 = node_parser.get_base_nodes_and_mappings( raw_nodes_2021 ) example_index_node = [b for b in base_nodes_2021 if isinstance(b, IndexNode)][ 20 ] print( f"\n--------\n{example_index_node.get_content(metadata_mode='all')}\n--------\n" ) print(f"\n--------\nIndex ID: {example_index_node.index_id}\n--------\n") print( f"\n--------\n{node_mappings_2021[example_index_node.index_id].get_content()}\n--------\n" ) from llama_index.core.retrievers import RecursiveRetriever from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core import VectorStoreIndex vector_index =
VectorStoreIndex(base_nodes_2021)
llama_index.core.VectorStoreIndex
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') import logging import sys import os logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os os.environ[ "PINECONE_API_KEY" ] = "<Your Pinecone API key, from app.pinecone.io>" os.environ["OPENAI_API_KEY"] = "sk-..." from pinecone import Pinecone from pinecone import ServerlessSpec api_key = os.environ["PINECONE_API_KEY"] pc = Pinecone(api_key=api_key) pc.create_index( "quickstart-index", dimension=1536, metric="euclidean", spec=ServerlessSpec(cloud="aws", region="us-west-2"), ) pinecone_index = pc.Index("quickstart-index") from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.pinecone import PineconeVectorStore from llama_index.core.schema import TextNode nodes = [ TextNode( text="The Shawshank Redemption", metadata={ "author": "Stephen King", "theme": "Friendship", "year": 1994, }, ), TextNode( text="The Godfather", metadata={ "director": "Francis Ford Coppola", "theme": "Mafia", "year": 1972, }, ), TextNode( text="Inception", metadata={ "director": "Christopher Nolan", "theme": "Fiction", "year": 2010, }, ), TextNode( text="To Kill a Mockingbird", metadata={ "author": "Harper Lee", "theme": "Mafia", "year": 1960, }, ), TextNode( text="1984", metadata={ "author": "George Orwell", "theme": "Totalitarianism", "year": 1949, }, ), TextNode( text="The Great Gatsby", metadata={ "author": "F. Scott Fitzgerald", "theme": "The American Dream", "year": 1925, }, ), TextNode( text="Harry Potter and the Sorcerer's Stone", metadata={ "author": "J.K. Rowling", "theme": "Fiction", "year": 1997, }, ), ] vector_store = PineconeVectorStore( pinecone_index=pinecone_index, namespace="test_05_14" ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex(nodes, storage_context=storage_context) from llama_index.core.vector_stores import ( MetadataFilter, MetadataFilters, FilterOperator, ) filters = MetadataFilters( filters=[ MetadataFilter( key="theme", operator=FilterOperator.EQ, value="Fiction" ), ] ) retriever = index.as_retriever(filters=filters) retriever.retrieve("What is inception about?") from llama_index.core.vector_stores import FilterOperator, FilterCondition filters = MetadataFilters( filters=[ MetadataFilter(key="theme", value="Fiction"), MetadataFilter(key="year", value=1997, operator=FilterOperator.GT), ], condition=FilterCondition.AND, ) retriever = index.as_retriever(filters=filters) retriever.retrieve("Harry Potter?") from llama_index.core.vector_stores import FilterOperator, FilterCondition filters = MetadataFilters( filters=[
MetadataFilter(key="theme", value="Fiction")
llama_index.core.vector_stores.MetadataFilter
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().system('pip install llama-index llama-hub') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') domain = "docs.llamaindex.ai" docs_url = "https://docs.llamaindex.ai/en/latest/" get_ipython().system('wget -e robots=off --recursive --no-clobber --page-requisites --html-extension --convert-links --restrict-file-names=windows --domains {domain} --no-parent {docs_url}') from llama_index.readers.file import UnstructuredReader reader = UnstructuredReader() from pathlib import Path all_files_gen = Path("./docs.llamaindex.ai/").rglob("*") all_files = [f.resolve() for f in all_files_gen] all_html_files = [f for f in all_files if f.suffix.lower() == ".html"] len(all_html_files) from llama_index.core import Document doc_limit = 100 docs = [] for idx, f in enumerate(all_html_files): if idx > doc_limit: break print(f"Idx {idx}/{len(all_html_files)}") loaded_docs = reader.load_data(file=f, split_documents=True) start_idx = 72 loaded_doc = Document( text="\n\n".join([d.get_content() for d in loaded_docs[72:]]), metadata={"path": str(f)}, ) print(loaded_doc.metadata["path"]) docs.append(loaded_doc) import os os.environ["OPENAI_API_KEY"] = "sk-..." import nest_asyncio nest_asyncio.apply() from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") from llama_index.agent.openai import OpenAIAgent from llama_index.core import ( load_index_from_storage, StorageContext, VectorStoreIndex, ) from llama_index.core import SummaryIndex from llama_index.core.tools import QueryEngineTool, ToolMetadata from llama_index.core.node_parser import SentenceSplitter import os from tqdm.notebook import tqdm import pickle async def build_agent_per_doc(nodes, file_base): print(file_base) vi_out_path = f"./data/llamaindex_docs/{file_base}" summary_out_path = f"./data/llamaindex_docs/{file_base}_summary.pkl" if not os.path.exists(vi_out_path): Path("./data/llamaindex_docs/").mkdir(parents=True, exist_ok=True) vector_index = VectorStoreIndex(nodes) vector_index.storage_context.persist(persist_dir=vi_out_path) else: vector_index = load_index_from_storage( StorageContext.from_defaults(persist_dir=vi_out_path), ) summary_index = SummaryIndex(nodes) vector_query_engine = vector_index.as_query_engine(llm=llm) summary_query_engine = summary_index.as_query_engine( response_mode="tree_summarize", llm=llm ) if not os.path.exists(summary_out_path): Path(summary_out_path).parent.mkdir(parents=True, exist_ok=True) summary = str( await summary_query_engine.aquery( "Extract a concise 1-2 line summary of this document" ) ) pickle.dump(summary, open(summary_out_path, "wb")) else: summary = pickle.load(open(summary_out_path, "rb")) query_engine_tools = [ QueryEngineTool( query_engine=vector_query_engine, metadata=ToolMetadata( name=f"vector_tool_{file_base}", description=f"Useful for questions related to specific facts", ), ), QueryEngineTool( query_engine=summary_query_engine, metadata=ToolMetadata( name=f"summary_tool_{file_base}", description=f"Useful for summarization questions", ), ), ] function_llm =
OpenAI(model="gpt-4")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core.agent import ReActAgent from llama_index.llms.openai import OpenAI from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool, FunctionTool def multiply(a: int, b: int) -> int: """Multiply two integers and returns the result integer""" return a * b multiply_tool =
FunctionTool.from_defaults(fn=multiply)
llama_index.core.tools.FunctionTool.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini') get_ipython().system('pip install -q llama-index google-generativeai') get_ipython().run_line_magic('env', 'GOOGLE_API_KEY=...') import os GOOGLE_API_KEY = "" # add your GOOGLE API key here os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY from llama_index.llms.gemini import Gemini resp = Gemini().complete("Write a poem about a magic backpack") print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.gemini import Gemini messages = [ ChatMessage(role="user", content="Hello friend!"),
ChatMessage(role="assistant", content="Yarr what is shakin' matey?")
llama_index.core.llms.ChatMessage
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant') get_ipython().system('pip install llama-index qdrant_client pyMuPDF tools frontend git+https://github.com/openai/CLIP.git easyocr') import matplotlib.pyplot as plt import matplotlib.patches as patches from matplotlib.patches import Patch import io from PIL import Image, ImageDraw import numpy as np import csv import pandas as pd from torchvision import transforms from transformers import AutoModelForObjectDetection import torch import openai import os import fitz device = "cuda" if torch.cuda.is_available() else "cpu" OPENAI_API_TOKEN = "sk-<your-openai-api-token>" openai.api_key = OPENAI_API_TOKEN get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "llama2.pdf"') pdf_file = "llama2.pdf" output_directory_path, _ = os.path.splitext(pdf_file) if not os.path.exists(output_directory_path): os.makedirs(output_directory_path) pdf_document = fitz.open(pdf_file) for page_number in range(pdf_document.page_count): page = pdf_document[page_number] pix = page.get_pixmap() image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) image.save(f"./{output_directory_path}/page_{page_number + 1}.png") pdf_document.close() from PIL import Image import matplotlib.pyplot as plt import os image_paths = [] for img_path in os.listdir("./llama2"): image_paths.append(str(os.path.join("./llama2", img_path))) def plot_images(image_paths): images_shown = 0 plt.figure(figsize=(16, 9)) for img_path in image_paths: if os.path.isfile(img_path): image = Image.open(img_path) plt.subplot(3, 3, images_shown + 1) plt.imshow(image) plt.xticks([]) plt.yticks([]) images_shown += 1 if images_shown >= 9: break plot_images(image_paths[9:12]) import qdrant_client from llama_index.core import SimpleDirectoryReader from llama_index.vector_stores.qdrant import QdrantVectorStore from llama_index.core import VectorStoreIndex, StorageContext from llama_index.core.indices import MultiModalVectorStoreIndex from llama_index.core.schema import ImageDocument from llama_index.core.response.notebook_utils import display_source_node from llama_index.core.schema import ImageNode from llama_index.multi_modal_llms.openai import OpenAIMultiModal openai_mm_llm = OpenAIMultiModal( model="gpt-4-vision-preview", api_key=OPENAI_API_TOKEN, max_new_tokens=1500 ) documents_images =
SimpleDirectoryReader("./llama2/")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-redis') get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-redis') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys import os logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import SimpleDirectoryReader, StorageContext from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex from llama_index.core import SummaryIndex from llama_index.core import ComposableGraph from llama_index.llms.openai import OpenAI from llama_index.core.response.notebook_utils import display_response from llama_index.core import Settings get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() from llama_index.core.node_parser import SentenceSplitter nodes =
SentenceSplitter()
llama_index.core.node_parser.SentenceSplitter
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-web') get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-tools-metaphor') get_ipython().system('wget "https://images.openai.com/blob/a2e49de2-ba5b-4869-9c2d-db3b4b5dcc19/new-models-and-developer-products-announced-at-devday.jpg?width=2000" -O other_images/openai/dev_day.png') get_ipython().system('wget "https://drive.google.com/uc\\?id\\=1B4f5ZSIKN0zTTPPRlZ915Ceb3_uF9Zlq\\&export\\=download" -O other_images/adidas.png') from llama_index.readers.web import SimpleWebPageReader url = "https://openai.com/blog/new-models-and-developer-products-announced-at-devday" reader = SimpleWebPageReader(html_to_text=True) documents = reader.load_data(urls=[url]) from llama_index.llms.openai import OpenAI from llama_index.core import VectorStoreIndex from llama_index.core.tools import QueryEngineTool, ToolMetadata from llama_index.core import Settings Settings.llm = OpenAI(temperature=0, model="gpt-3.5-turbo") vector_index = VectorStoreIndex.from_documents( documents, ) query_tool = QueryEngineTool( query_engine=vector_index.as_query_engine(), metadata=ToolMetadata( name=f"vector_tool", description=( "Useful to lookup new features announced by OpenAI" ), ), ) from llama_index.core.agent.react_multimodal.step import ( MultimodalReActAgentWorker, ) from llama_index.core.agent import AgentRunner from llama_index.core.multi_modal_llms import MultiModalLLM from llama_index.multi_modal_llms.openai import OpenAIMultiModal from llama_index.core.agent import Task mm_llm =
OpenAIMultiModal(model="gpt-4-vision-preview", max_new_tokens=1000)
llama_index.multi_modal_llms.openai.OpenAIMultiModal
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import openai import os os.environ["OPENAI_API_KEY"] = "API_KEY_HERE" openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.core import VectorStoreIndex, SimpleDirectoryReader data = SimpleDirectoryReader(input_dir="./data/paul_graham/").load_data() index = VectorStoreIndex.from_documents(data) from llama_index.core.memory import ChatMemoryBuffer memory = ChatMemoryBuffer.from_defaults(token_limit=1500) chat_engine = index.as_chat_engine( chat_mode="context", memory=memory, system_prompt=( "You are a chatbot, able to have normal interactions, as well as talk" " about an essay discussing Paul Grahams life." ), ) response = chat_engine.chat("Hello!") print(response) response = chat_engine.chat("What did Paul Graham do growing up?") print(response) response = chat_engine.chat("Can you tell me more?") print(response) chat_engine.reset() response = chat_engine.chat("Hello! What do you know?") print(response) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo", temperature=0) data = SimpleDirectoryReader(input_dir="./data/paul_graham/").load_data() index =
VectorStoreIndex.from_documents(data)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().system('pip install llama-index') import pinecone import os api_key = os.environ["PINECONE_API_KEY"] pinecone.init(api_key=api_key, environment="us-west1-gcp") pinecone.create_index( "quickstart", dimension=1536, metric="euclidean", pod_type="p1" ) pinecone_index = pinecone.Index("quickstart") pinecone_index.delete(deleteAll=True) from llama_index.vector_stores.pinecone import PineconeVectorStore vector_store = PineconeVectorStore(pinecone_index=pinecone_index) get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PyMuPDFReader loader = PyMuPDFReader() documents = loader.load(file_path="./data/llama2.pdf") from llama_index.core import VectorStoreIndex from llama_index.core.node_parser import SentenceSplitter from llama_index.core import StorageContext splitter = SentenceSplitter(chunk_size=1024) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, transformations=[splitter], storage_context=storage_context ) query_str = "Can you tell me about the key concepts for safety finetuning" from llama_index.embeddings.openai import OpenAIEmbedding embed_model = OpenAIEmbedding() query_embedding = embed_model.get_query_embedding(query_str) from llama_index.core.vector_stores import VectorStoreQuery query_mode = "default" vector_store_query = VectorStoreQuery( query_embedding=query_embedding, similarity_top_k=2, mode=query_mode ) query_result = vector_store.query(vector_store_query) query_result from llama_index.core.schema import NodeWithScore from typing import Optional nodes_with_scores = [] for index, node in enumerate(query_result.nodes): score: Optional[float] = None if query_result.similarities is not None: score = query_result.similarities[index] nodes_with_scores.append(
NodeWithScore(node=node, score=score)
llama_index.core.schema.NodeWithScore
from llama_index.core import SQLDatabase from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, column, ) engine = create_engine("sqlite:///chinook.db") sql_database = SQLDatabase(engine) from llama_index.core.query_pipeline import QueryPipeline get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('curl "https://www.sqlitetutorial.net/wp-content/uploads/2018/03/chinook.zip" -O ./chinook.zip') get_ipython().system('unzip ./chinook.zip') from llama_index.core.settings import Settings from llama_index.core.callbacks import CallbackManager callback_manager = CallbackManager() Settings.callback_manager = callback_manager import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") from llama_index.core.query_engine import NLSQLTableQueryEngine from llama_index.core.tools import QueryEngineTool sql_query_engine = NLSQLTableQueryEngine( sql_database=sql_database, tables=["albums", "tracks", "artists"], verbose=True, ) sql_tool = QueryEngineTool.from_defaults( query_engine=sql_query_engine, name="sql_tool", description=( "Useful for translating a natural language query into a SQL query" ), ) from llama_index.core.query_pipeline import QueryPipeline as QP qp = QP(verbose=True) from llama_index.core.agent.react.types import ( ActionReasoningStep, ObservationReasoningStep, ResponseReasoningStep, ) from llama_index.core.agent import Task, AgentChatResponse from llama_index.core.query_pipeline import ( AgentInputComponent, AgentFnComponent, CustomAgentComponent, QueryComponent, ToolRunnerComponent, ) from llama_index.core.llms import MessageRole from typing import Dict, Any, Optional, Tuple, List, cast def agent_input_fn(task: Task, state: Dict[str, Any]) -> Dict[str, Any]: """Agent input function. Returns: A Dictionary of output keys and values. If you are specifying src_key when defining links between this component and other components, make sure the src_key matches the specified output_key. """ if "current_reasoning" not in state: state["current_reasoning"] = [] reasoning_step = ObservationReasoningStep(observation=task.input) state["current_reasoning"].append(reasoning_step) return {"input": task.input} agent_input_component =
AgentInputComponent(fn=agent_input_fn)
llama_index.core.query_pipeline.AgentInputComponent
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import os os.environ["OPENAI_API_KEY"] = "sk-..." get_ipython().system('pip install "llama_index>=0.9.7"') from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI from llama_index.core.ingestion import IngestionPipeline from llama_index.core.extractors import TitleExtractor, SummaryExtractor from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import MetadataMode def build_pipeline(): llm = OpenAI(model="gpt-3.5-turbo-1106", temperature=0.1) transformations = [ SentenceSplitter(chunk_size=1024, chunk_overlap=20), TitleExtractor( llm=llm, metadata_mode=MetadataMode.EMBED, num_workers=8 ), SummaryExtractor( llm=llm, metadata_mode=MetadataMode.EMBED, num_workers=8 ), OpenAIEmbedding(), ] return IngestionPipeline(transformations=transformations) from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("./data/paul_graham").load_data() import time times = [] for _ in range(3): time.sleep(30) # help prevent rate-limits/timeouts, keeps each run fair pipline = build_pipeline() start = time.time() nodes = await pipline.arun(documents=documents) end = time.time() times.append(end - start) print(f"Average time: {sum(times) / len(times)}") get_ipython().system('pip install "llama_index<0.9.6"') import os os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI from llama_index.core.ingestion import IngestionPipeline from llama_index.core.extractors import TitleExtractor, SummaryExtractor from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import MetadataMode def build_pipeline(): llm = OpenAI(model="gpt-3.5-turbo-1106", temperature=0.1) transformations = [ SentenceSplitter(chunk_size=1024, chunk_overlap=20),
TitleExtractor(llm=llm, metadata_mode=MetadataMode.EMBED)
llama_index.core.extractors.TitleExtractor
get_ipython().run_line_magic('pip', 'install llama-index-llms-gradient') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-finetuning') get_ipython().system('pip install llama-index gradientai -q') import os from llama_index.llms.gradient import GradientBaseModelLLM from llama_index.finetuning import GradientFinetuneEngine os.environ["GRADIENT_ACCESS_TOKEN"] = os.getenv("GRADIENT_API_KEY") os.environ["GRADIENT_WORKSPACE_ID"] = "<insert_workspace_id>" from pydantic import BaseModel class Album(BaseModel): """Data model for an album.""" name: str artist: str from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler from llama_index.llms.openai import OpenAI from llama_index.llms.gradient import GradientBaseModelLLM from llama_index.core.program import LLMTextCompletionProgram from llama_index.core.output_parsers import PydanticOutputParser openai_handler = LlamaDebugHandler() openai_callback = CallbackManager([openai_handler]) openai_llm = OpenAI(model="gpt-4", callback_manager=openai_callback) gradient_handler = LlamaDebugHandler() gradient_callback = CallbackManager([gradient_handler]) base_model_slug = "llama2-7b-chat" gradient_llm = GradientBaseModelLLM( base_model_slug=base_model_slug, max_tokens=300, callback_manager=gradient_callback, is_chat_model=True, ) from llama_index.core.llms import LLMMetadata prompt_template_str = """\ Generate an example album, with an artist and a list of songs. \ Using the movie {movie_name} as inspiration.\ """ openai_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=openai_llm, verbose=True, ) gradient_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=gradient_llm, verbose=True, ) response = openai_program(movie_name="The Shining") print(str(response)) tmp = openai_handler.get_llm_inputs_outputs() print(tmp[0][0].payload["messages"][0]) response = gradient_program(movie_name="The Shining") print(str(response)) tmp = gradient_handler.get_llm_inputs_outputs() print(tmp[0][0].payload["messages"][0]) from llama_index.core.program import LLMTextCompletionProgram from pydantic import BaseModel from llama_index.llms.openai import OpenAI from llama_index.core.callbacks import GradientAIFineTuningHandler from llama_index.core.callbacks import CallbackManager from llama_index.core.output_parsers import PydanticOutputParser from typing import List class Song(BaseModel): """Data model for a song.""" title: str length_seconds: int class Album(BaseModel): """Data model for an album.""" name: str artist: str songs: List[Song] finetuning_handler = GradientAIFineTuningHandler() callback_manager = CallbackManager([finetuning_handler]) llm_gpt4 = OpenAI(model="gpt-4", callback_manager=callback_manager) prompt_template_str = """\ Generate an example album, with an artist and a list of songs. \ Using the movie {movie_name} as inspiration.\ """ openai_program = LLMTextCompletionProgram.from_defaults( output_parser=
PydanticOutputParser(Album)
llama_index.core.output_parsers.PydanticOutputParser
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-langchain') get_ipython().run_line_magic('pip', 'install llama-index-llms-gradient') get_ipython().run_line_magic('pip', 'install llama-index --quiet') get_ipython().run_line_magic('pip', 'install gradientai --quiet') import os os.environ["GRADIENT_ACCESS_TOKEN"] = "{GRADIENT_ACCESS_TOKEN}" os.environ["GRADIENT_WORKSPACE_ID"] = "{GRADIENT_WORKSPACE_ID}" from llama_index.llms.gradient import GradientModelAdapterLLM llm = GradientModelAdapterLLM( model_adapter_id="{YOUR_MODEL_ADAPTER_ID}", max_tokens=400, ) result = llm.complete("Can you tell me about large language models?") print(result) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.embeddings.langchain import LangchainEmbedding from langchain.embeddings import HuggingFaceEmbeddings get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents =
SimpleDirectoryReader("./data/paul_graham/")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().system('pip install llama-index') from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core import SummaryIndex from llama_index.core.schema import IndexNode from llama_index.core.tools import QueryEngineTool, ToolMetadata from llama_index.llms.openai import OpenAI wiki_titles = ["Toronto", "Seattle", "Chicago", "Boston", "Houston"] from pathlib import Path import requests for title in wiki_titles: response = requests.get( "https://en.wikipedia.org/w/api.php", params={ "action": "query", "format": "json", "titles": title, "prop": "extracts", "explaintext": True, }, ).json() page = next(iter(response["query"]["pages"].values())) wiki_text = page["extract"] data_path = Path("data") if not data_path.exists(): Path.mkdir(data_path) with open(data_path / f"{title}.txt", "w") as fp: fp.write(wiki_text) city_docs = {} for wiki_title in wiki_titles: city_docs[wiki_title] = SimpleDirectoryReader( input_files=[f"data/{wiki_title}.txt"] ).load_data() import os os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.core import Settings Settings.llm = OpenAI(temperature=0, model="gpt-3.5-turbo") from llama_index.agent.openai import OpenAIAgent agents = {} for wiki_title in wiki_titles: vector_index = VectorStoreIndex.from_documents( city_docs[wiki_title], ) summary_index = SummaryIndex.from_documents( city_docs[wiki_title], ) vector_query_engine = vector_index.as_query_engine() list_query_engine = summary_index.as_query_engine() query_engine_tools = [ QueryEngineTool( query_engine=vector_query_engine, metadata=ToolMetadata( name="vector_tool", description=( f"Useful for retrieving specific context from {wiki_title}" ), ), ), QueryEngineTool( query_engine=list_query_engine, metadata=ToolMetadata( name="summary_tool", description=( "Useful for summarization questions related to" f" {wiki_title}" ), ), ), ] function_llm =
OpenAI(model="gpt-3.5-turbo-0613")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-chroma') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os import getpass os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") import openai openai.api_key = os.environ["OPENAI_API_KEY"] import chromadb chroma_client = chromadb.EphemeralClient() chroma_collection = chroma_client.create_collection("quickstart") from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.chroma import ChromaVectorStore from llama_index.core.schema import TextNode nodes = [ TextNode( text=( "Michael Jordan is a retired professional basketball player," " widely regarded as one of the greatest basketball players of all" " time." ), metadata={ "category": "Sports", "country": "United States", }, ),
TextNode( text=( "Angelina Jolie is an American actress, filmmaker, and" " humanitarian. She has received numerous awards for her acting" " and is known for her philanthropic work." )
llama_index.core.schema.TextNode
get_ipython().system('pip install llama-index') import os os.environ["OPENAI_API_KEY"] = "sk-..." import nest_asyncio nest_asyncio.apply() from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.tools import QueryEngineTool, ToolMetadata from llama_index.core.query_engine import SubQuestionQueryEngine from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler from llama_index.core import Settings llama_debug =
LlamaDebugHandler(print_trace_on_end=True)
llama_index.core.callbacks.LlamaDebugHandler
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') import nest_asyncio nest_asyncio.apply() import cProfile, pstats from pstats import SortKey get_ipython().system('llamaindex-cli download-llamadataset PatronusAIFinanceBenchDataset --download-dir ./data') from llama_index.core import SimpleDirectoryReader documents =
SimpleDirectoryReader(input_dir="./data/source_files")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core.callbacks import ( CallbackManager, LlamaDebugHandler, CBEventType, ) get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import SimpleDirectoryReader docs =
SimpleDirectoryReader("./data/paul_graham/")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().run_line_magic('env', 'OPENAI_API_KEY=YOUR_OPENAI_KEY') get_ipython().system('pip install llama-index pypdf') get_ipython().system("mkdir -p 'data/'") get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PDFReader from llama_index.core.response.notebook_utils import display_source_node from llama_index.core.retrievers import RecursiveRetriever from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core import VectorStoreIndex from llama_index.llms.openai import OpenAI import json loader = PDFReader() docs0 = loader.load_data(file=Path("./data/llama2.pdf")) from llama_index.core import Document doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import IndexNode node_parser = SentenceSplitter(chunk_size=1024) base_nodes = node_parser.get_nodes_from_documents(docs) for idx, node in enumerate(base_nodes): node.id_ = f"node-{idx}" from llama_index.core.embeddings import resolve_embed_model embed_model = resolve_embed_model("local:BAAI/bge-small-en") llm = OpenAI(model="gpt-3.5-turbo") base_index = VectorStoreIndex(base_nodes, embed_model=embed_model) base_retriever = base_index.as_retriever(similarity_top_k=2) retrievals = base_retriever.retrieve( "Can you tell me about the key concepts for safety finetuning" ) for n in retrievals: display_source_node(n, source_length=1500) query_engine_base =
RetrieverQueryEngine.from_args(base_retriever, llm=llm)
llama_index.core.query_engine.RetrieverQueryEngine.from_args
get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-replicate') import os OPENAI_API_TOKEN = "sk-<your-openai-api-token>" os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN REPLICATE_API_TOKEN = "" # Your Relicate API token here os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN from pathlib import Path input_image_path = Path("restaurant_images") if not input_image_path.exists(): Path.mkdir(input_image_path) get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1GlqcNJhGGbwLKjJK1QJ_nyswCTQ2K2Fq" -O ./restaurant_images/fried_chicken.png') from pydantic import BaseModel class Restaurant(BaseModel): """Data model for an restaurant.""" restaurant: str food: str discount: str price: str rating: str review: str from llama_index.multi_modal_llms.openai import OpenAIMultiModal from llama_index.core import SimpleDirectoryReader image_documents = SimpleDirectoryReader("./restaurant_images").load_data() openai_mm_llm = OpenAIMultiModal( model="gpt-4-vision-preview", api_key=OPENAI_API_TOKEN, max_new_tokens=1000 ) from PIL import Image import matplotlib.pyplot as plt imageUrl = "./restaurant_images/fried_chicken.png" image = Image.open(imageUrl).convert("RGB") plt.figure(figsize=(16, 5)) plt.imshow(image) from llama_index.core.program import MultiModalLLMCompletionProgram from llama_index.core.output_parsers import PydanticOutputParser prompt_template_str = """\ can you summarize what is in the image\ and return the answer with json format \ """ openai_program = MultiModalLLMCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Restaurant), image_documents=image_documents, prompt_template_str=prompt_template_str, multi_modal_llm=openai_mm_llm, verbose=True, ) response = openai_program() for res in response: print(res) from llama_index.multi_modal_llms.replicate import ReplicateMultiModal from llama_index.multi_modal_llms.replicate.base import ( REPLICATE_MULTI_MODAL_LLM_MODELS, ) prompt_template_str = """\ can you summarize what is in the image\ and return the answer with json format \ """ def pydantic_replicate( model_name, output_class, image_documents, prompt_template_str ): mm_llm = ReplicateMultiModal( model=REPLICATE_MULTI_MODAL_LLM_MODELS[model_name], temperature=0.1, max_new_tokens=1000, ) llm_program = MultiModalLLMCompletionProgram.from_defaults( output_parser=PydanticOutputParser(output_class), image_documents=image_documents, prompt_template_str=prompt_template_str, multi_modal_llm=mm_llm, verbose=True, ) response = llm_program() print(f"Model: {model_name}") for res in response: print(res) pydantic_replicate("fuyu-8b", Restaurant, image_documents, prompt_template_str) pydantic_replicate( "llava-13b", Restaurant, image_documents, prompt_template_str ) pydantic_replicate( "minigpt-4", Restaurant, image_documents, prompt_template_str ) pydantic_replicate("cogvlm", Restaurant, image_documents, prompt_template_str) input_image_path = Path("amazon_images") if not input_image_path.exists(): Path.mkdir(input_image_path) get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1p1Y1qAoM68eC4sAvvHaiJyPhdUZS0Gqb" -O ./amazon_images/amazon.png') from pydantic import BaseModel class Product(BaseModel): """Data model for a Amazon Product.""" title: str category: str discount: str price: str rating: str review: str description: str inventory: str imageUrl = "./amazon_images/amazon.png" image = Image.open(imageUrl).convert("RGB") plt.figure(figsize=(16, 5)) plt.imshow(image) amazon_image_documents = SimpleDirectoryReader("./amazon_images").load_data() prompt_template_str = """\ can you summarize what is in the image\ and return the answer with json format \ """ openai_program_amazon = MultiModalLLMCompletionProgram.from_defaults( output_parser=
PydanticOutputParser(Product)
llama_index.core.output_parsers.PydanticOutputParser
get_ipython().run_line_magic('pip', 'install llama-index-llms-bedrock') get_ipython().system('pip install llama-index') from llama_index.llms.bedrock import Bedrock profile_name = "Your aws profile name" resp = Bedrock( model="amazon.titan-text-express-v1", profile_name=profile_name ).complete("Paul Graham is ") print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.bedrock import Bedrock messages = [ ChatMessage( role="system", content="You are a pirate with a colorful personality" ), ChatMessage(role="user", content="Tell me a story"), ] resp = Bedrock( model="amazon.titan-text-express-v1", profile_name=profile_name ).chat(messages) print(resp) from llama_index.llms.bedrock import Bedrock llm = Bedrock(model="amazon.titan-text-express-v1", profile_name=profile_name) resp = llm.stream_complete("Paul Graham is ") for r in resp: print(r.delta, end="") from llama_index.llms.bedrock import Bedrock llm = Bedrock(model="amazon.titan-text-express-v1", profile_name=profile_name) messages = [ ChatMessage( role="system", content="You are a pirate with a colorful personality" ),
ChatMessage(role="user", content="Tell me a story")
llama_index.core.llms.ChatMessage
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-langchain') get_ipython().system('pip install llama-index') from langchain.embeddings import HuggingFaceEmbeddings from llama_index.embeddings.langchain import LangchainEmbedding lc_embed_model = HuggingFaceEmbeddings( model_name="sentence-transformers/all-mpnet-base-v2" ) embed_model =
LangchainEmbedding(lc_embed_model)
llama_index.embeddings.langchain.LangchainEmbedding
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import camelot from llama_index.core import VectorStoreIndex from llama_index.core.query_engine import PandasQueryEngine from llama_index.core.schema import IndexNode from llama_index.llms.openai import OpenAI from llama_index.readers.file import PyMuPDFReader from typing import List import os os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY" from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") file_path = "billionaires_page.pdf" reader = PyMuPDFReader() docs = reader.load(file_path) def get_tables(path: str, pages: List[int]): table_dfs = [] for page in pages: table_list = camelot.read_pdf(path, pages=str(page)) table_df = table_list[0].df table_df = ( table_df.rename(columns=table_df.iloc[0]) .drop(table_df.index[0]) .reset_index(drop=True) ) table_dfs.append(table_df) return table_dfs table_dfs = get_tables(file_path, pages=[3, 25]) table_dfs[0] table_dfs[1] llm = OpenAI(model="gpt-4") df_query_engines = [ PandasQueryEngine(table_df, llm=llm) for table_df in table_dfs ] response = df_query_engines[0].query( "What's the net worth of the second richest billionaire in 2023?" ) print(str(response)) response = df_query_engines[1].query( "How many billionaires were there in 2009?" ) print(str(response)) from llama_index.core import Settings doc_nodes = Settings.node_parser.get_nodes_from_documents(docs) summaries = [ ( "This node provides information about the world's richest billionaires" " in 2023" ), ( "This node provides information on the number of billionaires and" " their combined net worth from 2000 to 2023." ), ] df_nodes = [
IndexNode(text=summary, index_id=f"pandas{idx}")
llama_index.core.schema.IndexNode
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-program-evaporate') get_ipython().system('pip install llama-index') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') wiki_titles = ["Toronto", "Seattle", "Chicago", "Boston", "Houston"] from pathlib import Path import requests for title in wiki_titles: response = requests.get( "https://en.wikipedia.org/w/api.php", params={ "action": "query", "format": "json", "titles": title, "prop": "extracts", "explaintext": True, }, ).json() page = next(iter(response["query"]["pages"].values())) wiki_text = page["extract"] data_path = Path("data") if not data_path.exists(): Path.mkdir(data_path) with open(data_path / f"{title}.txt", "w") as fp: fp.write(wiki_text) from llama_index.core import SimpleDirectoryReader city_docs = {} for wiki_title in wiki_titles: city_docs[wiki_title] = SimpleDirectoryReader( input_files=[f"data/{wiki_title}.txt"] ).load_data() from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(temperature=0, model="gpt-3.5-turbo") Settings.chunk_size = 512 city_nodes = {} for wiki_title in wiki_titles: docs = city_docs[wiki_title] nodes = Settings.node_parser.get_nodes_from_documents(docs) city_nodes[wiki_title] = nodes from llama_index.program.evaporate import DFEvaporateProgram program = DFEvaporateProgram.from_defaults( fields_to_extract=["population"], ) program.fit_fields(city_nodes["Toronto"][:1]) print(program.get_function_str("population")) seattle_df = program(nodes=city_nodes["Seattle"][:1]) seattle_df Settings.llm = OpenAI(temperature=0, model="gpt-4") Settings.chunk_size = 1024 Settings.chunk_overlap = 0 from llama_index.core.data_structs import Node train_text = """ <table class="wikitable sortable" style="margin-top:0; text-align:center; font-size:90%;"> <tbody><tr> <th>Team (IOC code) </th> <th>No. Summer </th> <th>No. Winter </th> <th>No. Games </th></tr> <tr> <td align="left"><span id="ALB"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/36/Flag_of_Albania.svg/22px-Flag_of_Albania.svg.png" decoding="async" width="22" height="16" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/36/Flag_of_Albania.svg/33px-Flag_of_Albania.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/36/Flag_of_Albania.svg/44px-Flag_of_Albania.svg.png 2x" data-file-width="980" data-file-height="700" />&#160;<a href="/wiki/Albania_at_the_Olympics" title="Albania at the Olympics">Albania</a>&#160;<span style="font-size:90%;">(ALB)</span></span> </td> <td style="background:#f2f2ce;">9</td> <td style="background:#cedff2;">5</td> <td>14 </td></tr> <tr> <td align="left"><span id="ASA"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Flag_of_American_Samoa.svg/22px-Flag_of_American_Samoa.svg.png" decoding="async" width="22" height="11" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Flag_of_American_Samoa.svg/33px-Flag_of_American_Samoa.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Flag_of_American_Samoa.svg/44px-Flag_of_American_Samoa.svg.png 2x" data-file-width="1000" data-file-height="500" />&#160;<a href="/wiki/American_Samoa_at_the_Olympics" title="American Samoa at the Olympics">American Samoa</a>&#160;<span style="font-size:90%;">(ASA)</span></span> </td> <td style="background:#f2f2ce;">9</td> <td style="background:#cedff2;">2</td> <td>11 </td></tr> <tr> <td align="left"><span id="AND"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/19/Flag_of_Andorra.svg/22px-Flag_of_Andorra.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/19/Flag_of_Andorra.svg/33px-Flag_of_Andorra.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/19/Flag_of_Andorra.svg/44px-Flag_of_Andorra.svg.png 2x" data-file-width="1000" data-file-height="700" />&#160;<a href="/wiki/Andorra_at_the_Olympics" title="Andorra at the Olympics">Andorra</a>&#160;<span style="font-size:90%;">(AND)</span></span> </td> <td style="background:#f2f2ce;">12</td> <td style="background:#cedff2;">13</td> <td>25 </td></tr> <tr> <td align="left"><span id="ANG"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Flag_of_Angola.svg/22px-Flag_of_Angola.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Flag_of_Angola.svg/33px-Flag_of_Angola.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Flag_of_Angola.svg/44px-Flag_of_Angola.svg.png 2x" data-file-width="900" data-file-height="600" />&#160;<a href="/wiki/Angola_at_the_Olympics" title="Angola at the Olympics">Angola</a>&#160;<span style="font-size:90%;">(ANG)</span></span> </td> <td style="background:#f2f2ce;">10</td> <td style="background:#cedff2;">0</td> <td>10 </td></tr> <tr> <td align="left"><span id="ANT"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Flag_of_Antigua_and_Barbuda.svg/22px-Flag_of_Antigua_and_Barbuda.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Flag_of_Antigua_and_Barbuda.svg/33px-Flag_of_Antigua_and_Barbuda.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/89/Flag_of_Antigua_and_Barbuda.svg/44px-Flag_of_Antigua_and_Barbuda.svg.png 2x" data-file-width="900" data-file-height="600" />&#160;<a href="/wiki/Antigua_and_Barbuda_at_the_Olympics" title="Antigua and Barbuda at the Olympics">Antigua and Barbuda</a>&#160;<span style="font-size:90%;">(ANT)</span></span> </td> <td style="background:#f2f2ce;">11</td> <td style="background:#cedff2;">0</td> <td>11 </td></tr> <tr> <td align="left"><span id="ARU"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f6/Flag_of_Aruba.svg/22px-Flag_of_Aruba.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f6/Flag_of_Aruba.svg/33px-Flag_of_Aruba.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f6/Flag_of_Aruba.svg/44px-Flag_of_Aruba.svg.png 2x" data-file-width="900" data-file-height="600" />&#160;<a href="/wiki/Aruba_at_the_Olympics" title="Aruba at the Olympics">Aruba</a>&#160;<span style="font-size:90%;">(ARU)</span></span> </td> <td style="background:#f2f2ce;">9</td> <td style="background:#cedff2;">0</td> <td>9 </td></tr> """ train_nodes = [
Node(text=train_text)
llama_index.core.data_structs.Node
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') import logging import sys import os logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os os.environ[ "PINECONE_API_KEY" ] = "<Your Pinecone API key, from app.pinecone.io>" os.environ["OPENAI_API_KEY"] = "sk-..." from pinecone import Pinecone from pinecone import ServerlessSpec api_key = os.environ["PINECONE_API_KEY"] pc = Pinecone(api_key=api_key) pc.create_index( "quickstart-index", dimension=1536, metric="euclidean", spec=ServerlessSpec(cloud="aws", region="us-west-2"), ) pinecone_index = pc.Index("quickstart-index") from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.pinecone import PineconeVectorStore from llama_index.core.schema import TextNode nodes = [ TextNode( text="The Shawshank Redemption", metadata={ "author": "Stephen King", "theme": "Friendship", "year": 1994, }, ), TextNode( text="The Godfather", metadata={ "director": "Francis Ford Coppola", "theme": "Mafia", "year": 1972, }, ), TextNode( text="Inception", metadata={ "director": "Christopher Nolan", "theme": "Fiction", "year": 2010, }, ), TextNode( text="To Kill a Mockingbird", metadata={ "author": "Harper Lee", "theme": "Mafia", "year": 1960, }, ), TextNode( text="1984", metadata={ "author": "George Orwell", "theme": "Totalitarianism", "year": 1949, }, ), TextNode( text="The Great Gatsby", metadata={ "author": "F. Scott Fitzgerald", "theme": "The American Dream", "year": 1925, }, ), TextNode( text="Harry Potter and the Sorcerer's Stone", metadata={ "author": "J.K. Rowling", "theme": "Fiction", "year": 1997, }, ), ] vector_store = PineconeVectorStore( pinecone_index=pinecone_index, namespace="test_05_14" ) storage_context =
StorageContext.from_defaults(vector_store=vector_store)
llama_index.core.StorageContext.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-dynamodb') get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-dynamodb') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-dynamodb') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys import os logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import SimpleDirectoryReader, StorageContext from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex from llama_index.core import SummaryIndex from llama_index.llms.openai import OpenAI from llama_index.core.response.notebook_utils import display_response from llama_index.core import Settings get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() from llama_index.core.node_parser import SentenceSplitter nodes = SentenceSplitter().get_nodes_from_documents(documents) TABLE_NAME = os.environ["DYNAMODB_TABLE_NAME"] from llama_index.storage.docstore.dynamodb import DynamoDBDocumentStore from llama_index.storage.index_store.dynamodb import DynamoDBIndexStore from llama_index.vector_stores.dynamodb import DynamoDBVectorStore storage_context = StorageContext.from_defaults( docstore=DynamoDBDocumentStore.from_table_name(table_name=TABLE_NAME), index_store=DynamoDBIndexStore.from_table_name(table_name=TABLE_NAME), vector_store=DynamoDBVectorStore.from_table_name(table_name=TABLE_NAME), ) storage_context.docstore.add_documents(nodes) summary_index =
SummaryIndex(nodes, storage_context=storage_context)
llama_index.core.SummaryIndex
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "sk-.." openai.api_key = os.environ["OPENAI_API_KEY"] from IPython.display import Markdown, display from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, ) engine = create_engine("sqlite:///:memory:") metadata_obj = MetaData() table_name = "city_stats" city_stats_table = Table( table_name, metadata_obj, Column("city_name", String(16), primary_key=True), Column("population", Integer), Column("country", String(16), nullable=False), ) metadata_obj.create_all(engine) from llama_index.core import SQLDatabase from llama_index.llms.openai import OpenAI llm = OpenAI(temperature=0.1, model="gpt-3.5-turbo") sql_database = SQLDatabase(engine, include_tables=["city_stats"]) sql_database = SQLDatabase(engine, include_tables=["city_stats"]) from sqlalchemy import insert rows = [ {"city_name": "Toronto", "population": 2930000, "country": "Canada"}, {"city_name": "Tokyo", "population": 13960000, "country": "Japan"}, { "city_name": "Chicago", "population": 2679000, "country": "United States", }, {"city_name": "Seoul", "population": 9776000, "country": "South Korea"}, ] for row in rows: stmt = insert(city_stats_table).values(**row) with engine.begin() as connection: cursor = connection.execute(stmt) stmt = select( city_stats_table.c.city_name, city_stats_table.c.population, city_stats_table.c.country, ).select_from(city_stats_table) with engine.connect() as connection: results = connection.execute(stmt).fetchall() print(results) from sqlalchemy import text with engine.connect() as con: rows = con.execute(text("SELECT city_name from city_stats")) for row in rows: print(row) from llama_index.core.query_engine import NLSQLTableQueryEngine query_engine = NLSQLTableQueryEngine( sql_database=sql_database, tables=["city_stats"], llm=llm ) query_str = "Which city has the highest population?" response = query_engine.query(query_str) display(Markdown(f"<b>{response}</b>")) from llama_index.core.indices.struct_store.sql_query import ( SQLTableRetrieverQueryEngine, ) from llama_index.core.objects import ( SQLTableNodeMapping, ObjectIndex, SQLTableSchema, ) from llama_index.core import VectorStoreIndex table_node_mapping = SQLTableNodeMapping(sql_database) table_schema_objs = [ (SQLTableSchema(table_name="city_stats")) ] # add a SQLTableSchema for each table obj_index = ObjectIndex.from_objects( table_schema_objs, table_node_mapping, VectorStoreIndex, ) query_engine = SQLTableRetrieverQueryEngine( sql_database, obj_index.as_retriever(similarity_top_k=1) ) response = query_engine.query("Which city has the highest population?") display(Markdown(f"<b>{response}</b>")) response.metadata["result"] city_stats_text = ( "This table gives information regarding the population and country of a" " given city.\nThe user will query with codewords, where 'foo' corresponds" " to population and 'bar'corresponds to city." ) table_node_mapping = SQLTableNodeMapping(sql_database) table_schema_objs = [ (SQLTableSchema(table_name="city_stats", context_str=city_stats_text)) ] from llama_index.core.retrievers import NLSQLRetriever nl_sql_retriever = NLSQLRetriever( sql_database, tables=["city_stats"], return_raw=True ) results = nl_sql_retriever.retrieve( "Return the top 5 cities (along with their populations) with the highest population." ) from llama_index.core.response.notebook_utils import display_source_node for n in results:
display_source_node(n)
llama_index.core.response.notebook_utils.display_source_node
get_ipython().run_line_magic('pip', 'install llama-index-llms-ai21') get_ipython().system('pip install llama-index') from llama_index.llms.ai21 import AI21 api_key = "Your api key" resp =
AI21(api_key=api_key)
llama_index.llms.ai21.AI21
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-colbert') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant') get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-gemini') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-vectara') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-google') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-google') get_ipython().run_line_magic('pip', 'install llama-index-response-synthesizers-google') get_ipython().run_line_magic('pip', 'install llama-index') get_ipython().run_line_magic('pip', 'install "google-ai-generativelanguage>=0.4,<=1.0"') get_ipython().run_line_magic('pip', 'install torch sentence-transformers') get_ipython().run_line_magic('pip', 'install google-auth-oauthlib') from google.oauth2 import service_account from llama_index.indices.managed.google import GoogleIndex from llama_index.vector_stores.google import set_google_config credentials = service_account.Credentials.from_service_account_file( "service_account_key.json", scopes=[ "https://www.googleapis.com/auth/cloud-platform", "https://www.googleapis.com/auth/generative-language.retriever", ], ) set_google_config(auth_credentials=credentials) project_name = "TODO-your-project-name" # @param {type:"string"} email = "[email protected]" # @param {type:"string"} client_file_name = "client_secret.json" get_ipython().system('gcloud config set project $project_name') get_ipython().system('gcloud config set account $email') get_ipython().system('gcloud auth application-default login --no-browser --client-id-file=$client_file_name --scopes="https://www.googleapis.com/auth/generative-language.retriever,https://www.googleapis.com/auth/cloud-platform"') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import os GOOGLE_API_KEY = "" # add your GOOGLE API key here os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY from llama_index.core import SimpleDirectoryReader from llama_index.indices.managed.google import GoogleIndex google_index = GoogleIndex.create_corpus(display_name="My first corpus!") print(f"Newly created corpus ID is {google_index.corpus_id}.") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() google_index.insert_documents(documents) google_index = GoogleIndex.from_corpus(corpus_id="") query_engine = google_index.as_query_engine() response = query_engine.query("which program did this author attend?") print(response) from llama_index.core.response.notebook_utils import display_source_node for r in response.source_nodes: display_source_node(r, source_length=1000) from google.ai.generativelanguage import ( GenerateAnswerRequest, ) query_engine = google_index.as_query_engine( temperature=0.3, answer_style=GenerateAnswerRequest.AnswerStyle.VERBOSE, ) response = query_engine.query("Which program did this author attend?") print(response) from llama_index.core.response.notebook_utils import display_source_node for r in response.source_nodes: display_source_node(r, source_length=1000) from google.ai.generativelanguage import ( GenerateAnswerRequest, ) query_engine = google_index.as_query_engine( temperature=0.3, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE, ) response = query_engine.query("Which program did this author attend?") print(response) from llama_index.core.response.notebook_utils import display_source_node for r in response.source_nodes: display_source_node(r, source_length=1000) from google.ai.generativelanguage import ( GenerateAnswerRequest, ) query_engine = google_index.as_query_engine( temperature=0.3, answer_style=GenerateAnswerRequest.AnswerStyle.EXTRACTIVE, ) response = query_engine.query("Which program did this author attend?") print(response) from llama_index.core.response.notebook_utils import display_source_node for r in response.source_nodes: display_source_node(r, source_length=1000) from llama_index.response_synthesizers.google import GoogleTextSynthesizer from llama_index.vector_stores.google import GoogleVectorStore from llama_index.core import VectorStoreIndex from llama_index.llms.gemini import Gemini from llama_index.core.postprocessor import LLMRerank from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core.retrievers import VectorIndexRetriever from llama_index.embeddings.gemini import GeminiEmbedding response_synthesizer = GoogleTextSynthesizer.from_defaults( temperature=0.7, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE ) reranker = LLMRerank( top_n=5, llm=Gemini(api_key=GOOGLE_API_KEY), ) retriever = google_index.as_retriever(similarity_top_k=5) query_engine = RetrieverQueryEngine.from_args( retriever=retriever, response_synthesizer=response_synthesizer, node_postprocessors=[reranker], ) response = query_engine.query("Which program did this author attend?") print(response.response) from llama_index.core.postprocessor import SentenceTransformerRerank sbert_rerank = SentenceTransformerRerank( model="cross-encoder/ms-marco-MiniLM-L-2-v2", top_n=5 ) from llama_index.response_synthesizers.google import GoogleTextSynthesizer from llama_index.vector_stores.google import GoogleVectorStore from llama_index.core import VectorStoreIndex from llama_index.llms.gemini import Gemini from llama_index.core.postprocessor import LLMRerank from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core.retrievers import VectorIndexRetriever from llama_index.embeddings.gemini import GeminiEmbedding response_synthesizer = GoogleTextSynthesizer.from_defaults( temperature=0.1, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE ) retriever = google_index.as_retriever(similarity_top_k=5) query_engine = RetrieverQueryEngine.from_args( retriever=retriever, response_synthesizer=response_synthesizer, node_postprocessors=[sbert_rerank], ) response = query_engine.query("Which program did this author attend?") print(response.response) import os OPENAI_API_TOKEN = "sk-" os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.qdrant import QdrantVectorStore from llama_index.core import Settings import qdrant_client Settings.chunk_size = 256 client = qdrant_client.QdrantClient(path="qdrant_retrieval_2") vector_store = QdrantVectorStore(client=client, collection_name="collection") qdrant_index = VectorStoreIndex.from_documents(documents) storage_context = StorageContext.from_defaults(vector_store=vector_store) query_engine = qdrant_index.as_query_engine() response = query_engine.query("Which program did this author attend?") print(response) for r in response.source_nodes: display_source_node(r, source_length=1000) query_engine = qdrant_index.as_query_engine() response = query_engine.query( "Which universities or schools or programs did this author attend?" ) print(response) from llama_index.core import get_response_synthesizer reranker = LLMRerank(top_n=3) retriever = qdrant_index.as_retriever(similarity_top_k=3) query_engine = RetrieverQueryEngine.from_args( retriever=retriever, response_synthesizer=get_response_synthesizer( response_mode="tree_summarize", ), node_postprocessors=[reranker], ) response = query_engine.query( "Which universities or schools or programs did this author attend?" ) print(response.response) from llama_index.core import get_response_synthesizer sbert_rerank = SentenceTransformerRerank( model="cross-encoder/ms-marco-MiniLM-L-2-v2", top_n=5 ) retriever = qdrant_index.as_retriever(similarity_top_k=5) query_engine = RetrieverQueryEngine.from_args( retriever=retriever, response_synthesizer=get_response_synthesizer( response_mode="tree_summarize", ), node_postprocessors=[sbert_rerank], ) response = query_engine.query( "Which universities or schools or programs did this author attend?" ) print(response.response) from llama_index.core import SimpleDirectoryReader from llama_index.indices.managed.vectara import VectaraIndex vectara_customer_id = "" vectara_corpus_id = "" vectara_api_key = "" documents = SimpleDirectoryReader("./data/paul_graham/").load_data() vectara_index = VectaraIndex.from_documents( documents, vectara_customer_id=vectara_customer_id, vectara_corpus_id=vectara_corpus_id, vectara_api_key=vectara_api_key, ) vectara_query_engine = vectara_index.as_query_engine(similarity_top_k=5) response = vectara_query_engine.query("Which program did this author attend?") print(response) for r in response.source_nodes: display_source_node(r, source_length=1000) get_ipython().system('git -C ColBERT/ pull || git clone https://github.com/stanford-futuredata/ColBERT.git') import sys sys.path.insert(0, "ColBERT/") get_ipython().system('pip install faiss-cpu torch') from llama_index.core import SimpleDirectoryReader from llama_index.indices.managed.colbert import ColbertIndex from llama_index.llms.openai import OpenAI import os OPENAI_API_TOKEN = "sk-" os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN from llama_index.core import Settings Settings.llm =
OpenAI(temperature=0, model="gpt-3.5-turbo")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-weaviate') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys from llama_index.core import SimpleDirectoryReader from llama_index.core import SummaryIndex logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) wiki_titles = ["Michael Jordan", "Elon Musk", "Richard Branson", "Rihanna"] wiki_metadatas = { "Michael Jordan": { "category": "Sports", "country": "United States", }, "Elon Musk": { "category": "Business", "country": "United States", }, "Richard Branson": { "category": "Business", "country": "UK", }, "Rihanna": { "category": "Music", "country": "Barbados", }, } from pathlib import Path import requests for title in wiki_titles: response = requests.get( "https://en.wikipedia.org/w/api.php", params={ "action": "query", "format": "json", "titles": title, "prop": "extracts", "explaintext": True, }, ).json() page = next(iter(response["query"]["pages"].values())) wiki_text = page["extract"] data_path = Path("data") if not data_path.exists(): Path.mkdir(data_path) with open(data_path / f"{title}.txt", "w") as fp: fp.write(wiki_text) docs_dict = {} for wiki_title in wiki_titles: doc = SimpleDirectoryReader( input_files=[f"data/{wiki_title}.txt"] ).load_data()[0] doc.metadata.update(wiki_metadatas[wiki_title]) docs_dict[wiki_title] = doc from llama_index.llms.openai import OpenAI from llama_index.core.callbacks import LlamaDebugHandler, CallbackManager from llama_index.core.node_parser import SentenceSplitter llm = OpenAI("gpt-4") callback_manager = CallbackManager([LlamaDebugHandler()]) splitter = SentenceSplitter(chunk_size=256) import weaviate auth_config = weaviate.AuthApiKey(api_key="<api_key>") client = weaviate.Client( "https://llama-index-test-v0oggsoz.weaviate.network", auth_client_secret=auth_config, ) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.vector_stores.weaviate import WeaviateVectorStore from IPython.display import Markdown, display client.schema.delete_class("LlamaIndex") from llama_index.core import StorageContext vector_store = WeaviateVectorStore( weaviate_client=client, index_name="LlamaIndex" ) storage_context =
StorageContext.from_defaults(vector_store=vector_store)
llama_index.core.StorageContext.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-konko') get_ipython().system('pip install llama-index') import os os.environ["KONKO_API_KEY"] = "<your-api-key>" from llama_index.llms.konko import Konko from llama_index.core.llms import ChatMessage llm = Konko(model="meta-llama/llama-2-13b-chat") messages = ChatMessage(role="user", content="Explain Big Bang Theory briefly") resp = llm.chat([messages]) print(resp) import os os.environ["OPENAI_API_KEY"] = "<your-api-key>" llm = Konko(model="gpt-3.5-turbo") message = ChatMessage(role="user", content="Explain Big Bang Theory briefly") resp = llm.chat([message]) print(resp) message = ChatMessage(role="user", content="Tell me a story in 250 words") resp = llm.stream_chat([message], max_tokens=1000) for r in resp: print(r.delta, end="") llm = Konko(model="numbersstation/nsql-llama-2-7b", max_tokens=100) text = """CREATE TABLE stadium ( stadium_id number, location text, name text, capacity number, highest number, lowest number, average number ) CREATE TABLE singer ( singer_id number, name text, country text, song_name text, song_release_year text, age number, is_male others ) CREATE TABLE concert ( concert_id number, concert_name text, theme text, stadium_id text, year text ) CREATE TABLE singer_in_concert ( concert_id number, singer_id text ) -- Using valid SQLite, answer the following questions for the tables provided above. -- What is the maximum capacity of stadiums ? SELECT""" response = llm.complete(text) print(response) llm = Konko(model="phind/phind-codellama-34b-v2", max_tokens=100) text = """### System Prompt You are an intelligent programming assistant. Implement a linked list in C++ ...""" resp = llm.stream_complete(text, max_tokens=1000) for r in resp: print(r.delta, end="") llm =
Konko(model="meta-llama/llama-2-13b-chat")
llama_index.llms.konko.Konko
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-docarray') get_ipython().system('pip install llama-index') import os import sys import logging import textwrap import warnings warnings.filterwarnings("ignore") os.environ["TOKENIZERS_PARALLELISM"] = "false" from llama_index.core import ( GPTVectorStoreIndex, SimpleDirectoryReader, Document, ) from llama_index.vector_stores.docarray import DocArrayHnswVectorStore from IPython.display import Markdown, display import os os.environ["OPENAI_API_KEY"] = "<your openai key>" get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print( "Document ID:", documents[0].doc_id, "Document Hash:", documents[0].doc_hash, ) from llama_index.core import StorageContext vector_store =
DocArrayHnswVectorStore(work_dir="hnsw_index")
llama_index.vector_stores.docarray.DocArrayHnswVectorStore
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import nest_asyncio nest_asyncio.apply() from llama_index.core.evaluation import generate_question_context_pairs from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.openai import OpenAI get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() node_parser = SentenceSplitter(chunk_size=512) nodes = node_parser.get_nodes_from_documents(documents) for idx, node in enumerate(nodes): node.id_ = f"node_{idx}" llm = OpenAI(model="gpt-4") vector_index = VectorStoreIndex(nodes) retriever = vector_index.as_retriever(similarity_top_k=2) retrieved_nodes = retriever.retrieve("What did the author do growing up?") from llama_index.core.response.notebook_utils import display_source_node for node in retrieved_nodes:
display_source_node(node, source_length=1000)
llama_index.core.response.notebook_utils.display_source_node
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().handlers = [] logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, SimpleKeywordTableIndex, ) from llama_index.core import SummaryIndex from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.openai import OpenAI get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() llm = OpenAI(model="gpt-4") splitter = SentenceSplitter(chunk_size=1024) nodes = splitter.get_nodes_from_documents(documents) storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index = VectorStoreIndex(nodes, storage_context=storage_context) keyword_index = SimpleKeywordTableIndex(nodes, storage_context=storage_context) list_retriever = summary_index.as_retriever() vector_retriever = vector_index.as_retriever() keyword_retriever = keyword_index.as_retriever() from llama_index.core.tools import RetrieverTool list_tool = RetrieverTool.from_defaults( retriever=list_retriever, description=( "Will retrieve all context from Paul Graham's essay on What I Worked" " On. Don't use if the question only requires more specific context." ), ) vector_tool = RetrieverTool.from_defaults( retriever=vector_retriever, description=( "Useful for retrieving specific context from Paul Graham essay on What" " I Worked On." ), ) keyword_tool = RetrieverTool.from_defaults( retriever=keyword_retriever, description=( "Useful for retrieving specific context from Paul Graham essay on What" " I Worked On (using entities mentioned in query)" ), ) from llama_index.core.selectors import LLMSingleSelector, LLMMultiSelector from llama_index.core.selectors import ( PydanticMultiSelector, PydanticSingleSelector, ) from llama_index.core.retrievers import RouterRetriever from llama_index.core.response.notebook_utils import display_source_node retriever = RouterRetriever( selector=PydanticSingleSelector.from_defaults(llm=llm), retriever_tools=[ list_tool, vector_tool, ], ) nodes = retriever.retrieve( "Can you give me all the context regarding the author's life?" ) for node in nodes: display_source_node(node) nodes = retriever.retrieve("What did Paul Graham do after RISD?") for node in nodes: display_source_node(node) retriever = RouterRetriever( selector=PydanticMultiSelector.from_defaults(llm=llm), retriever_tools=[list_tool, vector_tool, keyword_tool], ) nodes = retriever.retrieve( "What were noteable events from the authors time at Interleaf and YC?" ) for node in nodes: display_source_node(node) nodes = retriever.retrieve( "What were noteable events from the authors time at Interleaf and YC?" ) for node in nodes:
display_source_node(node)
llama_index.core.response.notebook_utils.display_source_node
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-finetuning') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-finetuning-callbacks') get_ipython().run_line_magic('pip', 'install llama-index-llms-huggingface') import nest_asyncio nest_asyncio.apply() import os HUGGING_FACE_TOKEN = os.getenv("HUGGING_FACE_TOKEN") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") import pandas as pd def display_eval_df(question, source, answer_a, answer_b, result) -> None: """Pretty print question/answer + gpt-4 judgement dataset.""" eval_df = pd.DataFrame( { "Question": question, "Source": source, "Model A": answer_a["model"], "Answer A": answer_a["text"], "Model B": answer_b["model"], "Answer B": answer_b["text"], "Score": result.score, "Judgement": result.feedback, }, index=[0], ) eval_df = eval_df.style.set_properties( **{ "inline-size": "300px", "overflow-wrap": "break-word", }, subset=["Answer A", "Answer B"] ) display(eval_df) get_ipython().system('pip install wikipedia -q') from llama_index.readers.wikipedia import WikipediaReader train_cities = [ "San Francisco", "Toronto", "New York", "Vancouver", "Montreal", "Boston", ] test_cities = [ "Tokyo", "Singapore", "Paris", ] train_documents = WikipediaReader().load_data( pages=[f"History of {x}" for x in train_cities] ) test_documents = WikipediaReader().load_data( pages=[f"History of {x}" for x in test_cities] ) QUESTION_GEN_PROMPT = ( "You are a Teacher/ Professor. Your task is to setup " "a quiz/examination. Using the provided context, formulate " "a single question that captures an important fact from the " "context. Restrict the question to the context information provided." ) from llama_index.core.evaluation import DatasetGenerator from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3) train_dataset_generator = DatasetGenerator.from_documents( train_documents, question_gen_query=QUESTION_GEN_PROMPT, llm=llm, show_progress=True, num_questions_per_chunk=25, ) test_dataset_generator = DatasetGenerator.from_documents( test_documents, question_gen_query=QUESTION_GEN_PROMPT, llm=llm, show_progress=True, num_questions_per_chunk=25, ) train_questions = train_dataset_generator.generate_questions_from_nodes( num=200 ) test_questions = test_dataset_generator.generate_questions_from_nodes(num=150) len(train_questions), len(test_questions) train_questions[:3] test_questions[:3] from llama_index.core import VectorStoreIndex from llama_index.core.retrievers import VectorIndexRetriever train_index = VectorStoreIndex.from_documents(documents=train_documents) train_retriever = VectorIndexRetriever( index=train_index, similarity_top_k=2, ) test_index =
VectorStoreIndex.from_documents(documents=test_documents)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install rank-bm25 pymupdf') import nest_asyncio nest_asyncio.apply() get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') get_ipython().system('pip install llama-index') from pathlib import Path from llama_index.readers.file import PyMuPDFReader loader = PyMuPDFReader() documents = loader.load(file_path="./data/llama2.pdf") from llama_index.core import VectorStoreIndex from llama_index.core.node_parser import SentenceSplitter splitter = SentenceSplitter(chunk_size=1024) index = VectorStoreIndex.from_documents(documents, transformations=[splitter]) from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo") from llama_index.core import PromptTemplate query_str = "How do the models developed in this work compare to open-source chat models based on the benchmarks tested?" query_gen_prompt_str = ( "You are a helpful assistant that generates multiple search queries based on a " "single input query. Generate {num_queries} search queries, one on each line, " "related to the following input query:\n" "Query: {query}\n" "Queries:\n" ) query_gen_prompt = PromptTemplate(query_gen_prompt_str) def generate_queries(llm, query_str: str, num_queries: int = 4): fmt_prompt = query_gen_prompt.format( num_queries=num_queries - 1, query=query_str ) response = llm.complete(fmt_prompt) queries = response.text.split("\n") return queries queries = generate_queries(llm, query_str, num_queries=4) print(queries) from tqdm.asyncio import tqdm async def run_queries(queries, retrievers): """Run queries against retrievers.""" tasks = [] for query in queries: for i, retriever in enumerate(retrievers): tasks.append(retriever.aretrieve(query)) task_results = await tqdm.gather(*tasks) results_dict = {} for i, (query, query_result) in enumerate(zip(queries, task_results)): results_dict[(query, i)] = query_result return results_dict from llama_index.core.retrievers import BM25Retriever vector_retriever = index.as_retriever(similarity_top_k=2) bm25_retriever = BM25Retriever.from_defaults( docstore=index.docstore, similarity_top_k=2 ) results_dict = await run_queries(queries, [vector_retriever, bm25_retriever]) def fuse_results(results_dict, similarity_top_k: int = 2): """Fuse results.""" k = 60.0 # `k` is a parameter used to control the impact of outlier rankings. fused_scores = {} text_to_node = {} for nodes_with_scores in results_dict.values(): for rank, node_with_score in enumerate( sorted( nodes_with_scores, key=lambda x: x.score or 0.0, reverse=True ) ): text = node_with_score.node.get_content() text_to_node[text] = node_with_score if text not in fused_scores: fused_scores[text] = 0.0 fused_scores[text] += 1.0 / (rank + k) reranked_results = dict( sorted(fused_scores.items(), key=lambda x: x[1], reverse=True) ) reranked_nodes: List[NodeWithScore] = [] for text, score in reranked_results.items(): reranked_nodes.append(text_to_node[text]) reranked_nodes[-1].score = score return reranked_nodes[:similarity_top_k] final_results = fuse_results(results_dict) from llama_index.core.response.notebook_utils import display_source_node for n in final_results:
display_source_node(n, source_length=500)
llama_index.core.response.notebook_utils.display_source_node
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-retrievers-bm25') import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("./data/paul_graham/").load_data() from llama_index.core import VectorStoreIndex from llama_index.core.node_parser import SentenceSplitter splitter =
SentenceSplitter(chunk_size=256)
llama_index.core.node_parser.SentenceSplitter
from llama_index.agent import OpenAIAgent import openai openai.api_key = "sk-your-key" from llama_index.tools.yelp.base import YelpToolSpec from llama_index.tools.tool_spec.load_and_search.base import LoadAndSearchToolSpec tool_spec = YelpToolSpec(api_key="your-key", client_id="your-id") tools = tool_spec.to_tool_list() agent = OpenAIAgent.from_tools( [ *
LoadAndSearchToolSpec.from_defaults(tools[0])
llama_index.tools.tool_spec.load_and_search.base.LoadAndSearchToolSpec.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-vectara') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core.schema import TextNode from llama_index.core.indices.managed.types import ManagedIndexQueryMode from llama_index.indices.managed.vectara import VectaraIndex from llama_index.indices.managed.vectara import VectaraAutoRetriever from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo from llama_index.llms.openai import OpenAI nodes = [ TextNode( text=( "A pragmatic paleontologist touring an almost complete theme park on an island " + "in Central America is tasked with protecting a couple of kids after a power " + "failure causes the park's cloned dinosaurs to run loose." ), metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"}, ), TextNode( text=( "A thief who steals corporate secrets through the use of dream-sharing technology " + "is given the inverse task of planting an idea into the mind of a C.E.O., " + "but his tragic past may doom the project and his team to disaster." ), metadata={ "year": 2010, "director": "Christopher Nolan", "rating": 8.2, }, ), TextNode( text="Barbie suffers a crisis that leads her to question her world and her existence.", metadata={ "year": 2023, "director": "Greta Gerwig", "genre": "fantasy", "rating": 9.5, }, ), TextNode( text=( "A cowboy doll is profoundly threatened and jealous when a new spaceman action " + "figure supplants him as top toy in a boy's bedroom." ), metadata={"year": 1995, "genre": "animated", "rating": 8.3}, ),
TextNode( text=( "When Woody is stolen by a toy collector, Buzz and his friends set out on a " + "rescue mission to save Woody before he becomes a museum toy property with his " + "roundup gang Jessie, Prospector, and Bullseye. " )
llama_index.core.schema.TextNode
get_ipython().run_line_magic('pip', 'install llama-index-llms-monsterapi') get_ipython().system('python3 -m pip install llama-index --quiet -y') get_ipython().system('python3 -m pip install monsterapi --quiet') get_ipython().system('python3 -m pip install sentence_transformers --quiet') import os from llama_index.llms.monsterapi import MonsterLLM from llama_index.core.embeddings import resolve_embed_model from llama_index.core.node_parser import SentenceSplitter from llama_index.core import VectorStoreIndex, SimpleDirectoryReader os.environ["MONSTER_API_KEY"] = "" model = "llama2-7b-chat" llm =
MonsterLLM(model=model, temperature=0.75)
llama_index.llms.monsterapi.MonsterLLM
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PyMuPDFReader loader = PyMuPDFReader() documents = loader.load(file_path="./data/llama2.pdf") from llama_index.core import VectorStoreIndex from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-4") node_parser = SentenceSplitter(chunk_size=1024) nodes = node_parser.get_nodes_from_documents(documents) index = VectorStoreIndex(nodes) query_engine = index.as_query_engine(llm=llm) from llama_index.core.schema import BaseNode from llama_index.llms.openai import OpenAI from llama_index.core.llms import ChatMessage, MessageRole from llama_index.core import ChatPromptTemplate, PromptTemplate from typing import Tuple, List import re llm = OpenAI(model="gpt-4") QA_PROMPT = PromptTemplate( "Context information is below.\n" "---------------------\n" "{context_str}\n" "---------------------\n" "Given the context information and not prior knowledge, " "answer the query.\n" "Query: {query_str}\n" "Answer: " ) def generate_answers_for_questions( questions: List[str], context: str, llm: OpenAI ) -> str: """Generate answers for questions given context.""" answers = [] for question in questions: fmt_qa_prompt = QA_PROMPT.format( context_str=context, query_str=question ) response_obj = llm.complete(fmt_qa_prompt) answers.append(str(response_obj)) return answers QUESTION_GEN_USER_TMPL = ( "Context information is below.\n" "---------------------\n" "{context_str}\n" "---------------------\n" "Given the context information and not prior knowledge, " "generate the relevant questions. " ) QUESTION_GEN_SYS_TMPL = """\ You are a Teacher/ Professor. Your task is to setup \ {num_questions_per_chunk} questions for an upcoming \ quiz/examination. The questions should be diverse in nature \ across the document. Restrict the questions to the \ context information provided.\ """ question_gen_template = ChatPromptTemplate( message_templates=[ ChatMessage(role=MessageRole.SYSTEM, content=QUESTION_GEN_SYS_TMPL), ChatMessage(role=MessageRole.USER, content=QUESTION_GEN_USER_TMPL), ] ) def generate_qa_pairs( nodes: List[BaseNode], llm: OpenAI, num_questions_per_chunk: int = 10 ) -> List[Tuple[str, str]]: """Generate questions.""" qa_pairs = [] for idx, node in enumerate(nodes): print(f"Node {idx}/{len(nodes)}") context_str = node.get_content(metadata_mode="all") fmt_messages = question_gen_template.format_messages( num_questions_per_chunk=10, context_str=context_str, ) chat_response = llm.chat(fmt_messages) raw_output = chat_response.message.content result_list = str(raw_output).strip().split("\n") cleaned_questions = [ re.sub(r"^\d+[\).\s]", "", question).strip() for question in result_list ] answers = generate_answers_for_questions( cleaned_questions, context_str, llm ) cur_qa_pairs = list(zip(cleaned_questions, answers)) qa_pairs.extend(cur_qa_pairs) return qa_pairs qa_pairs qa_pairs = generate_qa_pairs( nodes, llm, num_questions_per_chunk=10, ) import pickle pickle.dump(qa_pairs, open("eval_dataset.pkl", "wb")) import pickle qa_pairs = pickle.load(open("eval_dataset.pkl", "rb")) from llama_index.core.llms import ChatMessage, MessageRole from llama_index.core import ChatPromptTemplate, PromptTemplate from typing import Dict CORRECTNESS_SYS_TMPL = """ You are an expert evaluation system for a question answering chatbot. You are given the following information: - a user query, - a reference answer, and - a generated answer. Your job is to judge the relevance and correctness of the generated answer. Output a single score that represents a holistic evaluation. You must return your response in a line with only the score. Do not return answers in any other format. On a separate line provide your reasoning for the score as well. Follow these guidelines for scoring: - Your score has to be between 1 and 5, where 1 is the worst and 5 is the best. - If the generated answer is not relevant to the user query, \ you should give a score of 1. - If the generated answer is relevant but contains mistakes, \ you should give a score between 2 and 3. - If the generated answer is relevant and fully correct, \ you should give a score between 4 and 5. """ CORRECTNESS_USER_TMPL = """ {query} {reference_answer} {generated_answer} """ eval_chat_template = ChatPromptTemplate( message_templates=[ ChatMessage(role=MessageRole.SYSTEM, content=CORRECTNESS_SYS_TMPL), ChatMessage(role=MessageRole.USER, content=CORRECTNESS_USER_TMPL), ] ) from llama_index.llms.openai import OpenAI def run_correctness_eval( query_str: str, reference_answer: str, generated_answer: str, llm: OpenAI, threshold: float = 4.0, ) -> Dict: """Run correctness eval.""" fmt_messages = eval_chat_template.format_messages( llm=llm, query=query_str, reference_answer=reference_answer, generated_answer=generated_answer, ) chat_response = llm.chat(fmt_messages) raw_output = chat_response.message.content score_str, reasoning_str = raw_output.split("\n", 1) score = float(score_str) reasoning = reasoning_str.lstrip("\n") return {"passing": score >= threshold, "score": score, "reason": reasoning} llm = OpenAI(model="gpt-4") query_str = ( "What is the specific name given to the fine-tuned LLMs optimized for" " dialogue use cases?" ) reference_answer = ( "The specific name given to the fine-tuned LLMs optimized for dialogue use" " cases is Llama 2-Chat." ) generated_answer = str(query_engine.query(query_str)) print(str(generated_answer)) eval_results = run_correctness_eval( query_str, reference_answer, generated_answer, llm=llm, threshold=4.0 ) display(eval_results) EVAL_TEMPLATE = PromptTemplate( "Please tell if a given piece of information " "is supported by the context.\n" "You need to answer with either YES or NO.\n" "Answer YES if any of the context supports the information, even " "if most of the context is unrelated. " "Some examples are provided below. \n\n" "Information: Apple pie is generally double-crusted.\n" "Context: An apple pie is a fruit pie in which the principal filling " "ingredient is apples. \n" "Apple pie is often served with whipped cream, ice cream " "('apple pie à la mode'), custard or cheddar cheese.\n" "It is generally double-crusted, with pastry both above " "and below the filling; the upper crust may be solid or " "latticed (woven of crosswise strips).\n" "Answer: YES\n" "Information: Apple pies tastes bad.\n" "Context: An apple pie is a fruit pie in which the principal filling " "ingredient is apples. \n" "Apple pie is often served with whipped cream, ice cream " "('apple pie à la mode'), custard or cheddar cheese.\n" "It is generally double-crusted, with pastry both above " "and below the filling; the upper crust may be solid or " "latticed (woven of crosswise strips).\n" "Answer: NO\n" "Information: {query_str}\n" "Context: {context_str}\n" "Answer: " ) EVAL_REFINE_TEMPLATE =
PromptTemplate( "We want to understand if the following information is present " "in the context information: {query_str}\n" "We have provided an existing YES/NO answer: {existing_answer}\n" "We have the opportunity to refine the existing answer " "(only if needed)
llama_index.core.PromptTemplate
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-retrievers-bm25') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().handlers = [] logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( SimpleDirectoryReader, StorageContext, VectorStoreIndex, ) from llama_index.retrievers.bm25 import BM25Retriever from llama_index.core.retrievers import VectorIndexRetriever from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.openai import OpenAI get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham").load_data() llm = OpenAI(model="gpt-4") splitter = SentenceSplitter(chunk_size=1024) nodes = splitter.get_nodes_from_documents(documents) storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) index = VectorStoreIndex( nodes=nodes, storage_context=storage_context, ) retriever = BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=2) from llama_index.core.response.notebook_utils import display_source_node nodes = retriever.retrieve("What happened at Viaweb and Interleaf?") for node in nodes: display_source_node(node) nodes = retriever.retrieve("What did Paul Graham do after RISD?") for node in nodes: display_source_node(node) from llama_index.core.tools import RetrieverTool vector_retriever = VectorIndexRetriever(index) bm25_retriever =
BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=2)
llama_index.retrievers.bm25.BM25Retriever.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import logging import sys import pandas as pd logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core.evaluation import DatasetGenerator, RelevancyEvaluator from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, Response from llama_index.llms.openai import OpenAI get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() data_generator = DatasetGenerator.from_documents(documents) eval_questions = data_generator.generate_questions_from_nodes() eval_questions gpt4 = OpenAI(temperature=0, model="gpt-4") evaluator_gpt4 = RelevancyEvaluator(llm=gpt4) vector_index =
VectorStoreIndex.from_documents(documents)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-llms-ollama') get_ipython().system('pip install llama-index') from llama_index.llms.ollama import Ollama llm =
Ollama(model="llama2", request_timeout=30.0)
llama_index.llms.ollama.Ollama
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.core import ( SimpleDirectoryReader, VectorStoreIndex, StorageContext, load_index_from_storage, ) from llama_index.core.tools import QueryEngineTool, ToolMetadata try: storage_context = StorageContext.from_defaults( persist_dir="./storage/lyft" ) lyft_index =
load_index_from_storage(storage_context)
llama_index.core.load_index_from_storage
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import VectorStoreIndex from llama_index.core import PromptTemplate from IPython.display import Markdown, display get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PyMuPDFReader loader = PyMuPDFReader() documents = loader.load(file_path="./data/llama2.pdf") from llama_index.core import VectorStoreIndex from llama_index.llms.openai import OpenAI gpt35_llm = OpenAI(model="gpt-3.5-turbo") gpt4_llm =
OpenAI(model="gpt-4")
llama_index.llms.openai.OpenAI
import openai openai.api_key = "sk-your-key" from llama_index.agent import OpenAIAgent from llama_index.tools import QueryEngineTool, ToolMetadata from llama_index import SimpleDirectoryReader, VectorStoreIndex import requests response = requests.get( "https://www.dropbox.com/s/f6bmb19xdg0xedm/paul_graham_essay.txt?dl=1" ) essay_txt = response.text with open("pg_essay.txt", "w") as fp: fp.write(essay_txt) documents = SimpleDirectoryReader(input_files=["pg_essay.txt"]).load_data() index =
VectorStoreIndex.from_documents(documents)
llama_index.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import openai import os os.environ["OPENAI_API_KEY"] = "[You API key]" get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import pinecone import os api_key = os.environ["PINECONE_API_KEY"] pinecone.init(api_key=api_key, environment="us-west1-gcp-free") pinecone_index = pinecone.Index("quickstart") pinecone_index.delete(deleteAll=True) from llama_index.core import StorageContext from llama_index.vector_stores.pinecone import PineconeVectorStore from llama_index.core import VectorStoreIndex vector_store = PineconeVectorStore( pinecone_index=pinecone_index, namespace="wiki_cities" ) storage_context = StorageContext.from_defaults(vector_store=vector_store) vector_index = VectorStoreIndex([], storage_context=storage_context) from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, column, ) engine = create_engine("sqlite:///:memory:", future=True) metadata_obj = MetaData() table_name = "city_stats" city_stats_table = Table( table_name, metadata_obj, Column("city_name", String(16), primary_key=True), Column("population", Integer), Column("country", String(16), nullable=False), ) metadata_obj.create_all(engine) metadata_obj.tables.keys() from sqlalchemy import insert rows = [ {"city_name": "Toronto", "population": 2930000, "country": "Canada"}, {"city_name": "Tokyo", "population": 13960000, "country": "Japan"}, {"city_name": "Berlin", "population": 3645000, "country": "Germany"}, ] for row in rows: stmt = insert(city_stats_table).values(**row) with engine.begin() as connection: cursor = connection.execute(stmt) with engine.connect() as connection: cursor = connection.exec_driver_sql("SELECT * FROM city_stats") print(cursor.fetchall()) get_ipython().system('pip install wikipedia') from llama_index.readers.wikipedia import WikipediaReader cities = ["Toronto", "Berlin", "Tokyo"] wiki_docs = WikipediaReader().load_data(pages=cities) from llama_index.core import SQLDatabase sql_database = SQLDatabase(engine, include_tables=["city_stats"]) from llama_index.core.query_engine import NLSQLTableQueryEngine sql_query_engine = NLSQLTableQueryEngine( sql_database=sql_database, tables=["city_stats"], ) from llama_index.core import Settings for city, wiki_doc in zip(cities, wiki_docs): nodes = Settings.node_parser.get_nodes_from_documents([wiki_doc]) for node in nodes: node.metadata = {"title": city} vector_index.insert_nodes(nodes) from llama_index.llms.openai import OpenAI from llama_index.core.retrievers import VectorIndexAutoRetriever from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo from llama_index.core.query_engine import RetrieverQueryEngine vector_store_info = VectorStoreInfo( content_info="articles about different cities", metadata_info=[ MetadataInfo( name="title", type="str", description="The name of the city" ), ], ) vector_auto_retriever = VectorIndexAutoRetriever( vector_index, vector_store_info=vector_store_info ) retriever_query_engine = RetrieverQueryEngine.from_args( vector_auto_retriever, llm=OpenAI(model="gpt-4") ) from llama_index.core.tools import QueryEngineTool sql_tool = QueryEngineTool.from_defaults( query_engine=sql_query_engine, description=( "Useful for translating a natural language query into a SQL query over" " a table containing: city_stats, containing the population/country of" " each city" ), ) vector_tool = QueryEngineTool.from_defaults( query_engine=retriever_query_engine, description=( f"Useful for answering semantic questions about different cities" ), ) from llama_index.core.query_engine import SQLAutoVectorQueryEngine query_engine = SQLAutoVectorQueryEngine( sql_tool, vector_tool, llm=
OpenAI(model="gpt-4")
llama_index.llms.openai.OpenAI
get_ipython().system('pip install llama-index') import os os.environ["OPENAI_API_KEY"] = "sk-..." get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("./data/paul_graham").load_data() from llama_index.core import Settings nodes = Settings.get_nodes_from_documents(documents) from llama_index.core import StorageContext storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) from llama_index.core import SimpleKeywordTableIndex, VectorStoreIndex vector_index = VectorStoreIndex(nodes, storage_context=storage_context) keyword_index = SimpleKeywordTableIndex(nodes, storage_context=storage_context) from llama_index.core import QueryBundle from llama_index.core.schema import NodeWithScore from llama_index.core.retrievers import ( BaseRetriever, VectorIndexRetriever, KeywordTableSimpleRetriever, ) from typing import List class CustomRetriever(BaseRetriever): """Custom retriever that performs both semantic search and hybrid search.""" def __init__( self, vector_retriever: VectorIndexRetriever, keyword_retriever: KeywordTableSimpleRetriever, mode: str = "AND", ) -> None: """Init params.""" self._vector_retriever = vector_retriever self._keyword_retriever = keyword_retriever if mode not in ("AND", "OR"): raise ValueError("Invalid mode.") self._mode = mode super().__init__() def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: """Retrieve nodes given query.""" vector_nodes = self._vector_retriever.retrieve(query_bundle) keyword_nodes = self._keyword_retriever.retrieve(query_bundle) vector_ids = {n.node.node_id for n in vector_nodes} keyword_ids = {n.node.node_id for n in keyword_nodes} combined_dict = {n.node.node_id: n for n in vector_nodes} combined_dict.update({n.node.node_id: n for n in keyword_nodes}) if self._mode == "AND": retrieve_ids = vector_ids.intersection(keyword_ids) else: retrieve_ids = vector_ids.union(keyword_ids) retrieve_nodes = [combined_dict[rid] for rid in retrieve_ids] return retrieve_nodes from llama_index.core import get_response_synthesizer from llama_index.core.query_engine import RetrieverQueryEngine vector_retriever =
VectorIndexRetriever(index=vector_index, similarity_top_k=2)
llama_index.core.retrievers.VectorIndexRetriever
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('wget "https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip" -O data.zip') get_ipython().system('unzip data.zip') import pandas as pd from pathlib import Path data_dir = Path("./WikiTableQuestions/csv/200-csv") csv_files = sorted([f for f in data_dir.glob("*.csv")]) dfs = [] for csv_file in csv_files: print(f"processing file: {csv_file}") try: df = pd.read_csv(csv_file) dfs.append(df) except Exception as e: print(f"Error parsing {csv_file}: {str(e)}") tableinfo_dir = "WikiTableQuestions_TableInfo" get_ipython().system('mkdir {tableinfo_dir}') from llama_index.core.program import LLMTextCompletionProgram from llama_index.core.bridge.pydantic import BaseModel, Field from llama_index.llms.openai import OpenAI class TableInfo(BaseModel): """Information regarding a structured table.""" table_name: str = Field( ..., description="table name (must be underscores and NO spaces)" ) table_summary: str = Field( ..., description="short, concise summary/caption of the table" ) prompt_str = """\ Give me a summary of the table with the following JSON format. - The table name must be unique to the table and describe it while being concise. - Do NOT output a generic table name (e.g. table, my_table). Do NOT make the table name one of the following: {exclude_table_name_list} Table: {table_str} Summary: """ program = LLMTextCompletionProgram.from_defaults( output_cls=TableInfo, llm=OpenAI(model="gpt-3.5-turbo"), prompt_template_str=prompt_str, ) import json def _get_tableinfo_with_index(idx: int) -> str: results_gen = Path(tableinfo_dir).glob(f"{idx}_*") results_list = list(results_gen) if len(results_list) == 0: return None elif len(results_list) == 1: path = results_list[0] return TableInfo.parse_file(path) else: raise ValueError( f"More than one file matching index: {list(results_gen)}" ) table_names = set() table_infos = [] for idx, df in enumerate(dfs): table_info = _get_tableinfo_with_index(idx) if table_info: table_infos.append(table_info) else: while True: df_str = df.head(10).to_csv() table_info = program( table_str=df_str, exclude_table_name_list=str(list(table_names)), ) table_name = table_info.table_name print(f"Processed table: {table_name}") if table_name not in table_names: table_names.add(table_name) break else: print(f"Table name {table_name} already exists, trying again.") pass out_file = f"{tableinfo_dir}/{idx}_{table_name}.json" json.dump(table_info.dict(), open(out_file, "w")) table_infos.append(table_info) from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, ) import re def sanitize_column_name(col_name): return re.sub(r"\W+", "_", col_name) def create_table_from_dataframe( df: pd.DataFrame, table_name: str, engine, metadata_obj ): sanitized_columns = {col: sanitize_column_name(col) for col in df.columns} df = df.rename(columns=sanitized_columns) columns = [ Column(col, String if dtype == "object" else Integer) for col, dtype in zip(df.columns, df.dtypes) ] table = Table(table_name, metadata_obj, *columns) metadata_obj.create_all(engine) with engine.connect() as conn: for _, row in df.iterrows(): insert_stmt = table.insert().values(**row.to_dict()) conn.execute(insert_stmt) conn.commit() engine = create_engine("sqlite:///:memory:") metadata_obj = MetaData() for idx, df in enumerate(dfs): tableinfo = _get_tableinfo_with_index(idx) print(f"Creating table: {tableinfo.table_name}") create_table_from_dataframe(df, tableinfo.table_name, engine, metadata_obj) import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") from llama_index.core.objects import ( SQLTableNodeMapping, ObjectIndex, SQLTableSchema, ) from llama_index.core import SQLDatabase, VectorStoreIndex sql_database = SQLDatabase(engine) table_node_mapping = SQLTableNodeMapping(sql_database) table_schema_objs = [ SQLTableSchema(table_name=t.table_name, context_str=t.table_summary) for t in table_infos ] # add a SQLTableSchema for each table obj_index = ObjectIndex.from_objects( table_schema_objs, table_node_mapping, VectorStoreIndex, ) obj_retriever = obj_index.as_retriever(similarity_top_k=3) from llama_index.core.retrievers import SQLRetriever from typing import List from llama_index.core.query_pipeline import FnComponent sql_retriever = SQLRetriever(sql_database) def get_table_context_str(table_schema_objs: List[SQLTableSchema]): """Get table context string.""" context_strs = [] for table_schema_obj in table_schema_objs: table_info = sql_database.get_single_table_info( table_schema_obj.table_name ) if table_schema_obj.context_str: table_opt_context = " The table description is: " table_opt_context += table_schema_obj.context_str table_info += table_opt_context context_strs.append(table_info) return "\n\n".join(context_strs) table_parser_component = FnComponent(fn=get_table_context_str) from llama_index.core.prompts.default_prompts import DEFAULT_TEXT_TO_SQL_PROMPT from llama_index.core import PromptTemplate from llama_index.core.query_pipeline import FnComponent from llama_index.core.llms import ChatResponse def parse_response_to_sql(response: ChatResponse) -> str: """Parse response to SQL.""" response = response.message.content sql_query_start = response.find("SQLQuery:") if sql_query_start != -1: response = response[sql_query_start:] if response.startswith("SQLQuery:"): response = response[len("SQLQuery:") :] sql_result_start = response.find("SQLResult:") if sql_result_start != -1: response = response[:sql_result_start] return response.strip().strip("```").strip() sql_parser_component = FnComponent(fn=parse_response_to_sql) text2sql_prompt = DEFAULT_TEXT_TO_SQL_PROMPT.partial_format( dialect=engine.dialect.name ) print(text2sql_prompt.template) response_synthesis_prompt_str = ( "Given an input question, synthesize a response from the query results.\n" "Query: {query_str}\n" "SQL: {sql_query}\n" "SQL Response: {context_str}\n" "Response: " ) response_synthesis_prompt = PromptTemplate( response_synthesis_prompt_str, ) llm = OpenAI(model="gpt-3.5-turbo") from llama_index.core.query_pipeline import ( QueryPipeline as QP, Link, InputComponent, CustomQueryComponent, ) qp = QP( modules={ "input": InputComponent(), "table_retriever": obj_retriever, "table_output_parser": table_parser_component, "text2sql_prompt": text2sql_prompt, "text2sql_llm": llm, "sql_output_parser": sql_parser_component, "sql_retriever": sql_retriever, "response_synthesis_prompt": response_synthesis_prompt, "response_synthesis_llm": llm, }, verbose=True, ) qp.add_chain(["input", "table_retriever", "table_output_parser"]) qp.add_link("input", "text2sql_prompt", dest_key="query_str") qp.add_link("table_output_parser", "text2sql_prompt", dest_key="schema") qp.add_chain( ["text2sql_prompt", "text2sql_llm", "sql_output_parser", "sql_retriever"] ) qp.add_link( "sql_output_parser", "response_synthesis_prompt", dest_key="sql_query" ) qp.add_link( "sql_retriever", "response_synthesis_prompt", dest_key="context_str" ) qp.add_link("input", "response_synthesis_prompt", dest_key="query_str") qp.add_link("response_synthesis_prompt", "response_synthesis_llm") from pyvis.network import Network net = Network(notebook=True, cdn_resources="in_line", directed=True) net.from_nx(qp.dag) net.show("text2sql_dag.html") response = qp.run( query="What was the year that The Notorious B.I.G was signed to Bad Boy?" ) print(str(response)) response = qp.run(query="Who won best director in the 1972 academy awards") print(str(response)) response = qp.run(query="What was the term of Pasquale Preziosa?") print(str(response)) from llama_index.core import VectorStoreIndex, load_index_from_storage from sqlalchemy import text from llama_index.core.schema import TextNode from llama_index.core import StorageContext import os from pathlib import Path from typing import Dict def index_all_tables( sql_database: SQLDatabase, table_index_dir: str = "table_index_dir" ) -> Dict[str, VectorStoreIndex]: """Index all tables.""" if not Path(table_index_dir).exists(): os.makedirs(table_index_dir) vector_index_dict = {} engine = sql_database.engine for table_name in sql_database.get_usable_table_names(): print(f"Indexing rows in table: {table_name}") if not os.path.exists(f"{table_index_dir}/{table_name}"): with engine.connect() as conn: cursor = conn.execute(text(f'SELECT * FROM "{table_name}"')) result = cursor.fetchall() row_tups = [] for row in result: row_tups.append(tuple(row)) nodes = [TextNode(text=str(t)) for t in row_tups] index =
VectorStoreIndex(nodes)
llama_index.core.VectorStoreIndex
get_ipython().run_line_magic('pip', 'install llama-index-question-gen-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from IPython.display import Markdown, display def display_prompt_dict(prompts_dict): for k, p in prompts_dict.items(): text_md = f"**Prompt Key**: {k}<br>" f"**Text:** <br>" display(Markdown(text_md)) print(p.get_template()) display(Markdown("<br><br>")) from llama_index.core.selectors import LLMSingleSelector, LLMMultiSelector from llama_index.core.selectors import ( PydanticMultiSelector, PydanticSingleSelector, ) selector = LLMMultiSelector.from_defaults() from llama_index.core.tools import ToolMetadata tool_choices = [ ToolMetadata( name="covid_nyt", description=("This tool contains a NYT news article about COVID-19"), ), ToolMetadata( name="covid_wiki", description=("This tool contains the Wikipedia page about COVID-19"), ), ToolMetadata( name="covid_tesla", description=("This tool contains the Wikipedia page about apples"), ), ] display_prompt_dict(selector.get_prompts()) selector_result = selector.select( tool_choices, query="Tell me more about COVID-19" ) selector_result.selections from llama_index.core import PromptTemplate from llama_index.llms.openai import OpenAI query_gen_str = """\ You are a helpful assistant that generates multiple search queries based on a \ single input query. Generate {num_queries} search queries, one on each line, \ related to the following input query: Query: {query} Queries: """ query_gen_prompt = PromptTemplate(query_gen_str) llm = OpenAI(model="gpt-3.5-turbo") def generate_queries(query: str, llm, num_queries: int = 4): response = llm.predict( query_gen_prompt, num_queries=num_queries, query=query ) queries = response.split("\n") queries_str = "\n".join(queries) print(f"Generated queries:\n{queries_str}") return queries queries = generate_queries("What happened at Interleaf and Viaweb?", llm) queries from llama_index.core.indices.query.query_transform import HyDEQueryTransform from llama_index.llms.openai import OpenAI hyde = HyDEQueryTransform(include_original=True) llm = OpenAI(model="gpt-3.5-turbo") query_bundle = hyde.run("What is Bel?") new_query.custom_embedding_strs from llama_index.core.question_gen import LLMQuestionGenerator from llama_index.question_gen.openai import OpenAIQuestionGenerator from llama_index.llms.openai import OpenAI llm = OpenAI() question_gen = OpenAIQuestionGenerator.from_defaults(llm=llm) display_prompt_dict(question_gen.get_prompts()) from llama_index.core.tools import ToolMetadata tool_choices = [ ToolMetadata( name="uber_2021_10k", description=( "Provides information about Uber financials for year 2021" ), ), ToolMetadata( name="lyft_2021_10k", description=( "Provides information about Lyft financials for year 2021" ), ), ] from llama_index.core import QueryBundle query_str = "Compare and contrast Uber and Lyft" choices = question_gen.generate(tool_choices, QueryBundle(query_str=query_str)) choices from llama_index.core.agent import ReActChatFormatter from llama_index.core.agent.react.output_parser import ReActOutputParser from llama_index.core.tools import FunctionTool from llama_index.core.llms import ChatMessage def execute_sql(sql: str) -> str: """Given a SQL input string, execute it.""" return f"Executed {sql}" def add(a: int, b: int) -> int: """Add two numbers.""" return a + b tool1 = FunctionTool.from_defaults(fn=execute_sql) tool2 =
FunctionTool.from_defaults(fn=add)
llama_index.core.tools.FunctionTool.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-graph-stores-kuzu') import os os.environ["OPENAI_API_KEY"] = "API_KEY_HERE" import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) import shutil shutil.rmtree("./test1", ignore_errors=True) shutil.rmtree("./test2", ignore_errors=True) shutil.rmtree("./test3", ignore_errors=True) get_ipython().run_line_magic('pip', 'install kuzu') import kuzu db = kuzu.Database("test1") from llama_index.graph_stores.kuzu import KuzuGraphStore graph_store = KuzuGraphStore(db) from llama_index.core import SimpleDirectoryReader, KnowledgeGraphIndex from llama_index.llms.openai import OpenAI from llama_index.core import Settings from IPython.display import Markdown, display import kuzu documents = SimpleDirectoryReader( "../../../../examples/paul_graham_essay/data" ).load_data() llm = OpenAI(temperature=0, model="gpt-3.5-turbo") Settings.llm = llm Settings.chunk_size = 512 from llama_index.core import StorageContext storage_context = StorageContext.from_defaults(graph_store=graph_store) index = KnowledgeGraphIndex.from_documents( documents, max_triplets_per_chunk=2, storage_context=storage_context, ) query_engine = index.as_query_engine( include_text=False, response_mode="tree_summarize" ) response = query_engine.query( "Tell me more about Interleaf", ) display(Markdown(f"<b>{response}</b>")) query_engine = index.as_query_engine( include_text=True, response_mode="tree_summarize" ) response = query_engine.query( "Tell me more about Interleaf", ) display(Markdown(f"<b>{response}</b>")) db = kuzu.Database("test2") graph_store = KuzuGraphStore(db) storage_context = StorageContext.from_defaults(graph_store=graph_store) new_index = KnowledgeGraphIndex.from_documents( documents, max_triplets_per_chunk=2, storage_context=storage_context, include_embeddings=True, ) rel_map = graph_store.get_rel_map() query_engine = index.as_query_engine( include_text=True, response_mode="tree_summarize", embedding_mode="hybrid", similarity_top_k=5, ) response = query_engine.query( "Tell me more about what the author worked on at Interleaf", ) display(Markdown(f"<b>{response}</b>")) get_ipython().run_line_magic('pip', 'install pyvis') from pyvis.network import Network g = index.get_networkx_graph() net = Network(notebook=True, cdn_resources="in_line", directed=True) net.from_nx(g) net.show("kuzugraph_draw.html") from llama_index.core.node_parser import SentenceSplitter node_parser = SentenceSplitter() nodes = node_parser.get_nodes_from_documents(documents) db = kuzu.Database("test3") graph_store = KuzuGraphStore(db) storage_context =
StorageContext.from_defaults(graph_store=graph_store)
llama_index.core.StorageContext.from_defaults
import openai from llama_index.agent import OpenAIAgent openai.api_key = "sk-your-key" from llama_index.tools.multion.base import MultionToolSpec multion_tool = MultionToolSpec() from llama_index.tools.gmail.base import GmailToolSpec from llama_index.tools.ondemand_loader_tool import OnDemandLoaderTool gmail_tool =
GmailToolSpec()
llama_index.tools.gmail.base.GmailToolSpec
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') import logging import sys import os logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os os.environ[ "PINECONE_API_KEY" ] = "<Your Pinecone API key, from app.pinecone.io>" os.environ["OPENAI_API_KEY"] = "sk-..." from pinecone import Pinecone from pinecone import ServerlessSpec api_key = os.environ["PINECONE_API_KEY"] pc = Pinecone(api_key=api_key) pc.create_index( "quickstart-index", dimension=1536, metric="euclidean", spec=ServerlessSpec(cloud="aws", region="us-west-2"), ) pinecone_index = pc.Index("quickstart-index") from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.pinecone import PineconeVectorStore from llama_index.core.schema import TextNode nodes = [ TextNode( text="The Shawshank Redemption", metadata={ "author": "Stephen King", "theme": "Friendship", "year": 1994, }, ), TextNode( text="The Godfather", metadata={ "director": "Francis Ford Coppola", "theme": "Mafia", "year": 1972, }, ), TextNode( text="Inception", metadata={ "director": "Christopher Nolan", "theme": "Fiction", "year": 2010, }, ), TextNode( text="To Kill a Mockingbird", metadata={ "author": "Harper Lee", "theme": "Mafia", "year": 1960, }, ), TextNode( text="1984", metadata={ "author": "George Orwell", "theme": "Totalitarianism", "year": 1949, }, ), TextNode( text="The Great Gatsby", metadata={ "author": "F. Scott Fitzgerald", "theme": "The American Dream", "year": 1925, }, ), TextNode( text="Harry Potter and the Sorcerer's Stone", metadata={ "author": "J.K. Rowling", "theme": "Fiction", "year": 1997, }, ), ] vector_store = PineconeVectorStore( pinecone_index=pinecone_index, namespace="test_05_14" ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex(nodes, storage_context=storage_context) from llama_index.core.vector_stores import ( MetadataFilter, MetadataFilters, FilterOperator, ) filters = MetadataFilters( filters=[ MetadataFilter( key="theme", operator=FilterOperator.EQ, value="Fiction" ), ] ) retriever = index.as_retriever(filters=filters) retriever.retrieve("What is inception about?") from llama_index.core.vector_stores import FilterOperator, FilterCondition filters = MetadataFilters( filters=[ MetadataFilter(key="theme", value="Fiction"), MetadataFilter(key="year", value=1997, operator=FilterOperator.GT), ], condition=FilterCondition.AND, ) retriever = index.as_retriever(filters=filters) retriever.retrieve("Harry Potter?") from llama_index.core.vector_stores import FilterOperator, FilterCondition filters = MetadataFilters( filters=[ MetadataFilter(key="theme", value="Fiction"),
MetadataFilter(key="year", value=1997, operator=FilterOperator.GT)
llama_index.core.vector_stores.MetadataFilter
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-hub-llama-packs-tables-chain-of-table-base') get_ipython().system('wget "https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip" -O data.zip') get_ipython().system('unzip data.zip') import pandas as pd df = pd.read_csv("./WikiTableQuestions/csv/200-csv/3.csv") df from llama_index.packs.tables.chain_of_table.base import ( ChainOfTableQueryEngine, serialize_table, ) from llama_index.core.llama_pack import download_llama_pack download_llama_pack( "ChainOfTablePack", "./chain_of_table_pack", skip_load=True, ) from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-4-1106-preview") import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") import pandas as pd df = pd.read_csv("~/Downloads/WikiTableQuestions/csv/200-csv/11.csv") df query_engine = ChainOfTableQueryEngine(df, llm=llm, verbose=True) response = query_engine.query("Who won best Director in the 1972 Academy Awards?") str(response.response) import pandas as pd df = pd.read_csv("./WikiTableQuestions/csv/200-csv/42.csv") df query_engine = ChainOfTableQueryEngine(df, llm=llm, verbose=True) response = query_engine.query("What was the precipitation in inches during June?") str(response) from llama_index.core import PromptTemplate from llama_index.core.query_pipeline import QueryPipeline prompt_str = """\ Here's a serialized table. {serialized_table} Given this table please answer the question: {question} Answer: """ prompt = PromptTemplate(prompt_str) prompt_c = prompt.as_query_component(partial={"serialized_table":
serialize_table(df)
llama_index.packs.tables.chain_of_table.base.serialize_table
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import os os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo-1106", temperature=0.2) Settings.embed_model =
OpenAIEmbedding(model="text-embedding-3-small")
llama_index.embeddings.openai.OpenAIEmbedding
get_ipython().run_line_magic('pip', 'install llama-index-readers-mbox') get_ipython().system('pip install llama-index') get_ipython().run_line_magic('env', 'OPENAI_API_KEY=sk-************') from llama_index.readers.mbox import MboxReader from llama_index.core import VectorStoreIndex documents =
MboxReader()
llama_index.readers.mbox.MboxReader
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core import ( VectorStoreIndex, SimpleKeywordTableIndex, SimpleDirectoryReader, ) from llama_index.core import SummaryIndex from llama_index.core.schema import IndexNode from llama_index.core.tools import QueryEngineTool, ToolMetadata from llama_index.core.callbacks import CallbackManager from llama_index.llms.openai import OpenAI wiki_titles = [ "Toronto", "Seattle", "Chicago", "Boston", "Houston", ] from pathlib import Path import requests for title in wiki_titles: response = requests.get( "https://en.wikipedia.org/w/api.php", params={ "action": "query", "format": "json", "titles": title, "prop": "extracts", "explaintext": True, }, ).json() page = next(iter(response["query"]["pages"].values())) wiki_text = page["extract"] data_path = Path("data") if not data_path.exists(): Path.mkdir(data_path) with open(data_path / f"{title}.txt", "w") as fp: fp.write(wiki_text) city_docs = {} for wiki_title in wiki_titles: city_docs[wiki_title] = SimpleDirectoryReader( input_files=[f"data/{wiki_title}.txt"] ).load_data() llm =
OpenAI(temperature=0, model="gpt-3.5-turbo")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-finetuning') import json from llama_index.core import SimpleDirectoryReader from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import MetadataMode get_ipython().system("mkdir -p 'data/10k/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/uber_2021.pdf' -O 'data/10k/uber_2021.pdf'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/lyft_2021.pdf' -O 'data/10k/lyft_2021.pdf'") TRAIN_FILES = ["./data/10k/lyft_2021.pdf"] VAL_FILES = ["./data/10k/uber_2021.pdf"] TRAIN_CORPUS_FPATH = "./data/train_corpus.json" VAL_CORPUS_FPATH = "./data/val_corpus.json" def load_corpus(files, verbose=False): if verbose: print(f"Loading files {files}") reader = SimpleDirectoryReader(input_files=files) docs = reader.load_data() if verbose: print(f"Loaded {len(docs)} docs") parser = SentenceSplitter() nodes = parser.get_nodes_from_documents(docs, show_progress=verbose) if verbose: print(f"Parsed {len(nodes)} nodes") return nodes train_nodes = load_corpus(TRAIN_FILES, verbose=True) val_nodes = load_corpus(VAL_FILES, verbose=True) from llama_index.finetuning import generate_qa_embedding_pairs from llama_index.core.evaluation import EmbeddingQAFinetuneDataset import os OPENAI_API_TOKEN = "sk-" os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN from llama_index.llms.openai import OpenAI train_dataset = generate_qa_embedding_pairs( llm=OpenAI(model="gpt-3.5-turbo"), nodes=train_nodes ) val_dataset = generate_qa_embedding_pairs( llm=OpenAI(model="gpt-3.5-turbo"), nodes=val_nodes ) train_dataset.save_json("train_dataset.json") val_dataset.save_json("val_dataset.json") train_dataset = EmbeddingQAFinetuneDataset.from_json("train_dataset.json") val_dataset = EmbeddingQAFinetuneDataset.from_json("val_dataset.json") from llama_index.finetuning import SentenceTransformersFinetuneEngine finetune_engine = SentenceTransformersFinetuneEngine( train_dataset, model_id="BAAI/bge-small-en", model_output_path="test_model", val_dataset=val_dataset, ) finetune_engine.finetune() embed_model = finetune_engine.get_finetuned_model() embed_model from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import VectorStoreIndex from llama_index.core.schema import TextNode from tqdm.notebook import tqdm import pandas as pd def evaluate( dataset, embed_model, top_k=5, verbose=False, ): corpus = dataset.corpus queries = dataset.queries relevant_docs = dataset.relevant_docs nodes = [TextNode(id_=id_, text=text) for id_, text in corpus.items()] index = VectorStoreIndex( nodes, embed_model=embed_model, show_progress=True ) retriever = index.as_retriever(similarity_top_k=top_k) eval_results = [] for query_id, query in tqdm(queries.items()): retrieved_nodes = retriever.retrieve(query) retrieved_ids = [node.node.node_id for node in retrieved_nodes] expected_id = relevant_docs[query_id][0] is_hit = expected_id in retrieved_ids # assume 1 relevant doc eval_result = { "is_hit": is_hit, "retrieved": retrieved_ids, "expected": expected_id, "query": query_id, } eval_results.append(eval_result) return eval_results from sentence_transformers.evaluation import InformationRetrievalEvaluator from sentence_transformers import SentenceTransformer from pathlib import Path def evaluate_st( dataset, model_id, name, ): corpus = dataset.corpus queries = dataset.queries relevant_docs = dataset.relevant_docs evaluator = InformationRetrievalEvaluator( queries, corpus, relevant_docs, name=name ) model = SentenceTransformer(model_id) output_path = "results/" Path(output_path).mkdir(exist_ok=True, parents=True) return evaluator(model, output_path=output_path) ada =
OpenAIEmbedding()
llama_index.embeddings.openai.OpenAIEmbedding
get_ipython().run_line_magic('pip', 'install llama-index-llms-mistralai') get_ipython().system('pip install llama-index') from llama_index.llms.mistralai import MistralAI llm = MistralAI() resp = llm.complete("Paul Graham is ") print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.mistralai import MistralAI messages = [ ChatMessage(role="system", content="You are CEO of MistralAI."), ChatMessage(role="user", content="Tell me the story about La plateforme"), ] resp = MistralAI().chat(messages) print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.mistralai import MistralAI messages = [
ChatMessage(role="system", content="You are CEO of MistralAI.")
llama_index.core.llms.ChatMessage
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-extractors-marvin') from llama_index.core import SimpleDirectoryReader from llama_index.llms.openai import OpenAI from llama_index.core.node_parser import TokenTextSplitter from llama_index.extractors.marvin import MarvinMetadataExtractor import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." documents =
SimpleDirectoryReader("data")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant') get_ipython().system('pip install llama-index qdrant_client pyMuPDF tools frontend git+https://github.com/openai/CLIP.git easyocr') import matplotlib.pyplot as plt import matplotlib.patches as patches from matplotlib.patches import Patch import io from PIL import Image, ImageDraw import numpy as np import csv import pandas as pd from torchvision import transforms from transformers import AutoModelForObjectDetection import torch import openai import os import fitz device = "cuda" if torch.cuda.is_available() else "cpu" OPENAI_API_TOKEN = "sk-<your-openai-api-token>" openai.api_key = OPENAI_API_TOKEN get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "llama2.pdf"') pdf_file = "llama2.pdf" output_directory_path, _ = os.path.splitext(pdf_file) if not os.path.exists(output_directory_path): os.makedirs(output_directory_path) pdf_document = fitz.open(pdf_file) for page_number in range(pdf_document.page_count): page = pdf_document[page_number] pix = page.get_pixmap() image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) image.save(f"./{output_directory_path}/page_{page_number + 1}.png") pdf_document.close() from PIL import Image import matplotlib.pyplot as plt import os image_paths = [] for img_path in os.listdir("./llama2"): image_paths.append(str(os.path.join("./llama2", img_path))) def plot_images(image_paths): images_shown = 0 plt.figure(figsize=(16, 9)) for img_path in image_paths: if os.path.isfile(img_path): image = Image.open(img_path) plt.subplot(3, 3, images_shown + 1) plt.imshow(image) plt.xticks([]) plt.yticks([]) images_shown += 1 if images_shown >= 9: break plot_images(image_paths[9:12]) import qdrant_client from llama_index.core import SimpleDirectoryReader from llama_index.vector_stores.qdrant import QdrantVectorStore from llama_index.core import VectorStoreIndex, StorageContext from llama_index.core.indices import MultiModalVectorStoreIndex from llama_index.core.schema import ImageDocument from llama_index.core.response.notebook_utils import display_source_node from llama_index.core.schema import ImageNode from llama_index.multi_modal_llms.openai import OpenAIMultiModal openai_mm_llm = OpenAIMultiModal( model="gpt-4-vision-preview", api_key=OPENAI_API_TOKEN, max_new_tokens=1500 ) documents_images = SimpleDirectoryReader("./llama2/").load_data() client = qdrant_client.QdrantClient(path="qdrant_index") text_store = QdrantVectorStore( client=client, collection_name="text_collection" ) image_store = QdrantVectorStore( client=client, collection_name="image_collection" ) storage_context = StorageContext.from_defaults( vector_store=text_store, image_store=image_store ) index = MultiModalVectorStoreIndex.from_documents( documents_images, storage_context=storage_context, ) retriever_engine = index.as_retriever(image_similarity_top_k=2) from llama_index.core.indices.multi_modal.retriever import ( MultiModalVectorIndexRetriever, ) query = "Compare llama2 with llama1?" assert isinstance(retriever_engine, MultiModalVectorIndexRetriever) retrieval_results = retriever_engine.text_to_image_retrieve(query) retrieved_images = [] for res_node in retrieval_results: if isinstance(res_node.node, ImageNode): retrieved_images.append(res_node.node.metadata["file_path"]) else: display_source_node(res_node, source_length=200) plot_images(retrieved_images) retrieved_images image_documents = [ ImageDocument(image_path=image_path) for image_path in retrieved_images ] response = openai_mm_llm.complete( prompt="Compare llama2 with llama1?", image_documents=image_documents, ) print(response) from llama_index.multi_modal_llms.openai import OpenAIMultiModal from llama_index.core import SimpleDirectoryReader documents_images_v2 = SimpleDirectoryReader("./llama2/").load_data() image = Image.open(documents_images_v2[15].image_path).convert("RGB") plt.figure(figsize=(16, 9)) plt.imshow(image) openai_mm_llm = OpenAIMultiModal( model="gpt-4-vision-preview", api_key=OPENAI_API_TOKEN, max_new_tokens=1500 ) image_prompt = """ Please load the table data and output in the json format from the image. Please try your best to extract the table data from the image. If you can't extract the table data, please summarize image and return the summary. """ response = openai_mm_llm.complete( prompt=image_prompt, image_documents=[documents_images_v2[15]], ) print(response) image_results = {} for img_doc in documents_images_v2: try: image_table_result = openai_mm_llm.complete( prompt=image_prompt, image_documents=[img_doc], ) except Exception as e: print( f"Error understanding for image {img_doc.image_path} from GPT4V API" ) continue image_results[img_doc.image_path] = image_table_result from llama_index.core import Document text_docs = [ Document( text=str(image_results[image_path]), metadata={"image_path": image_path}, ) for image_path in image_results ] from llama_index.core import VectorStoreIndex from llama_index.vector_stores.qdrant import QdrantVectorStore from llama_index.core import SimpleDirectoryReader, StorageContext import qdrant_client from llama_index.core import SimpleDirectoryReader client = qdrant_client.QdrantClient(path="qdrant_mm_db_llama_v3") llama_text_store = QdrantVectorStore( client=client, collection_name="text_collection" ) storage_context = StorageContext.from_defaults(vector_store=llama_text_store) index = VectorStoreIndex.from_documents( text_docs, storage_context=storage_context, ) MAX_TOKENS = 50 retriever_engine = index.as_retriever( similarity_top_k=3, ) retrieval_results = retriever_engine.retrieve("Compare llama2 with llama1?") from llama_index.core.response.notebook_utils import display_source_node retrieved_image = [] for res_node in retrieval_results: display_source_node(res_node, source_length=1000) query_engine = index.as_query_engine() query_engine.query("Compare llama2 with llama1?") class MaxResize(object): def __init__(self, max_size=800): self.max_size = max_size def __call__(self, image): width, height = image.size current_max_size = max(width, height) scale = self.max_size / current_max_size resized_image = image.resize( (int(round(scale * width)), int(round(scale * height))) ) return resized_image detection_transform = transforms.Compose( [ MaxResize(800), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) structure_transform = transforms.Compose( [ MaxResize(1000), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) model = AutoModelForObjectDetection.from_pretrained( "microsoft/table-transformer-detection", revision="no_timm" ).to(device) structure_model = AutoModelForObjectDetection.from_pretrained( "microsoft/table-transformer-structure-recognition-v1.1-all" ).to(device) def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=1) def rescale_bboxes(out_bbox, size): width, height = size boxes = box_cxcywh_to_xyxy(out_bbox) boxes = boxes * torch.tensor( [width, height, width, height], dtype=torch.float32 ) return boxes def outputs_to_objects(outputs, img_size, id2label): m = outputs.logits.softmax(-1).max(-1) pred_labels = list(m.indices.detach().cpu().numpy())[0] pred_scores = list(m.values.detach().cpu().numpy())[0] pred_bboxes = outputs["pred_boxes"].detach().cpu()[0] pred_bboxes = [ elem.tolist() for elem in rescale_bboxes(pred_bboxes, img_size) ] objects = [] for label, score, bbox in zip(pred_labels, pred_scores, pred_bboxes): class_label = id2label[int(label)] if not class_label == "no object": objects.append( { "label": class_label, "score": float(score), "bbox": [float(elem) for elem in bbox], } ) return objects def detect_and_crop_save_table( file_path, cropped_table_directory="./table_images/" ): image = Image.open(file_path) filename, _ = os.path.splitext(file_path.split("/")[-1]) if not os.path.exists(cropped_table_directory): os.makedirs(cropped_table_directory) pixel_values = detection_transform(image).unsqueeze(0).to(device) with torch.no_grad(): outputs = model(pixel_values) id2label = model.config.id2label id2label[len(model.config.id2label)] = "no object" detected_tables = outputs_to_objects(outputs, image.size, id2label) print(f"number of tables detected {len(detected_tables)}") for idx in range(len(detected_tables)): cropped_table = image.crop(detected_tables[idx]["bbox"]) cropped_table.save(f"./{cropped_table_directory}/{filename}_{idx}.png") def plot_images(image_paths): images_shown = 0 plt.figure(figsize=(16, 9)) for img_path in image_paths: if os.path.isfile(img_path): image = Image.open(img_path) plt.subplot(2, 3, images_shown + 1) plt.imshow(image) plt.xticks([]) plt.yticks([]) images_shown += 1 if images_shown >= 9: break for file_path in retrieved_images: detect_and_crop_save_table(file_path) image_documents =
SimpleDirectoryReader("./table_images/")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-web') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import os import openai from llama_index.core import set_global_handler set_global_handler("wandb", run_args={"project": "llamaindex"}) os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.llms.openai import OpenAI from llama_index.core.schema import MetadataMode llm =
OpenAI(temperature=0.1, model="gpt-3.5-turbo", max_tokens=512)
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai pandas[jinja2] spacy') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( TreeIndex, VectorStoreIndex, SimpleDirectoryReader, Response, ) from llama_index.llms.openai import OpenAI from llama_index.core.evaluation import RelevancyEvaluator from llama_index.core.node_parser import SentenceSplitter import pandas as pd pd.set_option("display.max_colwidth", 0) gpt3 = OpenAI(temperature=0, model="gpt-3.5-turbo") gpt4 = OpenAI(temperature=0, model="gpt-4") evaluator = RelevancyEvaluator(llm=gpt3) evaluator_gpt4 = RelevancyEvaluator(llm=gpt4) documents =
SimpleDirectoryReader("./test_wiki_data")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-readers-web') get_ipython().run_line_magic('pip', 'install llama-index-program-openai') import nest_asyncio nest_asyncio.apply() import os import openai os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY" openai.api_key = os.getenv("OPENAI_API_KEY") from pydantic import BaseModel, Field from typing import List class NodeMetadata(BaseModel): """Node metadata.""" entities: List[str] = Field( ..., description="Unique entities in this text chunk." ) summary: str = Field( ..., description="A concise summary of this text chunk." ) contains_number: bool = Field( ..., description=( "Whether the text chunk contains any numbers (ints, floats, etc.)" ), ) from llama_index.program.openai import OpenAIPydanticProgram from llama_index.core.extractors import PydanticProgramExtractor EXTRACT_TEMPLATE_STR = """\ Here is the content of the section: ---------------- {context_str} ---------------- Given the contextual information, extract out a {class_name} object.\ """ openai_program = OpenAIPydanticProgram.from_defaults( output_cls=NodeMetadata, prompt_template_str="{input}", ) program_extractor = PydanticProgramExtractor( program=openai_program, input_key="input", show_progress=True ) from llama_index.readers.web import SimpleWebPageReader from llama_index.core.node_parser import SentenceSplitter reader =
SimpleWebPageReader(html_to_text=True)
llama_index.readers.web.SimpleWebPageReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-experimental-param-tuner') get_ipython().system('pip install llama-index llama-hub') get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') import nest_asyncio nest_asyncio.apply() from pathlib import Path from llama_index.readers.file import PDFReader from llama_index.readers.file import UnstructuredReader from llama_index.readers.file import PyMuPDFReader loader = PDFReader() docs0 = loader.load_data(file=Path("./data/llama2.pdf")) from llama_index.core import Document doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] from llama_index.core.node_parser import SimpleNodeParser from llama_index.core.schema import IndexNode get_ipython().system('wget "https://www.dropbox.com/scl/fi/fh9vsmmm8vu0j50l3ss38/llama2_eval_qr_dataset.json?rlkey=kkoaez7aqeb4z25gzc06ak6kb&dl=1" -O data/llama2_eval_qr_dataset.json') from llama_index.core.evaluation import QueryResponseDataset eval_dataset = QueryResponseDataset.from_json( "data/llama2_eval_qr_dataset.json" ) eval_qs = eval_dataset.questions ref_response_strs = [r for (_, r) in eval_dataset.qr_pairs] from llama_index.core import ( VectorStoreIndex, load_index_from_storage, StorageContext, ) from llama_index.experimental.param_tuner import ParamTuner from llama_index.core.param_tuner.base import TunedResult, RunResult from llama_index.core.evaluation.eval_utils import ( get_responses, aget_responses, ) from llama_index.core.evaluation import ( SemanticSimilarityEvaluator, BatchEvalRunner, ) from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding import os import numpy as np from pathlib import Path def _build_index(chunk_size, docs): index_out_path = f"./storage_{chunk_size}" if not os.path.exists(index_out_path): Path(index_out_path).mkdir(parents=True, exist_ok=True) node_parser =
SimpleNodeParser.from_defaults(chunk_size=chunk_size)
llama_index.core.node_parser.SimpleNodeParser.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import logging import sys import pandas as pd logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core.evaluation import DatasetGenerator, RelevancyEvaluator from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, Response from llama_index.llms.openai import OpenAI get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() data_generator = DatasetGenerator.from_documents(documents) eval_questions = data_generator.generate_questions_from_nodes() eval_questions gpt4 =
OpenAI(temperature=0, model="gpt-4")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-graph-stores-falkordb') import os os.environ["OPENAI_API_KEY"] = "API_KEY_HERE" import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) from llama_index.graph_stores.falkordb import FalkorDBGraphStore graph_store = FalkorDBGraphStore( "redis://localhost:6379", decode_responses=True ) from llama_index.core import SimpleDirectoryReader, KnowledgeGraphIndex from llama_index.llms.openai import OpenAI from llama_index.core import Settings from IPython.display import Markdown, display documents = SimpleDirectoryReader( "../../../../examples/paul_graham_essay/data" ).load_data() llm = OpenAI(temperature=0, model="gpt-3.5-turbo") Settings.llm = llm Settings.chunk_size = 512 from llama_index.core import StorageContext storage_context =
StorageContext.from_defaults(graph_store=graph_store)
llama_index.core.StorageContext.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-web') get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-tools-metaphor') get_ipython().system('wget "https://images.openai.com/blob/a2e49de2-ba5b-4869-9c2d-db3b4b5dcc19/new-models-and-developer-products-announced-at-devday.jpg?width=2000" -O other_images/openai/dev_day.png') get_ipython().system('wget "https://drive.google.com/uc\\?id\\=1B4f5ZSIKN0zTTPPRlZ915Ceb3_uF9Zlq\\&export\\=download" -O other_images/adidas.png') from llama_index.readers.web import SimpleWebPageReader url = "https://openai.com/blog/new-models-and-developer-products-announced-at-devday" reader = SimpleWebPageReader(html_to_text=True) documents = reader.load_data(urls=[url]) from llama_index.llms.openai import OpenAI from llama_index.core import VectorStoreIndex from llama_index.core.tools import QueryEngineTool, ToolMetadata from llama_index.core import Settings Settings.llm = OpenAI(temperature=0, model="gpt-3.5-turbo") vector_index = VectorStoreIndex.from_documents( documents, ) query_tool = QueryEngineTool( query_engine=vector_index.as_query_engine(), metadata=ToolMetadata( name=f"vector_tool", description=( "Useful to lookup new features announced by OpenAI" ), ), ) from llama_index.core.agent.react_multimodal.step import ( MultimodalReActAgentWorker, ) from llama_index.core.agent import AgentRunner from llama_index.core.multi_modal_llms import MultiModalLLM from llama_index.multi_modal_llms.openai import OpenAIMultiModal from llama_index.core.agent import Task mm_llm = OpenAIMultiModal(model="gpt-4-vision-preview", max_new_tokens=1000) react_step_engine = MultimodalReActAgentWorker.from_tools( [query_tool], multi_modal_llm=mm_llm, verbose=True, ) agent = AgentRunner(react_step_engine) query_str = ( "The photo shows some new features released by OpenAI. " "Can you pinpoint the features in the photo and give more details using relevant tools?" ) from llama_index.core.schema import ImageDocument image_document = ImageDocument(image_path="other_images/openai/dev_day.png") task = agent.create_task( query_str, extra_state={"image_docs": [image_document]}, ) def execute_step(agent: AgentRunner, task: Task): step_output = agent.run_step(task.task_id) if step_output.is_last: response = agent.finalize_response(task.task_id) print(f"> Agent finished: {str(response)}") return response else: return None def execute_steps(agent: AgentRunner, task: Task): response = execute_step(agent, task) while response is None: response = execute_step(agent, task) return response response = execute_step(agent, task) response = execute_step(agent, task) print(str(response)) from llama_index.tools.metaphor import MetaphorToolSpec from llama_index.core.agent.react_multimodal.step import ( MultimodalReActAgentWorker, ) from llama_index.core.agent import AgentRunner from llama_index.core.multi_modal_llms import MultiModalLLM from llama_index.multi_modal_llms.openai import OpenAIMultiModal from llama_index.core.agent import Task metaphor_tool_spec = MetaphorToolSpec( api_key="<api_key>", ) metaphor_tools = metaphor_tool_spec.to_tool_list() mm_llm = OpenAIMultiModal(model="gpt-4-vision-preview", max_new_tokens=1000) react_step_engine = MultimodalReActAgentWorker.from_tools( metaphor_tools, multi_modal_llm=mm_llm, verbose=True, ) agent =
AgentRunner(react_step_engine)
llama_index.core.agent.AgentRunner
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().system('pip install llama-index') import pinecone import os api_key = os.environ["PINECONE_API_KEY"] pinecone.init(api_key=api_key, environment="us-west1-gcp") pinecone.create_index( "quickstart", dimension=1536, metric="euclidean", pod_type="p1" ) pinecone_index = pinecone.Index("quickstart") pinecone_index.delete(deleteAll=True) from llama_index.vector_stores.pinecone import PineconeVectorStore vector_store = PineconeVectorStore(pinecone_index=pinecone_index) get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PyMuPDFReader loader = PyMuPDFReader() documents = loader.load(file_path="./data/llama2.pdf") from llama_index.core import VectorStoreIndex from llama_index.core.node_parser import SentenceSplitter from llama_index.core import StorageContext splitter = SentenceSplitter(chunk_size=1024) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, transformations=[splitter], storage_context=storage_context ) query_str = "Can you tell me about the key concepts for safety finetuning" from llama_index.embeddings.openai import OpenAIEmbedding embed_model = OpenAIEmbedding() query_embedding = embed_model.get_query_embedding(query_str) from llama_index.core.vector_stores import VectorStoreQuery query_mode = "default" vector_store_query = VectorStoreQuery( query_embedding=query_embedding, similarity_top_k=2, mode=query_mode ) query_result = vector_store.query(vector_store_query) query_result from llama_index.core.schema import NodeWithScore from typing import Optional nodes_with_scores = [] for index, node in enumerate(query_result.nodes): score: Optional[float] = None if query_result.similarities is not None: score = query_result.similarities[index] nodes_with_scores.append(NodeWithScore(node=node, score=score)) from llama_index.core.response.notebook_utils import display_source_node for node in nodes_with_scores: display_source_node(node, source_length=1000) from llama_index.core import QueryBundle from llama_index.core.retrievers import BaseRetriever from typing import Any, List class PineconeRetriever(BaseRetriever): """Retriever over a pinecone vector store.""" def __init__( self, vector_store: PineconeVectorStore, embed_model: Any, query_mode: str = "default", similarity_top_k: int = 2, ) -> None: """Init params.""" self._vector_store = vector_store self._embed_model = embed_model self._query_mode = query_mode self._similarity_top_k = similarity_top_k super().__init__() def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: """Retrieve.""" query_embedding = embed_model.get_query_embedding(query_str) vector_store_query = VectorStoreQuery( query_embedding=query_embedding, similarity_top_k=self._similarity_top_k, mode=self._query_mode, ) query_result = vector_store.query(vector_store_query) nodes_with_scores = [] for index, node in enumerate(query_result.nodes): score: Optional[float] = None if query_result.similarities is not None: score = query_result.similarities[index] nodes_with_scores.append(
NodeWithScore(node=node, score=score)
llama_index.core.schema.NodeWithScore
from llama_index import VectorStoreIndex, SimpleDirectoryReader documents = SimpleDirectoryReader( "../../examples/data/paul_graham" ).load_data() index = VectorStoreIndex.from_documents(documents) import pinecone from llama_index import VectorStoreIndex, SimpleDirectoryReader, StorageContext from llama_index.vector_stores import PineconeVectorStore pinecone.init(api_key="<api_key>", environment="<environment>") pinecone.create_index( "quickstart", dimension=1536, metric="euclidean", pod_type="p1" ) storage_context = StorageContext.from_defaults( vector_store=PineconeVectorStore(pinecone.Index("quickstart")) ) documents = SimpleDirectoryReader( "../../examples/data/paul_graham" ).load_data() index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) vector_store = PineconeVectorStore(pinecone.Index("quickstart")) index = VectorStoreIndex.from_vector_store(vector_store=vector_store) query_engine = index.as_query_engine() response = query_engine.query("What did the author do growing up?") from llama_index.vector_stores.types import ExactMatchFilter, MetadataFilters query_engine = index.as_query_engine( similarity_top_k=3, vector_store_query_mode="default", filters=MetadataFilters( filters=[ ExactMatchFilter(key="name", value="paul graham"), ] ), alpha=None, doc_ids=None, ) response = query_engine.query("what did the author do growing up?") from llama_index import get_response_synthesizer from llama_index.indices.vector_store.retrievers import VectorIndexRetriever from llama_index.query_engine.retriever_query_engine import ( RetrieverQueryEngine, ) retriever = VectorIndexRetriever( index=index, similarity_top_k=3, vector_store_query_mode="default", filters=[
ExactMatchFilter(key="name", value="paul graham")
llama_index.vector_stores.types.ExactMatchFilter
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-graph-stores-nebula') get_ipython().run_line_magic('pip', 'install llama-index-llms-azure-openai') import os os.environ["OPENAI_API_KEY"] = "INSERT OPENAI KEY" import logging import sys from llama_index.llms.openai import OpenAI from llama_index.core import Settings logging.basicConfig(stream=sys.stdout, level=logging.INFO) llm = OpenAI(temperature=0, model="gpt-3.5-turbo") Settings.llm = llm Settings.chunk_size = 512 import os import json import openai from llama_index.llms.azure_openai import AzureOpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, KnowledgeGraphIndex, ) from llama_index.core import StorageContext from llama_index.graph_stores.nebula import NebulaGraphStore import logging import sys from IPython.display import Markdown, display logging.basicConfig( stream=sys.stdout, level=logging.INFO ) # logging.DEBUG for more verbose output logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) openai.api_type = "azure" openai.api_base = "https://<foo-bar>.openai.azure.com" openai.api_version = "2022-12-01" os.environ["OPENAI_API_KEY"] = "<your-openai-key>" openai.api_key = os.getenv("OPENAI_API_KEY") llm = AzureOpenAI( model="<foo-bar-model>", engine="<foo-bar-deployment>", temperature=0, api_key=openai.api_key, api_type=openai.api_type, api_base=openai.api_base, api_version=openai.api_version, ) embedding_model = OpenAIEmbedding( model="text-embedding-ada-002", deployment_name="<foo-bar-deployment>", api_key=openai.api_key, api_base=openai.api_base, api_type=openai.api_type, api_version=openai.api_version, ) Settings.llm = llm Settings.chunk_size = chunk_size Settings.embed_model = embedding_model from llama_index.core import KnowledgeGraphIndex, SimpleDirectoryReader from llama_index.core import StorageContext from llama_index.graph_stores.nebula import NebulaGraphStore from llama_index.llms.openai import OpenAI from IPython.display import Markdown, display documents = SimpleDirectoryReader( "../../../../examples/paul_graham_essay/data" ).load_data() get_ipython().run_line_magic('pip', 'install nebula3-python') os.environ["NEBULA_USER"] = "root" os.environ[ "NEBULA_PASSWORD" ] = "<password>" # replace with your password, by default it is "nebula" os.environ[ "NEBULA_ADDRESS" ] = "127.0.0.1:9669" # assumed we have NebulaGraph 3.5.0 or newer installed locally space_name = "paul_graham_essay" edge_types, rel_prop_names = ["relationship"], [ "relationship" ] # default, could be omit if create from an empty kg tags = ["entity"] # default, could be omit if create from an empty kg graph_store = NebulaGraphStore( space_name=space_name, edge_types=edge_types, rel_prop_names=rel_prop_names, tags=tags, ) storage_context = StorageContext.from_defaults(graph_store=graph_store) index = KnowledgeGraphIndex.from_documents( documents, storage_context=storage_context, max_triplets_per_chunk=2, space_name=space_name, edge_types=edge_types, rel_prop_names=rel_prop_names, tags=tags, ) query_engine = index.as_query_engine() response = query_engine.query("Tell me more about Interleaf") display(Markdown(f"<b>{response}</b>")) response = query_engine.query( "Tell me more about what the author worked on at Interleaf" ) display(Markdown(f"<b>{response}</b>")) get_ipython().run_line_magic('pip', 'install ipython-ngql networkx pyvis') get_ipython().run_line_magic('load_ext', 'ngql') get_ipython().run_line_magic('ngql', '--address 127.0.0.1 --port 9669 --user root --password <password>') get_ipython().run_cell_magic('ngql', '', "USE paul_graham_essay;\nMATCH p=(n)-[*1..2]-()\n WHERE id(n) IN ['Interleaf', 'history', 'Software', 'Company'] \nRETURN p LIMIT 100;\n") get_ipython().run_line_magic('ng_draw', '') index = KnowledgeGraphIndex.from_documents( documents, storage_context=storage_context, max_triplets_per_chunk=2, space_name=space_name, edge_types=edge_types, rel_prop_names=rel_prop_names, tags=tags, include_embeddings=True, ) query_engine = index.as_query_engine( include_text=True, response_mode="tree_summarize", embedding_mode="hybrid", similarity_top_k=5, ) response = query_engine.query( "Tell me more about what the author worked on at Interleaf" ) display(Markdown(f"<b>{response}</b>")) query_engine = index.as_query_engine( include_text=True, response_mode="tree_summarize", embedding_mode="hybrid", similarity_top_k=5, explore_global_knowledge=True, ) response = query_engine.query("Tell me more about what the author and Lisp") from pyvis.network import Network g = index.get_networkx_graph() net = Network(notebook=True, cdn_resources="in_line", directed=True) net.from_nx(g) net.show("example.html") from llama_index.core.node_parser import SentenceSplitter node_parser = SentenceSplitter() nodes = node_parser.get_nodes_from_documents(documents) index =
KnowledgeGraphIndex.from_documents([], storage_context=storage_context)
llama_index.core.KnowledgeGraphIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().handlers = [] logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, SimpleKeywordTableIndex, ) from llama_index.core import SummaryIndex from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.openai import OpenAI get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() llm = OpenAI(model="gpt-4") splitter = SentenceSplitter(chunk_size=1024) nodes = splitter.get_nodes_from_documents(documents) storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index = VectorStoreIndex(nodes, storage_context=storage_context) keyword_index = SimpleKeywordTableIndex(nodes, storage_context=storage_context) list_retriever = summary_index.as_retriever() vector_retriever = vector_index.as_retriever() keyword_retriever = keyword_index.as_retriever() from llama_index.core.tools import RetrieverTool list_tool = RetrieverTool.from_defaults( retriever=list_retriever, description=( "Will retrieve all context from Paul Graham's essay on What I Worked" " On. Don't use if the question only requires more specific context." ), ) vector_tool = RetrieverTool.from_defaults( retriever=vector_retriever, description=( "Useful for retrieving specific context from Paul Graham essay on What" " I Worked On." ), ) keyword_tool = RetrieverTool.from_defaults( retriever=keyword_retriever, description=( "Useful for retrieving specific context from Paul Graham essay on What" " I Worked On (using entities mentioned in query)" ), ) from llama_index.core.selectors import LLMSingleSelector, LLMMultiSelector from llama_index.core.selectors import ( PydanticMultiSelector, PydanticSingleSelector, ) from llama_index.core.retrievers import RouterRetriever from llama_index.core.response.notebook_utils import display_source_node retriever = RouterRetriever( selector=PydanticSingleSelector.from_defaults(llm=llm), retriever_tools=[ list_tool, vector_tool, ], ) nodes = retriever.retrieve( "Can you give me all the context regarding the author's life?" ) for node in nodes: display_source_node(node) nodes = retriever.retrieve("What did Paul Graham do after RISD?") for node in nodes: display_source_node(node) retriever = RouterRetriever( selector=PydanticMultiSelector.from_defaults(llm=llm), retriever_tools=[list_tool, vector_tool, keyword_tool], ) nodes = retriever.retrieve( "What were noteable events from the authors time at Interleaf and YC?" ) for node in nodes:
display_source_node(node)
llama_index.core.response.notebook_utils.display_source_node
get_ipython().run_line_magic('pip', 'install llama-index-llms-litellm') get_ipython().system('pip install llama-index') import os from llama_index.llms.litellm import LiteLLM from llama_index.core.llms import ChatMessage os.environ["OPENAI_API_KEY"] = "your-api-key" os.environ["COHERE_API_KEY"] = "your-api-key" message =
ChatMessage(role="user", content="Hey! how's it going?")
llama_index.core.llms.ChatMessage
get_ipython().run_line_magic('pip', 'install llama-index-llms-vertex') from llama_index.llms.vertex import Vertex from google.oauth2 import service_account filename = "vertex-407108-37495ce6c303.json" credentials: service_account.Credentials = ( service_account.Credentials.from_service_account_file(filename) ) Vertex( model="text-bison", project=credentials.project_id, credentials=credentials ) from llama_index.llms.vertex import Vertex from llama_index.core.llms import ChatMessage, MessageRole llm = Vertex(model="text-bison", temperature=0, additional_kwargs={}) llm.complete("Hello this is a sample text").text (await llm.acomplete("hello")).text list(llm.stream_complete("hello"))[-1].text chat = Vertex(model="chat-bison") messages = [ ChatMessage(role=MessageRole.SYSTEM, content="Reply everything in french"),
ChatMessage(role=MessageRole.USER, content="Hello")
llama_index.core.llms.ChatMessage
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-supabase') get_ipython().system('pip install llama-index') from llama_index.agent.openai import OpenAIAssistantAgent agent = OpenAIAssistantAgent.from_new( name="Math Tutor", instructions="You are a personal math tutor. Write and run code to answer math questions.", openai_tools=[{"type": "code_interpreter"}], instructions_prefix="Please address the user as Jane Doe. The user has a premium account.", ) agent.thread_id response = agent.chat( "I need to solve the equation `3x + 11 = 14`. Can you help me?" ) print(str(response)) from llama_index.agent.openai import OpenAIAssistantAgent agent = OpenAIAssistantAgent.from_new( name="SEC Analyst", instructions="You are a QA assistant designed to analyze sec filings.", openai_tools=[{"type": "retrieval"}], instructions_prefix="Please address the user as Jerry.", files=["data/10k/lyft_2021.pdf"], verbose=True, ) response = agent.chat("What was Lyft's revenue growth in 2021?") print(str(response)) from llama_index.agent.openai import OpenAIAssistantAgent from llama_index.core import ( SimpleDirectoryReader, VectorStoreIndex, StorageContext, load_index_from_storage, ) from llama_index.core.tools import QueryEngineTool, ToolMetadata try: storage_context = StorageContext.from_defaults( persist_dir="./storage/lyft" ) lyft_index =
load_index_from_storage(storage_context)
llama_index.core.load_index_from_storage
from llama_index import VectorStoreIndex, SimpleDirectoryReader documents = SimpleDirectoryReader( "../../examples/data/paul_graham" ).load_data() index = VectorStoreIndex.from_documents(documents) import pinecone from llama_index import VectorStoreIndex, SimpleDirectoryReader, StorageContext from llama_index.vector_stores import PineconeVectorStore pinecone.init(api_key="<api_key>", environment="<environment>") pinecone.create_index( "quickstart", dimension=1536, metric="euclidean", pod_type="p1" ) storage_context = StorageContext.from_defaults( vector_store=PineconeVectorStore(pinecone.Index("quickstart")) ) documents = SimpleDirectoryReader( "../../examples/data/paul_graham" ).load_data() index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) vector_store = PineconeVectorStore(pinecone.Index("quickstart")) index =
VectorStoreIndex.from_vector_store(vector_store=vector_store)
llama_index.VectorStoreIndex.from_vector_store
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-replicate') get_ipython().run_line_magic('pip', 'install unstructured replicate') get_ipython().run_line_magic('pip', 'install llama_index ftfy regex tqdm') get_ipython().run_line_magic('pip', 'install git+https://github.com/openai/CLIP.git') get_ipython().run_line_magic('pip', 'install torch torchvision') get_ipython().run_line_magic('pip', 'install matplotlib scikit-image') get_ipython().run_line_magic('pip', 'install -U qdrant_client') import os REPLICATE_API_TOKEN = "..." # Your Relicate API token here os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm') get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1UU0xc3uLXs-WG0aDQSXjGacUkp142rLS" -O texas.jpg') from llama_index.readers.file import FlatReader from pathlib import Path from llama_index.core.node_parser import UnstructuredElementNodeParser reader = FlatReader() docs_2021 = reader.load_data(Path("tesla_2021_10k.htm")) node_parser = UnstructuredElementNodeParser() import openai OPENAI_API_TOKEN = "..." openai.api_key = OPENAI_API_TOKEN # add your openai api key here os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN import os import pickle if not os.path.exists("2021_nodes.pkl"): raw_nodes_2021 = node_parser.get_nodes_from_documents(docs_2021) pickle.dump(raw_nodes_2021, open("2021_nodes.pkl", "wb")) else: raw_nodes_2021 = pickle.load(open("2021_nodes.pkl", "rb")) nodes_2021, objects_2021 = node_parser.get_nodes_and_objects(raw_nodes_2021) from llama_index.core import VectorStoreIndex vector_index =
VectorStoreIndex(nodes=nodes_2021, objects=objects_2021)
llama_index.core.VectorStoreIndex
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.core.llama_dataset import download_llama_dataset rag_dataset, documents = download_llama_dataset( "PaulGrahamEssayDataset", "./paul_graham" ) rag_dataset.to_pandas()[:5] from llama_index.core import VectorStoreIndex index =
VectorStoreIndex.from_documents(documents=documents)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-hub-llama-packs-tables-chain-of-table-base') get_ipython().system('wget "https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip" -O data.zip') get_ipython().system('unzip data.zip') import pandas as pd df = pd.read_csv("./WikiTableQuestions/csv/200-csv/3.csv") df from llama_index.packs.tables.chain_of_table.base import ( ChainOfTableQueryEngine, serialize_table, ) from llama_index.core.llama_pack import download_llama_pack download_llama_pack( "ChainOfTablePack", "./chain_of_table_pack", skip_load=True, ) from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-4-1106-preview") import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") import pandas as pd df = pd.read_csv("~/Downloads/WikiTableQuestions/csv/200-csv/11.csv") df query_engine = ChainOfTableQueryEngine(df, llm=llm, verbose=True) response = query_engine.query("Who won best Director in the 1972 Academy Awards?") str(response.response) import pandas as pd df = pd.read_csv("./WikiTableQuestions/csv/200-csv/42.csv") df query_engine =
ChainOfTableQueryEngine(df, llm=llm, verbose=True)
llama_index.packs.tables.chain_of_table.base.ChainOfTableQueryEngine
get_ipython().run_line_magic('pip', 'install llama-index-readers-web') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) get_ipython().system('pip install llama-index') from llama_index.core import SummaryIndex from llama_index.readers.web import SimpleWebPageReader from IPython.display import Markdown, display import os documents = SimpleWebPageReader(html_to_text=True).load_data( ["http://paulgraham.com/worked.html"] ) documents[0] index =
SummaryIndex.from_documents(documents)
llama_index.core.SummaryIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import SimpleDirectoryReader reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() from llama_index.llms.openai import OpenAI gpt4 = OpenAI(temperature=0, model="gpt-4") chatgpt =
OpenAI(temperature=0, model="gpt-3.5-turbo")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core import ( SimpleDirectoryReader, VectorStoreIndex, StorageContext, load_index_from_storage, ) from llama_index.llms.openai import OpenAI from llama_index.core.tools import QueryEngineTool, ToolMetadata llm = OpenAI(model="gpt-4-1106-preview") get_ipython().system("mkdir -p 'data/10q/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10q/uber_10q_march_2022.pdf' -O 'data/10q/uber_10q_march_2022.pdf'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10q/uber_10q_june_2022.pdf' -O 'data/10q/uber_10q_june_2022.pdf'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10q/uber_10q_sept_2022.pdf' -O 'data/10q/uber_10q_sept_2022.pdf'") march_2022 = SimpleDirectoryReader( input_files=["./data/10q/uber_10q_march_2022.pdf"] ).load_data() june_2022 = SimpleDirectoryReader( input_files=["./data/10q/uber_10q_june_2022.pdf"] ).load_data() sept_2022 = SimpleDirectoryReader( input_files=["./data/10q/uber_10q_sept_2022.pdf"] ).load_data() import os def get_tool(name, full_name, documents=None): if not os.path.exists(f"./data/{name}"): vector_index = VectorStoreIndex.from_documents(documents) vector_index.storage_context.persist(persist_dir=f"./data/{name}") else: vector_index = load_index_from_storage(
StorageContext.from_defaults(persist_dir=f"./data/{name}")
llama_index.core.StorageContext.from_defaults