|
1 |
|
00:00:21,410 --> 00:00:24,970 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูู
ุฑุฉ ุงููู ูุงุช ุจุฏุฃูุง ุจ |
|
|
|
2 |
|
00:00:24,970 --> 00:00:29,150 |
|
section ุชูุงุชุฉ ุฎู
ุณุฉ ุงููู ูู ุงู dimension ุงุนุทููุง |
|
|
|
3 |
|
00:00:29,150 --> 00:00:33,490 |
|
ุชุนุฑูู ูู in dimensional vector space ุงู ุงู vector |
|
|
|
4 |
|
00:00:33,490 --> 00:00:38,910 |
|
space has dimension in ู ุงุนุทููุง ุชุนุฑูู ูู bases ููุท |
|
|
|
5 |
|
00:00:38,910 --> 00:00:43,450 |
|
ู ุงุนุทููุง ุนูู ุฐูู ู
ุซูุง ูุงุญุฏุฉ ููุงู ุชุนุฑูู ุงู in |
|
|
|
6 |
|
00:00:43,450 --> 00:00:47,590 |
|
dimensional vector space ููููุง ูู ุงู vector space |
|
|
|
7 |
|
00:00:47,590 --> 00:00:51,970 |
|
ุงููู ุจุชุญูู ููู ุดุฑุทููุงูุดุฑุท ุงูุฃูู ุนูุฏู ู
ุฌู
ูุนุฉ ู
ู ุงู |
|
|
|
8 |
|
00:00:51,970 --> 00:00:57,930 |
|
linearly independent vectors ุงูุดุฑุท ุงูุซุงูู ูู ุฃุฎุฏุช |
|
|
|
9 |
|
00:00:57,930 --> 00:01:01,670 |
|
ุฃูุซุฑ ู
ู ูุฏูู ุจู
ูุฏุงุฑ ู ูู vector ูุงุญุฏ ุจุฏูุง ูููู |
|
|
|
10 |
|
00:01:01,670 --> 00:01:06,270 |
|
ู
ุนุงูู
linearly dependent ุฅู ุญุฏุซ ุฐูู ูุจูู ุงู |
|
|
|
11 |
|
00:01:06,270 --> 00:01:09,790 |
|
dimension ุชุจุน ุงู vector space ูู ุนุฏุฏ ุงู linearly |
|
|
|
12 |
|
00:01:09,790 --> 00:01:13,610 |
|
independent elements ูุฐุง ุงูุชุนุฑูู ุงูุฃูู ุงูุชุนุฑูู |
|
|
|
13 |
|
00:01:13,610 --> 00:01:19,370 |
|
ุงูุซุงูููููุง V1 ู V2 ู V3 ู Vk ุงู vectors ูุฏูู |
|
|
|
14 |
|
00:01:19,370 --> 00:01:25,210 |
|
ุจุณู
ููู
basis ูู vector space ุฅุฐุง ุชุญูู ุดุฑุทุงู ุงูุดุฑุท |
|
|
|
15 |
|
00:01:25,210 --> 00:01:29,870 |
|
ุงูุฃูู ูุงููุง ูุฏูู ุจูููุฏููู ุงู vector space ููู ููู |
|
|
|
16 |
|
00:01:29,870 --> 00:01:34,540 |
|
ุงูุดุฑุท ุงูุซุงููุจูููููุง ูุฏูู ูููู
linearly independent |
|
|
|
17 |
|
00:01:34,540 --> 00:01:40,220 |
|
ููููุง ู
ู ุงูุฃูุถู ุงู ูุณุชุฎุฏู
ุงูุดุฑุท ุงูุซุงูู ุซู
ุงูุดุฑุท |
|
|
|
18 |
|
00:01:40,220 --> 00:01:43,640 |
|
ุงูุฃูู ูุนูู ูููุ ูุนูู ุจุฏู ุฃุซุจุช ุงู ูุฏูู ุงู vectors |
|
|
|
19 |
|
00:01:43,640 --> 00:01:48,380 |
|
are linearly independent ูู
ู ุซู
ุจุฏู ุฃุซุจุช ุงู ุงู |
|
|
|
20 |
|
00:01:48,380 --> 00:01:51,380 |
|
element ูู ุงู vector space ูู linear combination |
|
|
|
21 |
|
00:01:52,640 --> 00:01:56,960 |
|
ุจุงุณุชุฎุฏุงู
ูุฐู ุงู vectors ูุฐุง ู
ุง ุชุญุฏุซูุง ููู ูู ุงูู
ุฑุฉ |
|
|
|
22 |
|
00:01:56,960 --> 00:02:01,960 |
|
ุงูู
ุงุถูุฉ ุงูุงู ููุชูู ุงูู ูุธุฑูุฉ ุจุฑุถู ูุงุฒููุง ูู ููุณ |
|
|
|
23 |
|
00:02:01,960 --> 00:02:05,380 |
|
ุงูู
ูุถูุน ุงููุธุฑูุฉ ุจุชููู ุงู ูู ูุงู ุงู V ูู vector |
|
|
|
24 |
|
00:02:05,380 --> 00:02:10,800 |
|
space ุงู dimension ูู ูุณุงูู N ูุจูู ุงูุง ุนูุฏู ุดุฑุทูู |
|
|
|
25 |
|
00:02:10,800 --> 00:02:15,140 |
|
ู
ุชุญููุงุช ุงูุงู ุชู
ุงู
ุ ููุดุ ูู ุงู dimension ุงู vector |
|
|
|
26 |
|
00:02:15,140 --> 00:02:19,440 |
|
space ู
ูุนุทููู ุงู ูู ู
ูุนุทููู ุงูthen every basis of |
|
|
|
27 |
|
00:02:19,440 --> 00:02:25,160 |
|
V spans V ูุจูู ุฃู basis ูู vector space V ุจูููุฏูู |
|
|
|
28 |
|
00:02:25,160 --> 00:02:30,740 |
|
ุฌู
ูุน ุนูุงุตุฑ ู
ู V ููุฐุง ุฐูุฑูุง ุงูู
ุฑุฉ ุงููู ูุงุชุช ุฃู |
|
|
|
29 |
|
00:02:30,740 --> 00:02:36,280 |
|
ุงูุนูุงุตุฑ ุงููู ุจููู ุนูููู
basis ูู vector space ุฅุฐุง |
|
|
|
30 |
|
00:02:36,280 --> 00:02:40,180 |
|
ุฃู element ูู ุงู vector space ูุฏุฑุช ุฃูุชุจ ุจุบุงุตุฏุฉ |
|
|
|
31 |
|
00:02:40,180 --> 00:02:44,820 |
|
linear combination ุจู
ูู ุจูุฐู ุงู vectors ุทูุจ ุจุฏูุง |
|
|
|
32 |
|
00:02:44,820 --> 00:02:49,730 |
|
ููุฌู ูุจุฑูุงู ุงููุธุฑูุฉูุจูู ุจุฑูุงูุฉ ูุธุฑูุฉ ูุงูุชุงูู ุจุฏู |
|
|
|
33 |
|
00:02:49,730 --> 00:02:54,490 |
|
ุงุฎุฏ basis ู
ูุฌูุฏ ูู V ู ุงุซุจุช ุงู ูุฐุง ุงู basis |
|
|
|
34 |
|
00:02:54,490 --> 00:02:59,830 |
|
ุจูููุฏูู ุฌู
ูุน ุนูุงุตุฑ V ุชู
ุงู
ุง ุงุฐุง ุชู
ููุง ุฐูู ุจูููู |
|
|
|
35 |
|
00:02:59,830 --> 00:03:06,990 |
|
ุฎูุตูุง ู
ู ุงูู
ูุถูุน ูุจูู ุจุฏุงุฌู ุงููู ููุง let ุงููู ูู |
|
|
|
36 |
|
00:03:06,990 --> 00:03:13,130 |
|
ู
ู V1 ู V2 ู ูุบุงูุฉ ุงู VN ุจ |
|
|
|
37 |
|
00:03:22,480 --> 00:03:27,840 |
|
ูุจูู ุงูุง ูุฑุถ ุงู v1 ูv2 ููุบุงูุฉ vn ุนุจุงุฑุฉ ุนู ุงู basis |
|
|
|
38 |
|
00:03:27,840 --> 00:03:34,540 |
|
ู ุงู vector space v ุทุจุนุง ุงูุง ู
ุฌุจุฑ ุงู ุงููู ู
ู 1 |
|
|
|
39 |
|
00:03:34,540 --> 00:03:40,300 |
|
ูุบุงูุฉ n ู ูุง ูุงู ุจูู
ูู ุงุฒูุฏูู
ุดููุฉ ู
ุฌุจุฑ |
|
|
|
40 |
|
00:03:42,550 --> 00:03:48,250 |
|
ู
ุฌุจุฑ ุฅุฌุจุงุฑู ูุฅูู dimension ูู vector space N ุชู
ุงู
|
|
|
|
41 |
|
00:03:48,250 --> 00:03:52,690 |
|
ุงู dimension ูู ูุจูู ุนุฏุฏ ุงูุนูุงุตุฑ ูู ุงู bases ูุจูู |
|
|
|
42 |
|
00:03:52,690 --> 00:03:58,710 |
|
ุจูุงุก ุนููู ูุฏูู bases ูู
ูู ูู vector space V ุชู
ุงู
|
|
|
|
43 |
|
00:03:59,230 --> 00:04:04,350 |
|
ุงูุงู ุงุฐุง ุงุซุจุช ูู ุงู ุงู element ูู ุงู vector space |
|
|
|
44 |
|
00:04:04,350 --> 00:04:09,490 |
|
V ูู linear combination ู
ู ูุฏูู ุงุชูู
ุงุชูู ุจูููููุง |
|
|
|
45 |
|
00:04:09,490 --> 00:04:15,370 |
|
ูุฏูู ุจูููู ูุฌู
ูุน ุนูุงุตุฑ V ุจุงูุถุจุท ุชู
ุงู
ุง ูุฐูู ุจุฑูุญ |
|
|
|
46 |
|
00:04:15,370 --> 00:04:25,810 |
|
ุงุฎุฏ ุงู ุนูุตุฑ V ู
ูุฌูุฏ ูู ุงู vector space V ู
ุฏุงู
ุงุฎุฏ |
|
|
|
47 |
|
00:04:25,810 --> 00:04:30,210 |
|
V ูู ุงู vector space V ูู ุงุญุชู
ุงูุฅู ูุฐู ุงูู V ุชุจูู |
|
|
|
48 |
|
00:04:30,210 --> 00:04:34,850 |
|
ูู ุงูู
ุฌู
ูุนุฉ ูุฐู ุตุญ ููุง ูุฃุ ูุงุญุชู
ุงู ุฃู ุชููู ุฎุงุฑุฌ |
|
|
|
49 |
|
00:04:34,850 --> 00:04:39,570 |
|
ุงูู
ุฌู
ูุนุฉ ู
ุด ูุง ุงุญุชู
ุงููู ูุฑุฏุงุช ูุจูู ุจุฏู ุฃุฏุฑุณ ูุฐูู |
|
|
|
50 |
|
00:04:39,570 --> 00:04:46,270 |
|
ุงูุงุญุชู
ุงููู ูุจูู let ุงู V belongs to V ูุจุฌู ุจููู if |
|
|
|
51 |
|
00:04:46,270 --> 00:04:53,920 |
|
ุงู V ู
ูุฌูุฏ ูู ุงูู
ุฌู
ูุนุฉ V1 ูV2ูุบุงูุฉ ุงู V in then |
|
|
|
52 |
|
00:04:53,920 --> 00:04:58,840 |
|
ู
ุงุฐุง ุณูุญุตูุ ู
ุฏุงู V ู
ูุฌูุฏ ููุง ูุจูู V ุฃุจูู ุฃูู ู
ู 1 |
|
|
|
53 |
|
00:04:58,840 --> 00:05:08,220 |
|
ู
ู ูุคูุงุก ูุจูู then ุงู V ุณุชููู V I ู I ุฃูุจุฑ ู
ู ุฃู |
|
|
|
54 |
|
00:05:08,220 --> 00:05:15,240 |
|
ุชุณูู 1 ู ุฃูู ู
ู ุฃู ุชุณูู in ูุนูู ุฅุญุชู
ุงู ุฃู V ุชุจูู V |
|
|
|
55 |
|
00:05:15,240 --> 00:05:20,200 |
|
1ู ุงุญุชู
ุงู ุงู V ุชุจูู V2 ู ุงุญุชู
ุงู ุงู V ุชุจูู V3 ู |
|
|
|
56 |
|
00:05:20,200 --> 00:05:26,800 |
|
ุงุญุชู
ุงู ุงู V ุชููู ู
ููุ VN ู ููุฐุง ุทูุจ ูุจูู ุงุญุชู
ุงู ุงู |
|
|
|
57 |
|
00:05:26,800 --> 00:05:33,960 |
|
V ูุฐู ุชุจูู ู
ููุ ุชุจูู VI ูุจูู ุจูุงุก ุนููู ุจูุฏุฑ ุงูุชุจ |
|
|
|
58 |
|
00:05:33,960 --> 00:05:42,540 |
|
ุงู V ูุฐู ุนูู ุงูุดูู ุงูุชุงูู Zero ูู V10 ูู V2 ุฒุงุฆุฏ |
|
|
|
59 |
|
00:05:42,540 --> 00:05:52,200 |
|
ุฒุงุฆุฏ ูุงุญุฏ ูู VI ุฒุงุฆุฏ ูุงูุถู ูุบุงูุฉ Zero ูู ุงู VIN |
|
|
|
60 |
|
00:05:52,200 --> 00:06:02,500 |
|
ุจููุนููุง ุจููุนุด ูุฐุง ููู ุจูุตูุฑ ุจูุธู ู
ูู ุนูุฏู ู VI ู
ูู |
|
|
|
61 |
|
00:06:02,500 --> 00:06:07,390 |
|
ูููุจูู ููุงู
ู ุตุญูุญ ุตุญูุญ ููุง ูุฃ ูุจูู ุงูุด ู
ุนูู ูุฐุง |
|
|
|
62 |
|
00:06:07,390 --> 00:06:11,370 |
|
ุงูููุงู
ุงู V ูู linear combination ู
ู ูู ุงู V's |
|
|
|
63 |
|
00:06:11,370 --> 00:06:21,670 |
|
ุงููู ุนูุฏู ูุจูู ููุง this means that ูุฐุง ูุนูู ุงู ุงู |
|
|
|
64 |
|
00:06:21,670 --> 00:06:26,730 |
|
V is a linear combination |
|
|
|
65 |
|
00:06:29,170 --> 00:06:36,050 |
|
Linear combination of ุงููู
ุงู ูู ุงูุจููุงุช ุงููู ูุฏููุง |
|
|
|
66 |
|
00:06:36,050 --> 00:06:40,370 |
|
V1 ู V2 ู ูุบุงูุฉ VN |
|
|
|
67 |
|
00:06:44,540 --> 00:06:49,660 |
|
ุฃูุด ุฃูุง ุจุฏู ุฃุซุจุชุ ุฃู basis span ุงู V ุฃุฎุฏุช element |
|
|
|
68 |
|
00:06:49,660 --> 00:06:52,920 |
|
ุนุดูุงุฆู ู ุทุงูุน ูู ู
ูู ูู ุงูู
ุฌู
ูุน ุงููู ุฃุฎุฏุชู
ูุฐุง |
|
|
|
69 |
|
00:06:52,920 --> 00:06:57,980 |
|
ุฌุฏุฑุช ุฃูุชุจู ุนูู linear combination ู
ู ุงู V ู
ุนูุงุชู |
|
|
|
70 |
|
00:06:57,980 --> 00:07:02,540 |
|
ุงู V ูุฐุง ู
ูุฌูุฏ ูููุ ูู ุงู span ุชุจุน ุงู vectors ุงููู |
|
|
|
71 |
|
00:07:02,540 --> 00:07:12,780 |
|
ุนูุฏูุง ูุฐู ุทูุจุงูุงู ุณุฑุฉ V ู
ูุฌูุฏ ูู ุงู span ุชุจุน ู
ู V1 |
|
|
|
72 |
|
00:07:12,780 --> 00:07:20,580 |
|
ู V2 ู ูุบุงูุฉ VN ูุฐุง ูู ูุงู ุงู V ู
ูุฌูุฏ ูู ุงูู
ุฌู
ูุนุฉ |
|
|
|
73 |
|
00:07:20,580 --> 00:07:27,460 |
|
ูุฐู ุทูุจ ููุง ูู ูุงู ุงู V does not belong to ู
ู |
|
|
|
74 |
|
00:07:27,460 --> 00:07:33,260 |
|
ููู
ุฌู
ูุนุฉ V1 ู V2 ู ูุบุงูุฉ VN |
|
|
|
75 |
|
00:07:36,130 --> 00:07:42,630 |
|
ูู ูุงู ูุฐุง ู
ุด ู
ูุฌูุฏ ููุง ุฅูุด ุงููู ุจุฏู ูุญุตู then ุฅูุด |
|
|
|
76 |
|
00:07:42,630 --> 00:07:50,910 |
|
ุฑุฃูู ูู ุงูุณุช ูุฐู V ู V1 ู V2 ู VN linearly |
|
|
|
77 |
|
00:07:50,910 --> 00:07:59,210 |
|
dependent ููุง linearly independent ุงู |
|
|
|
78 |
|
00:07:59,210 --> 00:08:03,710 |
|
vectors ูุฐูู ุฃุถูุช ุนูููู
ุงููู ูู ุงู vector V ุงููู |
|
|
|
79 |
|
00:08:03,710 --> 00:08:08,360 |
|
ู
ุด ู
ููู
ูุจูู ูุฏูู ู
ุฌู
ูุน linearly dependent ููุง |
|
|
|
80 |
|
00:08:08,360 --> 00:08:13,680 |
|
linearly independentุ linearly independent ููุดุ |
|
|
|
81 |
|
00:08:13,680 --> 00:08:18,000 |
|
ูุฃู ุงู dimension ูุฐุง ููู ูุณุงูู N ุฃูู ุชุนุฑูู ุฃุฎุฏูุงู |
|
|
|
82 |
|
00:08:18,000 --> 00:08:22,440 |
|
ูู ูุฐุง section ูุฐูุฑุชู ูุจู ูููู ุฃูู ู
ุง ุจุฏุฃุช ู
ุญุงุถุฑุชู |
|
|
|
83 |
|
00:08:22,440 --> 00:08:27,360 |
|
ููุช ูู
ุง ุฃููู ุงู vector space finite dimensional ุฃู |
|
|
|
84 |
|
00:08:27,360 --> 00:08:30,960 |
|
ุงู dimension ูู ูุณุงูู N ูุจูู ููู ุนูุฏู ุดุฑุทูู |
|
|
|
85 |
|
00:08:33,510 --> 00:08:37,850 |
|
ูู ุงุถูุช ุนูููู
ูู
ุงู vector ุจูุตูุฑ ู
ููุ linearly |
|
|
|
86 |
|
00:08:37,850 --> 00:08:41,290 |
|
dependent ูุจูู ูุงู ุงุถูุช ุนูููู
ุฏูู vector ููุง ูุฃ |
|
|
|
87 |
|
00:08:41,290 --> 00:08:48,670 |
|
ูุจูู then ูุฏูู are linearly dependent ุงูุณุจุจ |
|
|
|
88 |
|
00:08:48,670 --> 00:08:54,410 |
|
because the |
|
|
|
89 |
|
00:08:54,410 --> 00:08:56,250 |
|
dimension |
|
|
|
90 |
|
00:08:59,440 --> 00:09:09,180 |
|
v is n ู ูุฏูู ุนุฏุฏูู
ุฌุฏูุด n ุฒุงุฆุฏ ูุงุญุฏ ูุนูู ุงูุชุฑ |
|
|
|
91 |
|
00:09:09,180 --> 00:09:14,160 |
|
ู
ููู
ุจู
ูุฏุงุฑ ุฌุฏูุฏ ุจู
ูุฏุงุฑ ูุงุญุฏ ุทูุจ ูููุณ ู
ุงุฏุงู
ูุฏูู |
|
|
|
92 |
|
00:09:14,160 --> 00:09:20,220 |
|
linearly dependent ูุจูู ูุงุฒู
ุฃูุงูู scalars ููู |
|
|
|
93 |
|
00:09:20,220 --> 00:09:23,820 |
|
ู
ูุฌูุฏุฉ ูู R ุจุญูุซ ุงุถุฑุจ scalar ูู ูู ูุงุญุฏ ู ุฃุฌู
ุน |
|
|
|
94 |
|
00:09:23,820 --> 00:09:37,100 |
|
ุจูุณูู ุฌุฏูุด zero ูุจูู thismeans that there exist c0 |
|
|
|
95 |
|
00:09:37,100 --> 00:09:53,200 |
|
ู c1 ู c2 ู cn not all zero such that ุจุญูุซ ุฃู such |
|
|
|
96 |
|
00:09:53,200 --> 00:10:03,940 |
|
thatุงููู ูู c node v ุฒุงุฆุฏ c1 v1 ุฒุงุฆุฏ c2 v2 ุฒุงุฆุฏ cn |
|
|
|
97 |
|
00:10:03,940 --> 00:10:08,240 |
|
vn ุจุฏู ูุณุงูู zero ู
ูู ุงููู ุจุชุณุฃู ุงููู ุจุชุญูู ุงููุฉ |
|
|
|
98 |
|
00:10:08,240 --> 00:10:19,450 |
|
ููู ูุฏูู ู
ู ู
ู v1 ูุบุงูุฉ vn ุญุทูุช ุนูููู
ูู
ุงู ูุงุญุฏู
ุด |
|
|
|
99 |
|
00:10:19,450 --> 00:10:24,330 |
|
ููู ุชุนุฑูู ุงู dimension ุงูู ุชุนุฑูู ูุงูู ูุงู V ู |
|
|
|
100 |
|
00:10:24,330 --> 00:10:28,990 |
|
ุจุนุฏูู V ูุงุญุฏ ู ุจุนุฏูู V ุงุชููู ูุจูู ูุฐู ุงูู
ุฌู
ูุนุฉ |
|
|
|
101 |
|
00:10:28,990 --> 00:10:33,070 |
|
ุงููู ููู ุงููู linearly independent ุงุถุงูุช ููู
ูู
ุงู |
|
|
|
102 |
|
00:10:33,070 --> 00:10:36,900 |
|
ูุงุญุฏู
ู ุชุนุฑูู ุงู dimension ุชุจุน ุงูู
ุฑุฉ ุงููู ูุงุชุช ุงูู |
|
|
|
103 |
|
00:10:36,900 --> 00:10:41,780 |
|
ุชุนุฑูู ุงุฎุฏูุงูุง ูุฐูุฑุชู ูุจู ูููู ู
ุฑุชูู ููุช ุชุนุฑูู ุงู |
|
|
|
104 |
|
00:10:41,780 --> 00:10:45,620 |
|
ูู
ุง ุงููู ุงู dimension ูู vector space N ู
ุนูุงุชู ุงู |
|
|
|
105 |
|
00:10:45,620 --> 00:10:49,960 |
|
ุงู linearly independent vectors ุนุฏุฏูู
ูุณุงูู N ูู |
|
|
|
106 |
|
00:10:49,960 --> 00:10:53,730 |
|
ุงุถูุช ุนูููุง command vector ุจูุตูุฑูุง linearlyูู ุงููู |
|
|
|
107 |
|
00:10:53,730 --> 00:10:57,810 |
|
ุงุญูุง ุจูููููุ ูู
ูุฃุชู ุบูุฑ ุงูููุงู
ูุฐุงุ ู
ุงุฌูุจูุงู ุดู |
|
|
|
108 |
|
00:10:57,810 --> 00:11:02,050 |
|
ุฌุฏูุฏุ ุชู
ุงู
ุ ููู ูุจุฏู ุงููู
ู
ุด ูุฑูุงุชุ ูุฐุง ุงููู |
|
|
|
109 |
|
00:11:02,050 --> 00:11:05,130 |
|
ุฃุฎุฏูุงู ุงูู
ุญุงุถุฑุฉ ุงูู
ุงุถูุฉุ ู ุฑุบู
ุงูู ููุชู ู
ุฑุชูู |
|
|
|
110 |
|
00:11:05,130 --> 00:11:09,690 |
|
ุงูููู
ุ ููู ูู
ุงู ุชุงูุช ู
ุฑุฉุ ูุจููุง ู
ุงูููุด ุญุถุฑ ุจุนุฏ ุฐูู |
|
|
|
111 |
|
00:11:10,780 --> 00:11:15,460 |
|
ุทูุจ ูุจูู ุจุงุฌู ุจููู ูุฐุง ูุนูู ุงู ูู ุนูุฏู ุซูุงุจุช ู
ุด |
|
|
|
112 |
|
00:11:15,460 --> 00:11:20,280 |
|
ูููู
ุฃุตูุฑ ูุฅูุด ุงู ุงููู linearly dependent ุจุญูุซ |
|
|
|
113 |
|
00:11:20,280 --> 00:11:25,560 |
|
ุงูู
ุฌู
ูุน ูุฐุง ูุณุงูู zero ู
ุนูุงุชู ุงูุณููุงุช ูุฏูู ูููู
|
|
|
|
114 |
|
00:11:25,560 --> 00:11:33,430 |
|
ุนูู ุงูุฃูู ููู ุฑูู
ูุงุญุฏ ูุงูุณุงูู zeroุทุจ ุงูุง ุจุฏู ุงุฏุนู |
|
|
|
115 |
|
00:11:33,430 --> 00:11:38,310 |
|
ุงูุงู ุงู c node ูุฐุง ูุง ูุณุงูู zero ููุดูู ุงูุฏุนุงุก ูุฐุง |
|
|
|
116 |
|
00:11:38,310 --> 00:11:46,930 |
|
ุตุญ ููุง ุบูุท ูุจูู ุจุงุฌู ุจููู ูู ุง claim that ุงู c |
|
|
|
117 |
|
00:11:46,930 --> 00:11:53,430 |
|
node ูุง ูุณุงูู zero claim ูุนูู ูุฏุนู ูุจูู ุงูุง ุจุฏุนู |
|
|
|
118 |
|
00:11:53,430 --> 00:11:58,230 |
|
ุงูุงู ุงู c node ูุฐุง ูุง ูุณุงูู zero ุจุฏู ุงุดูู ุงูุฏุนุงุก |
|
|
|
119 |
|
00:11:58,230 --> 00:12:03,610 |
|
ุตุญ ููุง ุบูุทูู ูุฑุถุช ุนูุณ ูุฐุงุ ูู ูุฑุถุช ุงู ุงููC note |
|
|
|
120 |
|
00:12:03,610 --> 00:12:07,490 |
|
ุจุฏู ูุณุงูู zero ูุง ุจูุงุชุ ูุจูู ุงู term ูุฐุง ุจุฑูุญ ุจ |
|
|
|
121 |
|
00:12:07,490 --> 00:12:13,160 |
|
zeroุ ู
ูู ุจุธูุ ูุฏููุทุจ ูุฏูู ูููู
linearly |
|
|
|
122 |
|
00:12:13,160 --> 00:12:17,180 |
|
independent ุฅุฐุง ุฅุฌุจุงุฑู ุงูุจุงูู ููู ุจุตูุฑ ุจู
ููุ ุจ |
|
|
|
123 |
|
00:12:17,180 --> 00:12:20,980 |
|
zero ุฅุฐุง ูุจูู ู
ุนูู ูุฐุง ุงูููุงู
C node ุจูุณุงูู C ูุงุญุฏ |
|
|
|
124 |
|
00:12:20,980 --> 00:12:23,940 |
|
ุจูุณุงูู C independent ู
ุนููู ูุฐุง ุงูููุงู
ุ ุทุจ ุฃูุง ุฌุงู |
|
|
|
125 |
|
00:12:23,940 --> 00:12:27,800 |
|
linearly dependent ูููู ูุฏูู ุจูุณุงููุ ู
ุงููุด ุฅู
ูุงููุฉ |
|
|
|
126 |
|
00:12:27,800 --> 00:12:32,700 |
|
ูุจูู ุจุตูุฑ ููุงู
ู ุบูุท ูุนูุณู ูู ู
ููุ ุตุญ ูุจูู ุฃูุง ุจุงุฌู |
|
|
|
127 |
|
00:12:32,700 --> 00:12:37,340 |
|
ุจููู ู ุงููู
ุฐุงุชูุง ุงูุฏุนู ุฃู ุงู C node ูุณุงูู zero |
|
|
|
128 |
|
00:12:37,340 --> 00:12:38,300 |
|
otherwise |
|
|
|
129 |
|
00:12:40,470 --> 00:12:47,530 |
|
ูุนูู ู ุฅูุง ูู ูุงู ุงู c note ุจุฏู ุณุงูู zero then ุงู |
|
|
|
130 |
|
00:12:47,530 --> 00:12:56,250 |
|
c1 v1 ุฒุงูุฏ c2 v2 ุฒุงูุฏ cn vn ุจุฏู ุณุงูู zero ูุฐุง ุฅูุด |
|
|
|
131 |
|
00:12:56,250 --> 00:13:02,550 |
|
ู
ุนูุงูุ ู
ุนูุงู ุฅูู c1 ุจุฏู ุณุงูู c2 ุจุฏู ุณุงูู ุจุฏู ุณุงูู |
|
|
|
132 |
|
00:13:02,550 --> 00:13:09,230 |
|
cn ุจุฏู ุณุงูู zero because ุงูุณุจุจ ุฅูู v1 |
|
|
|
133 |
|
00:13:18,000 --> 00:13:24,660 |
|
ูุจูู ุฅุฐุง ูุฐุง ุงูููุงู
ุตุญูุญ ููุง ุบูุทุุฅู ุณู ููุฏ ุจูุจูู 0 |
|
|
|
134 |
|
00:13:24,660 --> 00:13:31,360 |
|
ุบูุท ูุจูู ุงูุตุญ ุฅูู ุณู ููุฏ ู
ุงูู ูุง ูุณุงูู 0 ูุฅู ูู |
|
|
|
135 |
|
00:13:31,360 --> 00:13:34,740 |
|
ุณูู 0 ูุจูู ูุฏูู ุจูุจูู ุณูู 0 ููุฏุง ููู ุณูู 0 |
|
|
|
136 |
|
00:13:34,740 --> 00:13:38,540 |
|
linearly independent ูุจูู ู
ุนูุงุชู ุจุตูุฑู ูุฏูู ูููู
|
|
|
|
137 |
|
00:13:38,540 --> 00:13:43,780 |
|
linearly independent ููุฐุง ุฎุทุฃ ูุจูู ููุง ุณู ููุฏ ูุง |
|
|
|
138 |
|
00:13:43,780 --> 00:13:52,290 |
|
ูู
ูู ุฃู ูุณุงูู 0ุชู
ุงู
ูุจูู ุจูุงุก ุนููู so c node v ุจุฏู |
|
|
|
139 |
|
00:13:52,290 --> 00:14:01,350 |
|
ูุณูู ูุงูุต c1 v1 ูุงูุต c2 v2 ูุงูุต cn ูู ุงู vn ููุณู
|
|
|
|
140 |
|
00:14:01,350 --> 00:14:07,000 |
|
ููู ุนูู c node ููุดุ ูุฃู c node ูุง ูุณููุฃุฐุง ุงู V |
|
|
|
141 |
|
00:14:07,000 --> 00:14:13,920 |
|
ูุงูุต C1 ุนูู C node ูู ุงู V1 ูุงูุต C2 ุนูู C node ูู |
|
|
|
142 |
|
00:14:13,920 --> 00:14:20,120 |
|
ุงู V2 ูุงูุต ูุงูุต CN ุนูู C node ูู ุงู VN ุฃู ุงู |
|
|
|
143 |
|
00:14:20,120 --> 00:14:26,380 |
|
ุดุฆุชูููุง ูููููุง ุงู V ุจุฏู ูุณู
ู ูุฐุง A1 ููู ูุจูู A1 V1 |
|
|
|
144 |
|
00:14:26,380 --> 00:14:32,460 |
|
ุฒุงุฆุฏ A2 V2 ุฒุงุฆุฏ AN VN |
|
|
|
145 |
|
00:14:34,880 --> 00:14:39,620 |
|
ู
ุนูู ูุฐุง ุงูููุงู
ุ ู
ุนูุงุชู ุงูู Element V ุงููู ู
ุด |
|
|
|
146 |
|
00:14:39,620 --> 00:14:43,540 |
|
ู
ูุฌูุฏ ูู ุงู set of linearly independent elements |
|
|
|
147 |
|
00:14:43,540 --> 00:14:49,260 |
|
ูู linear combination ู
ู ู
ูุ ู
ู ุงูุขุฎุฑูู ูุจูู ููุง |
|
|
|
148 |
|
00:14:49,260 --> 00:14:55,160 |
|
Sir V is a linear combination |
|
|
|
149 |
|
00:14:58,100 --> 00:15:06,060 |
|
combination of V1 ูV2 ููุฐูู VN |
|
|
|
150 |
|
00:15:10,000 --> 00:15:14,060 |
|
ุทูุน ููุง V ูู
ุง ูุงู ูู ุงูู
ุฌู
ูุนุฉ ุทูุน ูู linear |
|
|
|
151 |
|
00:15:14,060 --> 00:15:18,600 |
|
combination ู
ู ุงูุขุฎุฑูู ููู
ูุง ู
ุงูุงูุด ูู ุงูู
ุฌู
ูุนุฉ |
|
|
|
152 |
|
00:15:18,600 --> 00:15:23,260 |
|
ุทูุน ูู
ุงู ูู linear combination ู
ู ุงูุขุฎุฑูู ู
ุนูุงุชู |
|
|
|
153 |
|
00:15:23,260 --> 00:15:29,720 |
|
ุงูุดุ ู
ุนูุงุชู ูุฐุง ูู
ุซู ู
ูุ basis ู
ุนูุงุชู ุงู basis ูุฐุง |
|
|
|
154 |
|
00:15:29,720 --> 00:15:38,290 |
|
spanning ุงู V ูุจูู ููุงุงูู V ู
ูุฌูุฏ ูู ุงูู span |
|
|
|
155 |
|
00:15:38,290 --> 00:15:47,290 |
|
ุจุชุงุจุน ุงูู V ูููุง ูุจูู ุฏุต ูููุฐุง ุงููู ูู ุงู V1 ู ุงู |
|
|
|
156 |
|
00:15:47,290 --> 00:15:55,750 |
|
V2 ู ุงู VN ูู ุงูู
ุฌู
ูุนุฉ ูุฐู ู
ุงููุง span ุงููู ูู ุงู V |
|
|
|
157 |
|
00:15:59,930 --> 00:16:05,630 |
|
ูุจูู ุจูุงุก ุนููู ู
ู ุงูุฃููุง ุตุงุนุฏุง ุฃู basis ู vector |
|
|
|
158 |
|
00:16:05,630 --> 00:16:10,390 |
|
space ุจุฏู ูุฌูุจูู ุฌู
ูุน ุนูุงุตุฑ ุงู space ุจู listุชูุง |
|
|
|
159 |
|
00:16:10,390 --> 00:16:14,550 |
|
ุชู
ุงู
ุ ููู ุฃุซุจุชูุง ุฃูู ูู ูุงู ุงู element ู
ู ุถู
ู ุงู |
|
|
|
160 |
|
00:16:14,550 --> 00:16:18,470 |
|
basis ุฃู ูุงู ุงู element ู
ู ุจุฑุง ุงู basis ูุจูู ูุชุจุชู |
|
|
|
161 |
|
00:16:18,470 --> 00:16:22,910 |
|
ุนูู ุตูุบุฉ linear combination ู
ู ู
ู ุนูุงุตุฑ ุงู basis |
|
|
|
162 |
|
00:16:23,250 --> 00:16:28,010 |
|
ูุจูู ุญุท ุงูู
ุนููู
ุฉ ูุฐู ูู ุฏู
ุงุบู ูุฐู ู
ุนููู
ุฉ ุฃุณุงุณูุฉ |
|
|
|
163 |
|
00:16:28,010 --> 00:16:39,270 |
|
ุจุฏูุง ูุจูู ุนูููุง ูุซูุฑ ู
ู ุงูุดุบู ุชุจุนูุง ูู |
|
|
|
164 |
|
00:16:39,270 --> 00:16:48,670 |
|
ุงูุง ูู
ุงู ูุธุฑูุฉ ุจุณูุทุฉ ุตุบูุฑุฉ ู
ุด ุฒู ูุฐู ุงููุธุฑูุฉ |
|
|
|
165 |
|
00:16:48,670 --> 00:16:50,450 |
|
ุจุชููู ู
ุง ูุงุชู theorem |
|
|
|
166 |
|
00:16:57,290 --> 00:17:17,730 |
|
ุฅุฐุง ูุงู ููุงู ู
ุฌูุฏ ู
ู ุงููุงุญุฏุงุช ุงูููููุงุฑูุฉ ุงููุญุฏุงุช |
|
|
|
167 |
|
00:17:17,730 --> 00:17:20,090 |
|
ุงูููููุงุฑูุฉ ุงููุญุฏุงุช ุงูููููุงุฑูุฉ ุงูููููุงุฑูุฉ ุงููุงุญุฏุฉ |
|
|
|
168 |
|
00:17:20,090 --> 00:17:20,790 |
|
ู
ู ู
ุฌูุฉ V |
|
|
|
169 |
|
00:17:28,510 --> 00:17:34,330 |
|
a vector space |
|
|
|
170 |
|
00:17:34,330 --> 00:17:42,130 |
|
V that |
|
|
|
171 |
|
00:17:42,130 --> 00:17:47,190 |
|
spans |
|
|
|
172 |
|
00:17:47,190 --> 00:17:52,430 |
|
V then |
|
|
|
173 |
|
00:17:52,430 --> 00:17:56,870 |
|
V has |
|
|
|
174 |
|
00:17:58,890 --> 00:18:16,770 |
|
Dimension N ุทูุจ |
|
|
|
175 |
|
00:18:16,770 --> 00:18:22,630 |
|
ูููุณ ูุฑู ุนูู ุงููุธุฑูุฉ ู
ุฑุฉ ุซุงููุฉ ููุฑุฃ ู ูุญุงูู ูููู
|
|
|
|
176 |
|
00:18:22,630 --> 00:18:27,880 |
|
ููู ุญูุจุฑูููุงุจููู if there is a set of n linearly |
|
|
|
177 |
|
00:18:27,880 --> 00:18:31,540 |
|
independent elements of a vector space V ุฐุงุช span |
|
|
|
178 |
|
00:18:31,540 --> 00:18:36,460 |
|
V ุจุฌู ุฃูุง ุนูุฏู ู
ุนููู
ุชูู ุงูู
ุนููู
ุฉ ุงูุฃููู ุฎุฏุช ู
ุฌู
ูุนุฉ |
|
|
|
179 |
|
00:18:36,460 --> 00:18:39,720 |
|
ู
ู ุงู vectors ุงููู ุฌูุชูู
linearly independent |
|
|
|
180 |
|
00:18:39,720 --> 00:18:45,680 |
|
ุงูู
ุนููู
ุฉ ุงูุซุงููุฉูุฏูู ุงู vectors ุจููููููู ุฌู
ูุน ุฃูุตุฑ |
|
|
|
181 |
|
00:18:45,680 --> 00:18:49,420 |
|
V ุจูุง ุงุณุชุซูุงุก ูุนูู ุฃู ุนูุตุฑ ูู ุงู vector space V |
|
|
|
182 |
|
00:18:49,420 --> 00:18:53,720 |
|
ุจูุฏุฑ ุฃูุชุจู ุนูู ุดูู ุงู linear combination ู
ู ุงู set |
|
|
|
183 |
|
00:18:53,720 --> 00:18:58,120 |
|
of N linearly independent elements ุจููู ุฅู ุงู V |
|
|
|
184 |
|
00:18:58,120 --> 00:19:03,720 |
|
has a dimension N ูุจูู ุจุฏู ุฃุซุจุช ุฃู ุงู dimension ูู |
|
|
|
185 |
|
00:19:03,720 --> 00:19:09,370 |
|
vector space ูุฐุง ูุณุงูู Nุงูุงู ุงูุง ู
ุด ููุซุจุช ุงู ุงู |
|
|
|
186 |
|
00:19:09,370 --> 00:19:13,650 |
|
dimension ุงู vector space ูุณุงูู ุงู ุจุฏู ุงุซุจุช ููุทุชูู |
|
|
|
187 |
|
00:19:13,650 --> 00:19:17,570 |
|
ุงููู ูู ุงูู ุชุนุฑูู ุงุฎุฏูุงู ูู ุงูู
ุญุงุถุฑุฉ ุงูู
ุงุถูุฉ ุจุฏู |
|
|
|
188 |
|
00:19:17,570 --> 00:19:21,750 |
|
ุงุซุจุชู ุงู ุนูุฏู in linearly independent elements |
|
|
|
189 |
|
00:19:21,750 --> 00:19:25,730 |
|
ูุทูุจ ุซุงูู ูู ุงุถูุช ุนูููู
ูู
ุงู vector ุจุฏู ูููููุง |
|
|
|
190 |
|
00:19:25,730 --> 00:19:31,910 |
|
ู
ุงููู
linearly dependent ุชู
ุงู
ุ ูุจูู ูุฐุง ุงููู ุงุญูุง |
|
|
|
191 |
|
00:19:31,910 --> 00:19:34,510 |
|
.. ุงููู ุงุญูุง ุจููููู ูุจูู ุงู proof |
|
|
|
192 |
|
00:19:38,330 --> 00:19:47,650 |
|
ุจุฏุง ุงุฎุฏ let V1 ู V2 ู ูุบุงูุฉ VN ุจูlinearly |
|
|
|
193 |
|
00:19:47,650 --> 00:19:53,450 |
|
independent elements of V |
|
|
|
194 |
|
00:20:01,110 --> 00:20:05,630 |
|
ูุคูุงุก ู
ุงููู
ุ ูุคูุงุก ูู ุญุฏ ุฐุงุชูู
ูุชุนุงู
ููู ุจุงููV |
|
|
|
195 |
|
00:20:05,630 --> 00:20:15,510 |
|
ููููุฏูู ุจุงููV ูุจูู Linear ู
ู ุฐุงุช ูุชุนุงู
ู ุจุงููV |
|
|
|
196 |
|
00:20:15,510 --> 00:20:18,830 |
|
ุทูุจ |
|
|
|
197 |
|
00:20:18,830 --> 00:20:23,810 |
|
ูููุณุ ู
ุงูุฐุง ูุชุนุงู
ู ุจุงููVุ ูุนูู ุฃู element ู
ู V ูู |
|
|
|
198 |
|
00:20:23,810 --> 00:20:28,410 |
|
Linear Combination ู
ู ูุคูุงุกุ ุตุญูุญ ููุง ูุฃุ ูุจูู ูุฐุง |
|
|
|
199 |
|
00:20:28,410 --> 00:20:39,750 |
|
ู
ุนูุงูุฅูู every element of V is a linear |
|
|
|
200 |
|
00:20:39,750 --> 00:20:48,030 |
|
combination of |
|
|
|
201 |
|
00:20:48,030 --> 00:20:53,210 |
|
V1 ู V2 ู ูุบุงูุฉ VN |
|
|
|
202 |
|
00:21:00,160 --> 00:21:03,860 |
|
ูู ุฐูุฑูุง ุงูู ู
ุด ููุซุจุช ุงู ุงู dimension ุงูู ูุณุงูู |
|
|
|
203 |
|
00:21:03,860 --> 00:21:08,720 |
|
ุงูู ุจุฏู ูุซุจุช ุดุบูุชูู ุงูุดุบู ุงูุฃูู ู
ุนุชุงู ุงูุด ูุงูููุ |
|
|
|
204 |
|
00:21:08,720 --> 00:21:12,740 |
|
ูุงููู ูู ุนูุฏู n linearly independent elements ูุจูู |
|
|
|
205 |
|
00:21:12,740 --> 00:21:18,160 |
|
ูุงู ุงูุดุบู ู
ุนุชุงู ูุฒูุงุฏุฉ ุดููุฉ ุดููุฉ that spans V |
|
|
|
206 |
|
00:21:18,160 --> 00:21:23,680 |
|
ุจูููุฏููู ู
ูุ ุจูููุฏููู ุนูุงุตุฑ V ุจููู ุงู ูุฏูู ุงู n |
|
|
|
207 |
|
00:21:23,680 --> 00:21:29,310 |
|
linearly independent ูู ุฒูุช ุนูููู
ูู
ุงู vectorู
ุงุฐุง |
|
|
|
208 |
|
00:21:29,310 --> 00:21:35,610 |
|
ูุญุตูุ Linearly Independent ููุฐุง ุฅุฌุจุงุฑู ูู ูุงู |
|
|
|
209 |
|
00:21:35,610 --> 00:21:40,030 |
|
Linearly Independent ูุฐุง ูู ูุงู ูู ูุงู ุงู |
|
|
|
210 |
|
00:21:40,030 --> 00:21:42,990 |
|
dimension ูุณุงูู N ููู ุฃูุง ู
ุด ุนุงุฑู ุฅู ุงู dimension |
|
|
|
211 |
|
00:21:42,990 --> 00:21:49,170 |
|
ุฃูุง ุจุฏู ุฃุซุจุช ุฅู ุงู dimension ูุณุงูู M ููู ุฎูููู |
|
|
|
212 |
|
00:21:49,170 --> 00:21:53,250 |
|
ุฃุฑุฌุน ุจุงูุฐุงูุฑุฉ ุฅูู ุงููุฑุงุก ุดููุฉ ูุฐูุฑ ู
ุด section |
|
|
|
213 |
|
00:21:53,250 --> 00:21:58,970 |
|
ุชูุงุชุฉ ุฃุฑุจุนุฉ section ุชูุงุชุฉ ุชูุงุชุฉูู ุฃุฎุฐุช ู
ุฌู
ูุนุฉ ู
ู |
|
|
|
214 |
|
00:21:58,970 --> 00:22:03,770 |
|
ุงู vectors ู ุฃุฎุฐุช ู
ุฌู
ูุนุฉ ู
ู ุงู vectors ุงูุชุงููุฉ ู |
|
|
|
215 |
|
00:22:03,770 --> 00:22:08,330 |
|
ุฃุซุจุช ุฃู ูู vector ูู ุงูู
ุฌู
ูุนุฉ ุงูุฃููู ูู linear |
|
|
|
216 |
|
00:22:08,330 --> 00:22:13,250 |
|
combination ู
ู ุงูุชุงููุฉ ู ูุงูุช ุงูู
ุฌู
ูุนุฉ ุฃูุจุฑ ู
ู |
|
|
|
217 |
|
00:22:13,250 --> 00:22:19,090 |
|
ุงูุชุงููุฉ ุจุฌูุฏ linearly dependentูููุง ุฅุฐุง ูุงู ุงู V1 |
|
|
|
218 |
|
00:22:19,090 --> 00:22:26,330 |
|
ู V2 ู ูุบุงูุฉ VN ูุฏูู ู
ุงููู
ู ุนูุฏู ู
ุฌู
ูุนุฉ ุชุงููุฉ U1 |
|
|
|
219 |
|
00:22:26,330 --> 00:22:34,770 |
|
ู U2 ู ูุบุงูุฉ UK ู ูุฌูุช ุฅู ุงู N ุฃูุจุฑ ู
ู K ุฅู ุญุฏุซ |
|
|
|
220 |
|
00:22:34,770 --> 00:22:39,370 |
|
ุฐูู ุซู
ูู ุนูุงุตุฑ ู
ู V1 ูุบุงูุฉ VN ูู linear |
|
|
|
221 |
|
00:22:39,370 --> 00:22:44,130 |
|
combination ู
ู ุงู U1 ู U2 ู ูุบุงูุฉUK ูุจูู ูู ูุฐู |
|
|
|
222 |
|
00:22:44,130 --> 00:22:47,390 |
|
ุงูุญุงูุฉ ุจููู ุงู ุงู V ูุงุช ูุฏูู ูููู
are linearly |
|
|
|
223 |
|
00:22:47,390 --> 00:22:52,750 |
|
dependent ู
ุด ููู ุฃุฎุฏูุง ูุธุฑูุฉ ูู section ุชูุงุชุฉ |
|
|
|
224 |
|
00:22:52,750 --> 00:22:58,270 |
|
ุชูุงุชุฉ ุทูุจ ูุจูู ุฃูุง ุงูุฃู ุจุชุทุจู ูุฐู ุงููุธุฑูุฉ ุชุทูุนููู |
|
|
|
225 |
|
00:22:58,270 --> 00:23:05,330 |
|
ูุง ุจูุงุช ูุฏูู ู
ุงููู
linearly independent ูุจูู ูุฏูู |
|
|
|
226 |
|
00:23:05,330 --> 00:23:14,700 |
|
ูู ุฃุฎุฏุช ุนุฏุฏ ู
ููู
ุฃูุชุฑ ุจูุงุญุฏLinearly ุจุญูุซ ุงูุง ุฌุงูู |
|
|
|
227 |
|
00:23:14,700 --> 00:23:19,620 |
|
ุงูุด ูุฏูู Linearly ุงู ุฏู ู
ููุง ุฐุงุช Spans V Spans V |
|
|
|
228 |
|
00:23:19,620 --> 00:23:24,040 |
|
ูุนูู ุงูุด ูุนูู ูู element ูู V ูู linear |
|
|
|
229 |
|
00:23:24,040 --> 00:23:37,500 |
|
combination ู
ู ูุฏูู ูุจูู that is every element of |
|
|
|
230 |
|
00:23:37,500 --> 00:23:45,780 |
|
V isA linear combination |
|
|
|
231 |
|
00:23:45,780 --> 00:23:49,960 |
|
of |
|
|
|
232 |
|
00:23:49,960 --> 00:23:58,360 |
|
V1 ู V2 ู ูุบุงูุฉ VN |
|
|
|
233 |
|
00:24:01,170 --> 00:24:06,110 |
|
ูุจูู ููุง ุงุฎุฏ ูู element ู
ู V ูู linear combination |
|
|
|
234 |
|
00:24:06,110 --> 00:24:10,670 |
|
ูู element ู
ู V ูู linear combination ูู element |
|
|
|
235 |
|
00:24:10,670 --> 00:24:15,690 |
|
ู
ู V ูู linear combination ูู element ู
ู V ูู |
|
|
|
236 |
|
00:24:15,690 --> 00:24:17,490 |
|
linear combination ูู element ู
ู V ูู linear |
|
|
|
237 |
|
00:24:17,490 --> 00:24:20,270 |
|
combination ูู element ู
ู V ูู linear combination |
|
|
|
238 |
|
00:24:20,270 --> 00:24:25,370 |
|
ูู element ู
ู V ูู linear |
|
|
|
239 |
|
00:24:25,370 --> 00:24:25,390 |
|
combination ูู element ู
ู V ูู linear combination |
|
|
|
240 |
|
00:24:25,390 --> 00:24:25,910 |
|
ูู element ู
ู V ูู linear combination |
|
|
|
241 |
|
00:24:28,730 --> 00:24:47,190 |
|
ูุธุฑูุฉ ุณุงุจูุฉ Any set with more than N elements is |
|
|
|
242 |
|
00:24:47,850 --> 00:24:53,930 |
|
Linearly dependent ุตุญูุญ ููุง ูุฃ ูุจูู ุฃู ู
ุฌู
ูุนุฉ ุฃุฎุฑู |
|
|
|
243 |
|
00:24:53,930 --> 00:24:58,750 |
|
ู
ู ูุฐู ุงู vectors ุฃูุชุฑ ู
ู N elements ุจุชููู ู
ุงููุง |
|
|
|
244 |
|
00:24:58,750 --> 00:25:02,430 |
|
Linearly dependent ูุฐู ุงูุชุนุฑูู ู
ู ุฃููุ ุชุนุฑูู ุงู |
|
|
|
245 |
|
00:25:02,430 --> 00:25:05,130 |
|
dimension ุงููู ุฃุฎุฏูุง ุงูู
ุฑุฉ ุงููู ูู ุงูุฃูู ุชุนุฑูู |
|
|
|
246 |
|
00:25:05,130 --> 00:25:18,390 |
|
ูุจูู Thus ู ููุฐุง The dimension ofV is in ูุนูู ุฃูุง |
|
|
|
247 |
|
00:25:18,390 --> 00:25:34,430 |
|
ุทุจูุช ุงูุชุนุฑูู ุชุทุจููุง ู
ุจุงุดุฑุง ูู
ุงู |
|
|
|
248 |
|
00:25:34,430 --> 00:25:39,850 |
|
ูุธุฑูุฉ ุซุงูุซุฉ without proof ูุจูู ูุงู ูู
ุงู ูุธุฑูุฉ |
|
|
|
249 |
|
00:25:39,850 --> 00:25:40,390 |
|
theorem |
|
|
|
250 |
|
00:25:45,440 --> 00:25:59,460 |
|
if ุงู V has dimension N then |
|
|
|
251 |
|
00:25:59,460 --> 00:26:11,420 |
|
every set of ูุงุชุญ |
|
|
|
252 |
|
00:26:11,420 --> 00:26:13,860 |
|
ุงูุจุงุจ |
|
|
|
253 |
|
00:26:18,690 --> 00:26:26,650 |
|
ูุจูู FLV ูุฏูู ู
ุฑุญูุฉ ูู ูู ุฌุฒุก ู
ู ุงูุฃุดูุงุก |
|
|
|
254 |
|
00:26:26,650 --> 00:26:33,390 |
|
ุงูููููุงุฑูุฉ ุงูุงูุฏุจูุฏูุชูุฉ ุงูููู
ููุชุณ ุงูููู
ููุชุณ |
|
|
|
255 |
|
00:26:33,390 --> 00:26:38,530 |
|
ุงูููู
ููุชุณ ุงูููู
ููุชุณ ุงูููู
ููุชุณ ุงูููู
ููุชุณ ุงูููู
ููุชุณ |
|
|
|
256 |
|
00:26:38,530 --> 00:26:45,110 |
|
ุงูููู
ููุชุณ ุงูููู
ููุชุณ ุงูููู
ููุชุณ ุงูููู
ููุชุณ |
|
|
|
257 |
|
00:26:45,110 --> 00:26:46,910 |
|
ุงูููู
ููุชุณ ุงูููู
ููุชุณ ุงูููู
ููุชุณ ุงูููู
ููุชุณ ุงูููู
ููุชุณ |
|
|
|
258 |
|
00:26:46,910 --> 00:26:47,050 |
|
ุงูููู
ููุชุณ ุงูููู
ููุชุณ ุงูููู
ููุชุณ ุงูููู
ููุชุณ ุงูููู
ููุชุณ |
|
|
|
259 |
|
00:26:47,050 --> 00:26:55,570 |
|
ุงูููู
ููุชุณ ุงูููู
ููุชุณexactly has exactly n elements |
|
|
|
260 |
|
00:26:55,570 --> 00:26:58,750 |
|
ูููุง |
|
|
|
261 |
|
00:26:58,750 --> 00:27:05,370 |
|
n elements which is |
|
|
|
262 |
|
00:27:05,370 --> 00:27:13,510 |
|
also a basis for |
|
|
|
263 |
|
00:27:13,510 --> 00:27:13,810 |
|
v |
|
|
|
264 |
|
00:28:58,730 --> 00:29:02,770 |
|
ูุฑุฌุน ููุธุฑูุฉ ุงูุฃุฎูุฑุฉ ู ูุฑู ู
ุง ูู ุงูู
ูุตูุฏ ู
ููุง |
|
|
|
265 |
|
00:29:02,770 --> 00:29:07,130 |
|
ุงููุธุฑูุฉ ุจุชููู ุงู letter V has dimension N ูุจูู ุงูุง |
|
|
|
266 |
|
00:29:07,130 --> 00:29:11,230 |
|
ููู ุนูุฏู vector space ู ุงู dimension ูู ูุณุงูู N |
|
|
|
267 |
|
00:29:11,230 --> 00:29:17,540 |
|
ูุจูู ู
ุงูุฌุฏุด ุนุฏุฏ ุงูุนูุงุตุฑ ูู ุงู business ูุง ุจูุงุชุทูุจ |
|
|
|
268 |
|
00:29:17,540 --> 00:29:21,700 |
|
ุชู
ุงู
then every set of linearly independent |
|
|
|
269 |
|
00:29:21,700 --> 00:29:26,300 |
|
elements that span V has exactly N elements ูุจุฌู |
|
|
|
270 |
|
00:29:26,300 --> 00:29:30,560 |
|
ุฃูุง ุจุชุฏุนู ุงู ุงู bases ุงููู ูุณุงูู N ูู ุฑูุญุช ูุฌูุช ุณุช |
|
|
|
271 |
|
00:29:30,560 --> 00:29:35,300 |
|
ุนุฏุฏ ุนูุงุตุฑูุง ูุณุงูู N ููุงููุง linearly independent |
|
|
|
272 |
|
00:29:35,300 --> 00:29:41,200 |
|
ููู ูุงุญุฏ ููุฏ ููู ุนูุงุตุฑ V ูุจุฌู ูุฐุง ุจููุน ูู
ุงู bases |
|
|
|
273 |
|
00:29:41,200 --> 00:29:46,420 |
|
ููุง ูุงุู
ุนูุงุชู ูู vector space ุงููู ุนูุฏู ููู ูุงู
|
|
|
|
274 |
|
00:29:46,420 --> 00:29:51,700 |
|
bases ูุชูุฑ ูุนูู ู
ุงุนูุฏูุด ู
ุด bases ูุงุญุฏ ุนูุฏู ูุชูุฑ ู
ู |
|
|
|
275 |
|
00:29:51,700 --> 00:29:55,400 |
|
ุงู bases ูุฐู ุชู
ุงู
ูุนูู ุงู vector space ุงููู ูุงุญุฏ |
|
|
|
276 |
|
00:29:55,400 --> 00:29:59,500 |
|
ูุฏ ูููู ูู two bases ุชูุงุชุฉ bases ุงุฑุจุนุฉ bases ุฎู
ุณุฉ |
|
|
|
277 |
|
00:29:59,500 --> 00:30:04,360 |
|
bases ุงูุงู ูู ู
ุฌู
ูุนุฉ ู
ู ุงู elements ูุชุญูู ูููุง |
|
|
|
278 |
|
00:30:04,360 --> 00:30:08,590 |
|
ุดุฑุทุงูุงูุดุฑุท ุงูุฃูู ุฅููู
linearly independent |
|
|
|
279 |
|
00:30:08,590 --> 00:30:13,490 |
|
elements ุงูุดุฑุท ุงูุซุงูู ุฃู ุนูุตุฑ ูู ุงู vector space |
|
|
|
280 |
|
00:30:13,490 --> 00:30:17,450 |
|
ุฏู ุจููุฏุฑ ููููุจ ูุงุณุทุฉ ูุฐู ุงูุนูุงุตุฑ ุจูููููุง ูุฏูู |
|
|
|
281 |
|
00:30:17,450 --> 00:30:22,030 |
|
bases ูู
ูุ ูู vector space ูุนุชูุงุฌ ุงู vector space |
|
|
|
282 |
|
00:30:22,030 --> 00:30:27,330 |
|
ู
ุฌู
ูุนุฉ ู
ู ุงู bases ุทูุจ ุฎูููู ุฃุณุฃู ูู
ุงู ุณุคุงู ุงู |
|
|
|
283 |
|
00:30:27,330 --> 00:30:31,150 |
|
bases ุงูู
ุฎุชููุฉ ูู ุฃุฎุฏูุง two bases ูู vector space |
|
|
|
284 |
|
00:30:31,150 --> 00:30:35,370 |
|
ูู ุนุฏุฏ ุงูุนูุงุตุฑ ููุง ูุฎุชูู ุนู ุนุฏุฏ ุงูุนูุงุตุฑ ููุงุ |
|
|
|
285 |
|
00:30:35,590 --> 00:30:42,520 |
|
ุงูุนุฑุจูุฉุจุณ ุงููู ุจูุฎุชูู ูุง ูุฎุชูู ุชู
ุงู
ุง ููุดุ ูุฅู ุนุฏุฏ |
|
|
|
286 |
|
00:30:42,520 --> 00:30:47,200 |
|
ุนูุงุตุฑ ุจูุฒุฒ ูู ุงู dimension ูุจูู ูุฐุง ุงู dimension ู |
|
|
|
287 |
|
00:30:47,200 --> 00:30:50,300 |
|
ุงูุชุงูู ูุจูู ูุนุทููู ููุณ ุงู dimension ูุจูู ุงูุฃุชููู |
|
|
|
288 |
|
00:30:50,300 --> 00:30:54,480 |
|
ุจุฏูู ุฃู ูููู ุฃู ุงูุชูุงุชุฉ ุฃู ุงูุฃุฑุจุนุฉ ุฃู ุงูุฎู
ุณุฉ ุจูุฒุฒ |
|
|
|
289 |
|
00:30:54,480 --> 00:30:59,120 |
|
ูููู
ูููู
ููุณ ุงูุนุฏุฏ ู
ู ุงูุนูุงุตุฑ ููู
ุฃููู ููุณ |
|
|
|
290 |
|
00:30:59,120 --> 00:31:03,700 |
|
ุงูุนูุงุตุฑ ููุณ ุงูุนุฏุฏ ูู ุฎู
ุณุฉ ูุจูู ููุง ูู ุฎู
ุณุฉ ูู ุชุง |
|
|
|
291 |
|
00:31:03,700 --> 00:31:07,200 |
|
ูู ุณุชุฉ ูุจูู ููุง ูู ุณุชุฉ ู ููุฐุง |
|
|
|
292 |
|
00:31:11,730 --> 00:31:17,030 |
|
ูุฐุง ุงูู V ูู ูุงู ุงู dimension ูู ูุณุงูู N ูุจูู ุงู |
|
|
|
293 |
|
00:31:17,030 --> 00:31:21,370 |
|
ู
ุฌู
ูุนุฉ ู
ู ุงูู linearly independent elements ู
ู ุงูู |
|
|
|
294 |
|
00:31:21,370 --> 00:31:26,510 |
|
V ุงููู ุจุชููุฏูู ุงู ุจุชุฌูุจูู ุนูุงุตุฑ V has exactly N |
|
|
|
295 |
|
00:31:26,510 --> 00:31:30,870 |
|
elements ูููุง ุจุงูุถุจุท N elements which also is a |
|
|
|
296 |
|
00:31:30,870 --> 00:31:35,180 |
|
basis ููุฐุง ุจููููู ููุจุงุฒุฒ ูู vector space V ู
ุนูุงู |
|
|
|
297 |
|
00:31:35,180 --> 00:31:40,360 |
|
ุงู ุงู vector space V ูู ู
ุฌู
ูุนุฉ ู
ู ุงู bases ูููุณ |
|
|
|
298 |
|
00:31:40,360 --> 00:31:48,460 |
|
ุจุงุฒุฒ ูุงุญุฏ ููุท ูุง ุบูุฑ ูู
ุง ุณูุฑู ู
ู ุฎูุงู ุงูุฃู
ุซูุฉ ุงูุงู |
|
|
|
299 |
|
00:31:48,460 --> 00:31:52,560 |
|
ุงุฎุฏุช ุงู vector space RN ุงููู ูู the set of all n |
|
|
|
300 |
|
00:31:52,560 --> 00:31:57,040 |
|
tuples ู
ู X1 ูXN ููู ุงู X ูุฐูู are real number |
|
|
|
301 |
|
00:31:57,040 --> 00:32:02,900 |
|
ุฑูุญุช ู
ู ูุฐูู ุงุฎุฏุช ู
ุฌู
ูุนุฉูุฐู ุงูู
ุฌู
ูุนุฉ ุนุฏุฏูุง ูู
ุ |
|
|
|
302 |
|
00:32:02,900 --> 00:32:08,880 |
|
ุนุฏุฏูุง N E1 ุงูุญุฏ ุงูุฃููู ุจูุงุญุฏ ูุงูุจุงูู ุจุฒูุฑู E2 ุงูุญุฏ |
|
|
|
303 |
|
00:32:08,880 --> 00:32:12,040 |
|
ุงูุชุงูู ุจูุงุญุฏ ูุงูุจุงูู ุงููู ุฌุงุจูู ู ุงููู ุจุนุฏู ุจุฒูุฑู |
|
|
|
304 |
|
00:32:12,040 --> 00:32:16,100 |
|
E3 ุงูุญุฏ ุงูุชุงูู ุจุฒูุฑู ุงููู ุฌุงุจูู ู ุงููู ุจุนุฏู ุจุฒูุฑู |
|
|
|
305 |
|
00:32:16,100 --> 00:32:20,860 |
|
ูุบุงูุฉ EN ููู ุจุฒูุฑู ู
ุง ุนุฏุง ุงูุญุฏ ุงูุฃุฎูุฑ ุจุฌุฏุงุด ุจูุงุญุตุฉ |
|
|
|
306 |
|
00:32:22,260 --> 00:32:28,300 |
|
ุจูููู ูุจูู ูู ุงู ูุฏูู ุจููููููู basis ูู RN ุนุดุงู |
|
|
|
307 |
|
00:32:28,300 --> 00:32:32,870 |
|
ููููููู basis ุจุฏู ุงุทุจู ุดุฑุทููุงูุดุฑุท ูู ุชุซุจุช ุงููู
|
|
|
|
308 |
|
00:32:32,870 --> 00:32:37,030 |
|
linearly independent ุงุญูุง ุจูุซุจุช ุงููู
linearly |
|
|
|
309 |
|
00:32:37,030 --> 00:32:40,870 |
|
independent ุจุงูุซุฑ ู
ู ุทุฑููุฉ ูููุณุชุงูุฏ ูู ุงูุฃูู |
|
|
|
310 |
|
00:32:40,870 --> 00:32:43,370 |
|
ูููุณุชุงูุฏ ูู ุงูุชุงูู ูููุณุชุงูุฏ ูู ุงูุชุงูู ููุณุงูู |
|
|
|
311 |
|
00:32:43,370 --> 00:32:48,110 |
|
ุจุงูุฒูุฑู ููุซุจุช ุงู ุงููููุณุชุงูุฏ ูุฐูู ูููู
ุจุฃุณูุงุฑ ู
ุธุจูุท |
|
|
|
312 |
|
00:32:48,110 --> 00:32:52,510 |
|
ููู ุทุฑููุฉ ุซุงููุฉ ุงูุง ุจุฏู ุงุฌูุจ ุงู determinant ููู
ูู |
|
|
|
313 |
|
00:32:52,510 --> 00:32:55,810 |
|
ุทูุนุช ุงู determinant ุงููู
ูุง ูุณุงูู ุฒูุฑู ูุจูู ุฏูู |
|
|
|
314 |
|
00:32:55,810 --> 00:33:00,770 |
|
ู
ุงููู
Linearly Independent ู
ุด ููู ุงุฎุฏูุง ูุธุฑูุฉ ุจูุฏ |
|
|
|
315 |
|
00:33:00,770 --> 00:33:06,190 |
|
ุงูู
ูุงู ู
ู
ุชุงุฒ ุฌุฏุง ูุจูู ุงูุง ุจุฏู ุงุฌูู solution ุจุฏู |
|
|
|
316 |
|
00:33:06,190 --> 00:33:11,270 |
|
ุงุฌูู ุงูุฎุงุตูุฉ ุงูุงููู ุจุฏู ุงุซุจุชูู ุงู ูุฏูู linearly |
|
|
|
317 |
|
00:33:11,270 --> 00:33:18,240 |
|
independent ูุจูู ุจุฏู ุงุฎุฏูู determinant ูู
ููููู E1 |
|
|
|
318 |
|
00:33:18,240 --> 00:33:25,080 |
|
ูุงูู E2 ู ูุบุงูุฉ ุงูู EN ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู |
|
|
|
319 |
|
00:33:25,080 --> 00:33:31,660 |
|
ูุฐุง ุงูู
ุญุฏุฏ E1 ุจุฏู ุงูุชุจู ุนูู ุดูู ุนู
ูุฏ 1ุ 0 ูุถู ู
ุงุดู |
|
|
|
320 |
|
00:33:31,660 --> 00:33:40,090 |
|
ูุบุงูุฉ ุงูู 0 E2ุ 0ุ 1ุ 0 ูุถู ู
ุงุดู ูุบุงูุฉ ุงูู 0ู ููุฐุง |
|
|
|
321 |
|
00:33:40,090 --> 00:33:45,090 |
|
ุงููู ุจุนุฏู zero zero ูุงุญุฏ ู ูุธู ู
ุงุดูู ูุบุงูุฉ ุงู zero |
|
|
|
322 |
|
00:33:45,090 --> 00:33:50,810 |
|
ูุธู ู
ุงุดูู ูุบุงูุฉ ุงู zero ู ููุง zero ู ููุง zero ู |
|
|
|
323 |
|
00:33:50,810 --> 00:33:56,670 |
|
ูุธู ู
ุงุดูู ูุบุงูุฉ ูุฏูุ ูุบุงูุฉ ุงู ูุงุญุฏ ุทุจ ูุฐุง ู
ุด ูู |
|
|
|
324 |
|
00:33:56,670 --> 00:34:02,450 |
|
ู
ุญุฏุฏ ูู
ุตูู ุงููุญุฏุฉ ููุง ูุงุ ูุจูู ูุฐุง ูู determinant |
|
|
|
325 |
|
00:34:02,450 --> 00:34:12,860 |
|
ูู I Nู
ุญุฏุฏ ูุญุตู ุถุฑุจู ูุงุญุฏ ูู ูุงุญุฏ ุจูุงุญุฏ ููู ู
ุงูู |
|
|
|
326 |
|
00:34:12,860 --> 00:34:16,020 |
|
ูุง ูุณุงูู ุฒูุฑู ุงูู
ุนูุงุชู ูุฏูู are linearly |
|
|
|
327 |
|
00:34:16,020 --> 00:34:23,820 |
|
independent ูุจูู ููุง ุณุง ุงู ูุงุญุฏ ู ุงู ุงุชููู ู ูุบุงูุฉ |
|
|
|
328 |
|
00:34:23,820 --> 00:34:31,540 |
|
ุงู EN are linearly independent vectors in RN |
|
|
|
329 |
|
00:34:36,590 --> 00:34:43,170 |
|
ุงูููุทุฉ ุงูุฃููู ุงููู ุนูุฏูุง ุจุฏู ุงุซุจุช ุงู ูุฏูู ุจููุฏููู |
|
|
|
330 |
|
00:34:43,170 --> 00:34:48,410 |
|
ู
ูู ุฌู
ูุน ูุงุณุฑ ุงู vector space V ุงู ุงู element ูู |
|
|
|
331 |
|
00:34:48,410 --> 00:34:52,360 |
|
ุงู vector space V ูู linear combination ู
ู ู
ููู
ู |
|
|
|
332 |
|
00:34:52,360 --> 00:35:00,260 |
|
ุงู vectors ูุฐูู ูููุณ ูุจุฌู ุจูููู let x1 ู x2 ู |
|
|
|
333 |
|
00:35:00,260 --> 00:35:05,400 |
|
ูุบุงูุฉ xn ู
ูุฌูุฏุฉ ูู ุงู RN then |
|
|
|
334 |
|
00:35:07,840 --> 00:35:12,720 |
|
ุจุฏู ุงูุชุจ ุงู element ูุฐุง ุนูู ุงูุดูู ุงูุชุงูู X1 ู X2 ู |
|
|
|
335 |
|
00:35:12,720 --> 00:35:20,380 |
|
ูุบุงูุฉ XN ุจุฏู ูุณุงูู ุงู ุงู ุจูุฏุฑ ุงููู X1 ู ุงูุจุงูู ููู |
|
|
|
336 |
|
00:35:20,380 --> 00:35:29,200 |
|
ุจุงุณูุงุฑ ุฒุงุฆุฏ Zero X2 Zero ู ุงูุจุงูู ููู ุจุงุณูุงุฑ ุฒุงุฆุฏ |
|
|
|
337 |
|
00:35:29,200 --> 00:35:35,100 |
|
ู ูุถู ู
ุงุดููู ูุบุงูุฉ ู
ุง ููุตู ู Zero Zero Zero ู |
|
|
|
338 |
|
00:35:35,100 --> 00:35:42,080 |
|
ูุบุงูุฉ XNุจููุน ููู ููุง ูุงุ ูู ุฌูุช ุฌุงู
ุนุฉ ุงูู
ุฑูุจุฉ ูููุง |
|
|
|
339 |
|
00:35:42,080 --> 00:35:47,190 |
|
X ูุงุญุฏ ูุงูุจุงูู ุงููู ุจูุตูุฑ ูุจูู X ูุงุญุฏุงููู ุจุนุฏู 0 |
|
|
|
340 |
|
00:35:47,190 --> 00:35:52,130 |
|
ููุง x2 ุงููู ุจูู ูุจูู ุฃุณูุงุฑู ุจูx2 ูุจูู ูุชุงุจุฉ ูุฐุง ุงู |
|
|
|
341 |
|
00:35:52,130 --> 00:35:57,450 |
|
element ุนูู ุดูู ู
ุฌู
ูุนุฉ ู
ู ุงู elements ุฅุฐุง ุจูุฏุฑ |
|
|
|
342 |
|
00:35:57,450 --> 00:36:09,050 |
|
ุฃููู ูุฐุง ุงูููุงู
ูุณูู x1 ูู 1 x1 ูู 1 0 0 ู ูุบุงูุฉ 0 |
|
|
|
343 |
|
00:36:10,130 --> 00:36:20,210 |
|
X2 ูู 0 ู 1 ู 0 ู ูุบุงูุฉ ุงูู 0 ุฒุงุฆุฏ ุฒุงุฆุฏ XN ูู 0 ู |
|
|
|
344 |
|
00:36:20,210 --> 00:36:25,870 |
|
0 ู ูุธู ู
ุงุดููู ูุบุงูุฉ ุงู 1 ุฎุฏูุง ุนุงู
ู ู
ุดุชุฑู ูุจุฑุฑ |
|
|
|
345 |
|
00:36:25,870 --> 00:36:33,120 |
|
ุชู
ุงู
ุ ุทุจ ุงูุฌุซ ูุฏู ุนุจุงุฑุฉ ุนู ู
ููุE1 ูุจูู ูุฐุง ุงูููุงู
|
|
|
|
346 |
|
00:36:33,120 --> 00:36:43,180 |
|
ุจุฏู ูุนุทููู X1E1 X2E2 ู ูุบุงูุฉ XNEN ุงูู ูุนูู ู
ุนูู |
|
|
|
347 |
|
00:36:43,180 --> 00:36:48,120 |
|
ูุฐุง ุงูููุงู
ุงู ุงู element ู
ูุฌูุฏ ูู ุงูุงุฑ ุงู ูู |
|
|
|
348 |
|
00:36:48,120 --> 00:36:55,220 |
|
linear combination ู
ู ู
ู ู
ู ูุฐูู ูุจูู ููุง every |
|
|
|
349 |
|
00:36:55,220 --> 00:36:57,640 |
|
element |
|
|
|
350 |
|
00:37:00,720 --> 00:37:08,420 |
|
ูุฑู is a linear combination |
|
|
|
351 |
|
00:37:08,420 --> 00:37:16,240 |
|
of |
|
|
|
352 |
|
00:37:16,240 --> 00:37:24,660 |
|
E1 ู E2 ู ูุบุงูุฉ Enู
ุนูุงุชู ุงู vectors ูุฏูู ู
ุง ููู
|
|
|
|
353 |
|
00:37:24,660 --> 00:37:35,780 |
|
span RN ูุนูู ุจูุถููู ุงู RN ูุจูู ููุง that isุฃู ุฃู |
|
|
|
354 |
|
00:37:35,780 --> 00:37:46,660 |
|
ุงูู E1 ูุงูู E2 ูุงูู EN ุฃุณุจุงู ู
ูู ุฃุณุจุงู RN ูุจูู |
|
|
|
355 |
|
00:37:46,660 --> 00:37:51,260 |
|
ูุฐูู ุจูููุฏููู RN ุฅูุด ู
ุนูู ูุฐุง ุงูููุงู
ุฅู ูุฐูู |
|
|
|
356 |
|
00:37:51,260 --> 00:37:54,880 |
|
ุจูุดููููู ู
ููุ Bases ููู RN |
|
|
|
357 |
|
00:37:58,310 --> 00:38:10,030 |
|
ุงููู ูู ุงู E1 ู ุงู E2 ู ุงู AN is a basis for RN |
|
|
|
358 |
|
00:38:10,030 --> 00:38:16,180 |
|
ุชุนุฑููุง ุฅูุด ุจูุณู
ููุง ุฏู ูุง ุจูุงุชุุจุณู
ููู standard |
|
|
|
359 |
|
00:38:16,180 --> 00:38:22,100 |
|
basis ูุนูู ุงู basis ุงูู
ุชุนุฑู ุนููู ุนูุฏ ูู ุงูุนูู
ุงุก |
|
|
|
360 |
|
00:38:22,100 --> 00:38:25,980 |
|
ููุง ุนูุฏ ูู ุงูุฏูู ููุง ุนูุฏ ูู ุงููุงุณ ูุจูู ูุฐุง called |
|
|
|
361 |
|
00:38:25,980 --> 00:38:35,600 |
|
the standard basis of RM ูุจูู ูุฐุง basis called the |
|
|
|
362 |
|
00:38:35,600 --> 00:38:40,740 |
|
standard basis |
|
|
|
363 |
|
00:38:40,740 --> 00:38:42,760 |
|
for |
|
|
|
364 |
|
00:38:45,230 --> 00:38:50,030 |
|
RN ุงูุด standard basis for ุงูุ ูุนูู ูู basis ุบูุฑูุ |
|
|
|
365 |
|
00:38:50,030 --> 00:39:05,090 |
|
ุงู ูู ุบูุฑู ุจุณ ู
ุด ุนูู ูุงูุดูู ูุฐุง ุทุจ |
|
|
|
366 |
|
00:39:05,090 --> 00:39:08,890 |
|
ูู ูุฌูุช basis ุงุฎุฑ ูุง ุจูุงุฏู ูุฏูุด ุจุฏูููู ุนุฏุฏ ุนูุงุตุฑูุ |
|
|
|
367 |
|
00:39:10,150 --> 00:39:14,110 |
|
ู ู
ุซู ูุฐุง ุจุงูุถุจุท ุชู
ุงู
ุง ู
ุงุฏุงู
ูุณุชุฎุฏู
ุงู basis ุนุฏุฏ |
|
|
|
368 |
|
00:39:14,110 --> 00:39:21,630 |
|
ุนูุงุตุฑู ู ูุจูู ุงู basis ุงุฎุฑ ุนุฏุฏ ุนูุงุตุฑู ูุณุงูู ู ุทูุจ |
|
|
|
369 |
|
00:39:21,630 --> 00:39:26,150 |
|
ุฎูููู ุงุฎุฏ special cases ู
ู ูุฐุง ุงูู
ุซุงู ูุนูู ูุตุบุฑ |
|
|
|
370 |
|
00:39:26,150 --> 00:39:31,430 |
|
ุดููุฉ ู ูุดุชุบู ุนู
ู ุดููุฉ ูุจูู ุจุฏูุฌุฉ ุงูููู special |
|
|
|
371 |
|
00:39:31,430 --> 00:39:38,450 |
|
cases of |
|
|
|
372 |
|
00:39:44,360 --> 00:39:52,180 |
|
ุฃูู ูุงุญุฏุฉ ูู ุฃุฎุฏุช ุงู ูุงุญุฏ ุจุฏู ูุณูู ูุงุญุฏ ูุฒูุฑู ู ุงู |
|
|
|
373 |
|
00:39:52,180 --> 00:40:01,760 |
|
ุงุชููู ุจุฏู ูุณูู ุฒูุฑู ููุงุญุฏ ูุฏูู are the standard |
|
|
|
374 |
|
00:40:01,760 --> 00:40:08,760 |
|
basis of R2 |
|
|
|
375 |
|
00:40:10,190 --> 00:40:19,970 |
|
ู
ุธุจูุท ููุ ุทูุจ ููุดุ ูุฃู ุฃู element x1 ู x2 ุจูุฏุฑ |
|
|
|
376 |
|
00:40:19,970 --> 00:40:23,590 |
|
ุงูุชุจู ุนูู ุตูุบุฉ linear combination ู
ู ุงุชููู ูุฏูู |
|
|
|
377 |
|
00:40:23,590 --> 00:40:32,030 |
|
ูุนูู x1 x2 ุจูุฏุฑ ุงูุชุจ x1 ูู 1 ู 0 ุฒุงุฏ x2 ูู 0 ู 1 |
|
|
|
378 |
|
00:40:32,030 --> 00:40:35,690 |
|
ุตุญูุญ ููุง ูุฃุ ุงุฐุง ูุชุจุช linear combination ู
ู ุงุชููู |
|
|
|
379 |
|
00:40:36,000 --> 00:40:40,580 |
|
ูุฏูู linearly dependent ููุง linearly independentุ |
|
|
|
380 |
|
00:40:40,580 --> 00:40:45,540 |
|
ูุนูู ูู ูุงุญุฏ ูููู
ู
ุถุงุนูุงุช ุงูุขุฎุฑุ ูุฃ ุนู
ุฑู ู
ุง ููุญุตูุ |
|
|
|
381 |
|
00:40:45,540 --> 00:40:50,520 |
|
ุชู
ุงู
ุ ูุจูู ุงุชููู are linearly independentุ ู
ุฏุงู
|
|
|
|
382 |
|
00:40:50,520 --> 00:40:53,460 |
|
linearly independent ุจูุดูููุง ููู basis ูุงูุช ููุง |
|
|
|
383 |
|
00:40:53,460 --> 00:40:57,480 |
|
ู
ููู
ุ ุจูู ุงููู ูุงุชููู ูุฑูุฉ ู
ู ุฏูุชุฑู ู
ู ุนูุฏู ููุงูุ |
|
|
|
384 |
|
00:40:57,480 --> 00:40:58,760 |
|
ุนููู ุงููู ุงูู
ุฑุฉ |
|
|
|
385 |
|
00:41:02,820 --> 00:41:05,500 |
|
ูุง ุงููู ูู ูุงุญุฏุฉ ุงุณู
ูุง ูุฑูู
ูุง ุงูุฌุงู
ุนูุฉ ูุงูุช ูุฑููุง |
|
|
|
386 |
|
00:41:05,500 --> 00:41:10,060 |
|
ู
ู ุนูุฏู ูู
ุงู ููู ูุฑุงูู ูู ูุงุญุฏุฉ ุงุณู
ูุง ูุฑูู
ูุง |
|
|
|
387 |
|
00:41:10,060 --> 00:41:16,140 |
|
ุงูุฌุงู
ุนูุฉ ุทูุจ ูุจูู ุจุฏูุง ููุฌู ูุงุฎุฏ ุญุงูุงุช ุฎุงุตุฉ ู
ู ู
ูู |
|
|
|
388 |
|
00:41:16,140 --> 00:41:22,020 |
|
ู
ู ูุฐุง ุงูุงู ูุฏูู ุจูู
ุซููุง ุงุตุฏุงุฑ ู
ุฑุจูุฒุฒ ูู R2 ูุฏุงุด |
|
|
|
389 |
|
00:41:22,020 --> 00:41:28,240 |
|
ุงู dimension ูู R2ุ ูุฏุงุดุ ุงุชููู ู
ุง ูููู
ู
ุด ุบูุฑูู
|
|
|
|
390 |
|
00:41:28,240 --> 00:41:30,920 |
|
ุชู
ุงู
ูุจูู ูุฏูู ุจูุณุชุฎุฏู
ูุง ุงู |
|
|
|
391 |
|
00:41:34,050 --> 00:41:35,450 |
|
ุงูู
ุตุทูุญ |
|
|
|
392 |
|
00:41:38,610 --> 00:41:45,810 |
|
ุงุฑุชู ุงุฒ ุงุชููู ุทูุจ ููุทุฉ ุซุงููุฉ ูู ุฌูุช ุงููู ูู ุง ูุงุญุฏ |
|
|
|
393 |
|
00:41:45,810 --> 00:41:53,730 |
|
ูุณุงูู ูุงุญุฏ ูุฒูุฑู ูุฒูุฑู ู ุงุชููู ูุณุงูู ุฒูุฑู ูุงุญุฏ |
|
|
|
394 |
|
00:41:53,730 --> 00:42:01,030 |
|
ูุฒูุฑู ุงููู ูู ุง ุชูุงุชุฉ ูุณุงูู ุฒูุฑู ูุฒูุฑู ูุงุญุฏ ุจุงูุดูู |
|
|
|
395 |
|
00:42:01,030 --> 00:42:05,890 |
|
ุงููู ุนูุฏูุง ูุฏูู ุจุฑุถู ูุฏูู are standard |
|
|
|
396 |
|
00:42:07,400 --> 00:42:22,780 |
|
Bases for R3 and R3 has dimension 3 |
|
|
|
397 |
|
00:42:22,780 --> 00:42:29,400 |
|
ุทุจ ุงูุด ุฑุงูู ุงุฌูุจู ุจูุฒุฒ ุบูุฑ ูุฏูู ู ุงูุชุฑ ู
ุด ูุงุญุฏ ููุง |
|
|
|
398 |
|
00:42:29,400 --> 00:42:36,040 |
|
ุงุชููู ุฎุฏู ุงูู
ูุงุญุธุฉ ูุฐู also ู ูุฐูู |
|
|
|
399 |
|
00:42:47,970 --> 00:42:58,930 |
|
ูู ู
ู ุงูู
ุฌู
ูุนุงุช ุงูุชุงููุฉ is a basis for R2 |
|
|
|
400 |
|
00:43:03,760 --> 00:43:10,060 |
|
ุงูู element ูุงุญุฏ ู ุชูุงุชุฉ ู ุงู element ูุงุญุฏ ู ุณุงูุจ |
|
|
|
401 |
|
00:43:10,060 --> 00:43:17,880 |
|
ูุงุญุฏ ุฎุฏ ู
ุฌู
ูุนุฉ ุชุงููุฉ ุงู element ูุงุญุฏ ู ุชูุงุชุฉ ู ุงู |
|
|
|
402 |
|
00:43:17,880 --> 00:43:26,410 |
|
element ุชุงูู ุณุงูุจ ุงุชููู ู ุณุชุฉ ุฎุฏ ู
ุฌู
ูุนุฉ ุชุงูุชุฉุฃุชููู |
|
|
|
403 |
|
00:43:26,410 --> 00:43:35,330 |
|
ู ูุงุญุฏ ู ุชูุงุชุฉ ู ุฒูุฑู ุฎุฏ ู
ุฌู
ูุนุฉ ุฑุงุจุนุฉ ูู
ุงู ุงููู ูู |
|
|
|
404 |
|
00:43:35,330 --> 00:43:43,770 |
|
ุงุชููู ู ุณุงูู ูุงุญุฏ ู ุณุงูุจู ุงุชููู ู ุงุชููู ูููู
ุฏูู |
|
|
|
405 |
|
00:43:43,770 --> 00:43:45,550 |
|
ู
ุนุงูู
because |
|
|
|
406 |
|
00:43:56,630 --> 00:44:05,650 |
|
ูุฃู ุนูู ุณุจูู ุงูู
ุซุงู V1 |
|
|
|
407 |
|
00:44:05,650 --> 00:44:12,010 |
|
== 1.3 V2 |
|
|
|
408 |
|
00:44:12,010 --> 00:44:24,410 |
|
== 1.1 V2 == 1.3 V2 == 1.3 V2 |
|
|
|
409 |
|
00:44:24,410 --> 00:44:30,290 |
|
== 1.3each one is |
|
|
|
410 |
|
00:44:30,290 --> 00:44:37,750 |
|
not multiple of |
|
|
|
411 |
|
00:44:37,750 --> 00:44:55,170 |
|
the other ู
ูุงุด ู
ุถุงุนูุงุช ุงูุขุฎุฑ and the dimension of |
|
|
|
412 |
|
00:44:56,100 --> 00:44:59,020 |
|
ุงุฑุชู ุงุฒ ุชู |
|
|
|
413 |
|
00:45:30,070 --> 00:45:35,850 |
|
ุฎููููู ุฃุฎุจุฑู ุงู ุงูุง ุงุญูุง ุจูุงุฎุฏ ุจุนุถ ุงูุญุงูุงุช ุงูุฎุงุตุฉ |
|
|
|
414 |
|
00:45:35,850 --> 00:45:41,790 |
|
ู
ู ุงูุงุฑ ุงู ุทุจุนุง ูููุง ุจูุงุฎุฏ ุงูุญุงูุฉ ุงูุฎุงุตุฉ ุงูุฃููู ูู |
|
|
|
415 |
|
00:45:41,790 --> 00:45:47,650 |
|
ุฃุฎุฏ ุงู elements E1 ูู ูุงุญุฏ ู E2 ูู ุฒูุฑู ู ูุงุญุฏ |
|
|
|
416 |
|
00:45:47,650 --> 00:45:52,130 |
|
ูุจูู ุงุชููู ูุฏูู are linearly independent ูุฃู ููุง |
|
|
|
417 |
|
00:45:52,130 --> 00:45:57,530 |
|
ูุงุญุฏ ูููู
ูู ู
ุถุงุนูุงุช ุงูุขุฎุฑูุจูู ููุงุฏูู linearly |
|
|
|
418 |
|
00:45:57,530 --> 00:46:02,330 |
|
independent ูุฏูู ุจูููููุง ููู standard bases ูู
ูู |
|
|
|
419 |
|
00:46:02,330 --> 00:46:06,470 |
|
ูุงุฑุชู ูุฅู ุงุญูุง ุชู ูู ุงูู
ุซุงู ุงููู ูุจูู ุฃุซุจุชูุงูู
ูู |
|
|
|
420 |
|
00:46:06,470 --> 00:46:10,890 |
|
ูุงู ูู ูุงุญุฏ ูู N ู
ู ุงูู
ุฑุงูุจุงุช ุฅุฐุง ุงูุญุงูุฉ ุฎุงุตุฉ ูู |
|
|
|
421 |
|
00:46:10,890 --> 00:46:15,650 |
|
ุฃุฎุฏุช ุฌุฏูุด ุจุณ ู
ุฑุงูุจุชูู ูุจูู ูุฏูู vectors ูู
ุซููุง ููู |
|
|
|
422 |
|
00:46:15,650 --> 00:46:22,090 |
|
standard bases ูู
ูู ูุงุฑุชู ููุฐุง ุจูุนุทููุง ุงู ุงู |
|
|
|
423 |
|
00:46:22,090 --> 00:46:27,230 |
|
dimension ูุงูู vector space R2 ูู ุฌุฏุงุด ุงุชููู ุจุนุฏ |
|
|
|
424 |
|
00:46:27,230 --> 00:46:32,310 |
|
ุฐูู ูู ุฃุฎุฏุช ุงูู E1 ูุชููู ู
ู ุซูุงุซ ู
ุฑูุจุงุช 100 |
|
|
|
425 |
|
00:46:32,310 --> 00:46:39,670 |
|
ูุงูุชุงูู 010 ูุงูุชุงูู 001 ูุจูู ูุฐูู ูู
ุงู linearly |
|
|
|
426 |
|
00:46:39,670 --> 00:46:45,130 |
|
independent ูุฃู ููุง ูุงุญุฏ ูููู
ู
ุถุงุนูุงุช ุงูุซุงูู ุจุฑุถู |
|
|
|
427 |
|
00:46:45,130 --> 00:46:48,870 |
|
ูุฐูู standard basis ูู
ูู ููู R3 ูุงูู R3 ุงู |
|
|
|
428 |
|
00:46:48,870 --> 00:46:56,270 |
|
dimension ูู ูุณุงูู 3ุฃุญูุง ุจูููู ูุฏูู ููู standard |
|
|
|
429 |
|
00:46:56,270 --> 00:47:01,970 |
|
basis ูุนูู ูู ููุงู basis ุฃุฎุฑูุ ุงูุฅุฌุงุจุฉ ูุนู
ุ ููุงู |
|
|
|
430 |
|
00:47:01,970 --> 00:47:06,590 |
|
ู
ุฌู
ูุนุฉ ูุซูุฑุฉ ู
ู ุงู basisุ ู
ุด ุน ุฌุฏ ูุฏููุ ูู ูู
ุงูุ |
|
|
|
431 |
|
00:47:06,590 --> 00:47:10,230 |
|
ุจุณ ุงุญูุง ูุฏูู ุฌูุจูุงูู
ุนูู ุณุจูู ุงูู
ุซุงูุ ูู ุฌุงุช |
|
|
|
432 |
|
00:47:10,230 --> 00:47:16,690 |
|
ููู
ุฌู
ูุนุฉ ูุฐูุ ูุจูู ุทูุน ูู ูุฏูู ุงุชูููุ ูู ูุงุญุฏ ููู |
|
|
|
433 |
|
00:47:16,690 --> 00:47:22,090 |
|
ู
ุถุงุนูุงุช ุงูุชุงููุูุฃ ูุฏูู ูู ูุงุญุฏ ูููู
ู
ุถุงุนูุงุช |
|
|
|
434 |
|
00:47:22,090 --> 00:47:27,110 |
|
ุงูุชุงููุฉ ูุฃ ูุฏูู ูู ูุงุญุฏ ูููู
ู
ุถุงุนูุงุช ุงูุชุงููุฉ ูุนูู |
|
|
|
435 |
|
00:47:27,110 --> 00:47:31,550 |
|
ูู ุถุฑุจุช ูุฐุง ูู ุฑูู
ุจูุทูุน ูุฐุง ู
ุงุนูุฏูุด ูู ูุฐุง |
|
|
|
436 |
|
00:47:31,550 --> 00:47:36,250 |
|
ู
ุถุงุนูุงุช ูุฐุง ุจุฑุถู ูุฃ ูุจูู ููุง ูุงุญุฏ ูููู
ู
ุถุงุนูุงุช |
|
|
|
437 |
|
00:47:36,250 --> 00:47:40,730 |
|
ุงูุชุงููุฉ ุทูุจ ู
ู
ุชุงุฒ ูุจูู ูุฏูู linearly independent |
|
|
|
438 |
|
00:47:40,730 --> 00:47:46,270 |
|
ุตุญูุญ ุทูุจ ุงู vector space ูุฐุง ุฌุฏุงุด ุงููู ุงู bases ูู |
|
|
|
439 |
|
00:47:48,660 --> 00:47:54,600 |
|
ุฅุฐุง ูุฐุง ุจููุน ูููู basis ูุฃู ุงู dimension ูู ูุณูู 2 |
|
|
|
440 |
|
00:47:54,600 --> 00:47:58,340 |
|
ููู ุฌุจุช ูู 2 linearly independent of L ู
ุซูุง |
|
|
|
441 |
|
00:47:58,340 --> 00:48:02,580 |
|
ุงููุธุฑูุฉ ุงูุฃุฎูุฑุฉ ุจุชููู ูู ูู ุงู basis ูููู
ููุณ |
|
|
|
442 |
|
00:48:02,580 --> 00:48:08,140 |
|
ุงูุนุฏุฏู
ู ุงูุนูุงุตุฑ ุชู
ุงู
ูุจูู ุงูุนูุงุตุฑ ูุฐูู linearly |
|
|
|
443 |
|
00:48:08,140 --> 00:48:13,440 |
|
independent ูุนุฏุฏูู
ูุณุงูู ุงุชููู ุงููู ูู ุงู |
|
|
|
444 |
|
00:48:13,440 --> 00:48:16,940 |
|
dimension ูู vector space ูุจูู ูุฐูู ูู
ุซููู ุงู main |
|
|
|
445 |
|
00:48:16,940 --> 00:48:23,260 |
|
bases ูุจูู ูุฐูู E1 ูE2 bases ูุฃุนูู ุงุชููู ูุฐูู ุจุฑุถู |
|
|
|
446 |
|
00:48:23,260 --> 00:48:26,960 |
|
bases ูุฃุนูู ุงุชููู ูุฐูู bases ูุฃุนูู ุงุชููู ูุฐูู |
|
|
|
447 |
|
00:48:26,960 --> 00:48:30,320 |
|
bases ูุฃุนูู ุงุชููู ูุฐูู bases ูุฃุนูู ุงุชููู ุจุชุญุจ |
|
|
|
448 |
|
00:48:30,320 --> 00:48:36,170 |
|
ุชุชุฃูุฏ ุงู ู
ุงุนูุฏููุด ู
ุดููุฉุฎุฏ ุงูุณ ูุงุญุฏ ู ุงูุณ ุงุชููู |
|
|
|
449 |
|
00:48:36,170 --> 00:48:40,130 |
|
ู
ูุฌูุฏุฉ ูู ูุงุฑุฉ ุงุชููู ู ุดูู ูุฐุง ุงู element ุจุชูุฏุฑ |
|
|
|
450 |
|
00:48:40,130 --> 00:48:45,050 |
|
ุชูุชุจู ุจุฏูุงูุฉ ุงู ูุงุญุฏ ูููู
ููุง ูุง ูุนูู ูู ุจูุฏุฑ ุงููู |
|
|
|
451 |
|
00:48:45,050 --> 00:48:48,610 |
|
constant ูู ุงูุงูู ุฒุงุฆุฏ constant ูู ุงูุชุงูู ุจูุนุทููู |
|
|
|
452 |
|
00:48:48,610 --> 00:48:52,330 |
|
ุงู X ูุงุญุฏ ู X ุงุชููู ูุฃ ูุนูู ุจุฏู ุงุฌูุจ ููู
ุฉ ุงู |
|
|
|
453 |
|
00:48:52,330 --> 00:48:55,590 |
|
constant C ูุงุญุฏ ู C ุงุชููู ุจุฏูุงูุฉ X ูุงุญุฏ ู X ุงุชููู |
|
|
|
454 |
|
00:48:55,590 --> 00:49:01,040 |
|
ุงู ุฌุฏุฑุช ุงุฌูุจ ุฌุจ ูุฏูู linearcombination ูุนูู ุฅุฌุจุงุฑู |
|
|
|
455 |
|
00:49:01,040 --> 00:49:06,180 |
|
ุจุฏู ุชุฌูุจูู
ู
ุด ุจููุฏุฑ ูุฃ ุจููุฏุฑ ู ูุต ูู
ุงู ูุฌูุจูู
ููุด |
|
|
|
456 |
|
00:49:06,180 --> 00:49:10,020 |
|
ูุฅู ูุฏูู ูู
ุซูููู basis ูุฃ ูุฅู ุนูู ุฃู ุญุงู ูู |
|
|
|
457 |
|
00:49:10,020 --> 00:49:14,500 |
|
ุงูู
ุญุงุถุฑุฉ ุงููุงุฏู
ุฉ ุงู ุดุงุก ุงููู ุงูููู
ุจูุฑูุญ ุจููู
ู |
|
|
|
458 |
|
00:49:14,500 --> 00:49:18,140 |
|
ุงููู ูู ูุฐุง ุงู section ุงู ุดุงุก ุงููู |
|
|
|
|