abdullah's picture
Add files using upload-large-folder tool
db9b795 verified
raw
history blame
43.1 kB
1
00:00:21,410 --> 00:00:24,970
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ู…ุฑุฉ ุงู„ุชูŠ ูุงุชุช ุจุฏุฃู†ุง ุจ
2
00:00:24,970 --> 00:00:29,150
section ุซู„ุงุซุฉ ุฎู…ุณุฉ ุงู„ุฐูŠ ู‡ูˆ ุงู„ dimension ุฃุนุทูŠู†ุง
3
00:00:29,150 --> 00:00:33,490
ุชุนุฑูŠู ู„ู„ู€ in dimensional vector space ุฃูˆ ุงู„ู€ vector
4
00:00:33,490 --> 00:00:38,910
space has dimension n ูˆ ุฃุนุทูŠู†ุง ุชุนุฑูŠู ู„ู„ู€ bases ูู‚ุท
5
00:00:38,910 --> 00:00:43,450
ูˆ ุฃุนุทูŠู†ุง ุนู„ู‰ ุฐู„ูƒ ู…ุซุงู„ุง ูˆุงุญุฏุง ููƒุงู† ุชุนุฑูŠู ุงู„ู€ in
6
00:00:43,450 --> 00:00:47,590
dimensional vector space ู‚ู„ู†ุง ู‡ูˆ ุงู„ู€ vector space
7
00:00:47,590 --> 00:00:51,970
ุงู„ุฐูŠ ูŠุชุญู‚ู‚ ููŠู‡ ุดุฑุทูŠู†ุŒ ุงู„ุดุฑุท ุงู„ุฃูˆู„ ุนู†ุฏูŠ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ู€
8
00:00:51,970 --> 00:00:57,930
linearly independent vectorsุŒ ุงู„ุดุฑุท ุงู„ุซุงู†ูŠ ู„ูˆ ุฃุฎุฐุช
9
00:00:57,930 --> 00:01:01,670
ุฃูƒุซุฑ ู…ู† ู‡ุฐูˆู„ ุจู…ู‚ุฏุงุฑ ูˆู„ูˆ vector ูˆุงุญุฏุŒ ุจุฏู†ุง ู†ูƒูˆู†
10
00:01:01,670 --> 00:01:06,270
ู…ุนู‡ู… linearly dependentุŒ ุฅู† ุญุฏุซ ุฐู„ูƒ ูŠุจู‚ู‰ ุงู„ู€
11
00:01:06,270 --> 00:01:09,790
dimension ุชุจุน ุงู„ู€ vector space ู‡ูˆ ุนุฏุฏ ุงู„ู€ linearly
12
00:01:09,790 --> 00:01:13,610
independent elementsุŒ ู‡ุฐุง ุงู„ุชุนุฑูŠู ุงู„ุฃูˆู„ุŒ ุงู„ุชุนุฑูŠู
13
00:01:13,610 --> 00:01:19,370
ุงู„ุซุงู†ูŠุŒ ูŠู‚ูˆู„ู†ุง V1 ูˆ V2 ูˆ V3 ูˆ VkุŒ ุงู„ู€ vectors ู‡ุฐูˆู„
14
00:01:19,370 --> 00:01:25,210
ุฃุณู…ูŠู‡ู… basis ู„ู„ู€ vector space ุฅุฐุง ุชุญู‚ู‚ ุดุฑุทุงู†ุŒ ุงู„ุดุฑุท
15
00:01:25,210 --> 00:01:29,870
ุงู„ุฃูˆู„ ูƒุงู†ูˆุง ู‡ุฐูˆู„ ุจูŠูˆู„ุฏูˆู„ูŠ ุงู„ู€ vector space ูƒู„ู‡ุŒ ููŠู‡
16
00:01:29,870 --> 00:01:34,540
ุงู„ุดุฑุท ุงู„ุซุงู†ูŠุŒ ูŠูƒูˆู†ูˆุง ู‡ุฐูˆู„ ูƒู„ู‡ู… linearly independent
17
00:01:34,540 --> 00:01:40,220
ูˆู‚ู„ู†ุง ู…ู† ุงู„ุฃูุถู„ ุฃู† ู†ุณุชุฎุฏู… ุงู„ุดุฑุท ุงู„ุซุงู†ูŠ ุซู… ุงู„ุดุฑุท
18
00:01:40,220 --> 00:01:43,640
ุงู„ุฃูˆู„ุŒ ูŠุนู†ูŠ ูƒูŠูุŸ ูŠุนู†ูŠ ุจุฏูŠ ุฃุซุจุช ุฃู† ู‡ุฐูˆู„ ุงู„ู€ vectors
19
00:01:43,640 --> 00:01:48,380
are linearly independentุŒ ูˆู…ู† ุซู… ุจุฏูŠ ุฃุซุจุช ุฃู† ุฃูŠ
20
00:01:48,380 --> 00:01:51,380
element ููŠ ุงู„ู€ vector space ู‡ูˆ linear combination
21
00:01:52,640 --> 00:01:56,960
ุจุงุณุชุฎุฏุงู… ู‡ุฐู‡ ุงู„ู€ vectorsุŒ ู‡ุฐุง ู…ุง ุชุญุฏุซู†ุง ููŠู‡ ููŠ ุงู„ู…ุฑุฉ
22
00:01:56,960 --> 00:02:01,960
ุงู„ู…ุงุถูŠุฉุŒ ุงู„ุขู† ู†ู†ุชู‚ู„ ุฅู„ู‰ ู†ุธุฑูŠุฉุŒ ุจุฑุถู‡ ู„ุงุฒู„ู†ุง ููŠ ู†ูุณ
23
00:02:01,960 --> 00:02:05,380
ุงู„ู…ูˆุถูˆุนุŒ ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ุฃู† ู„ูˆ ูƒุงู† ุงู„ู€ V ู‡ูˆ vector
24
00:02:05,380 --> 00:02:10,800
spaceุŒ ุงู„ู€ dimension ู„ู‡ ูŠุณุงูˆูŠ NุŒ ูŠุจู‚ู‰ ุฃู†ุง ุนู†ุฏูŠ ุดุฑุทูŠู†
25
00:02:10,800 --> 00:02:15,140
ู…ุชุญู‚ู‚ุชุงู† ุงู„ุขู†ุŒ ุชู…ุงู…ุŸ ู„ูŠุดุŸ ู„ูˆ ุงู„ู€ dimension ุงู„ู€ vector
26
00:02:15,140 --> 00:02:19,440
space ูŠุนุทูŠู†ูŠ ุฃู† ู‡ูˆุŒ ูŠุนุทูŠู†ูŠ ุฃู† then every basis of
27
00:02:19,440 --> 00:02:25,160
V spans VุŒ ูŠุจู‚ู‰ ุฃูŠ basis ู„ู„ู€ vector space V ุจูŠูˆู„ุฏ ู„ูŠ
28
00:02:25,160 --> 00:02:30,740
ุฌู…ูŠุน ุนู†ุงุตุฑ ู…ู† VุŒ ูˆู‡ุฐุง ุฐูƒุฑู†ุง ุงู„ู…ุฑุฉ ุงู„ุชูŠ ูุงุชุช ุฃู†
29
00:02:30,740 --> 00:02:36,280
ุงู„ุนู†ุงุตุฑ ุงู„ุชูŠ ุฃู‚ูˆู„ ุนู„ูŠู‡ู… basis ู„ู„ู€ vector space ุฅุฐุง
30
00:02:36,280 --> 00:02:40,180
ุฃูŠ element ููŠ ุงู„ู€ vector space ู‚ุฏุฑุช ุฃูƒุชุจู‡ ุจูˆุงุณุทุฉ
31
00:02:40,180 --> 00:02:44,820
linear combination ุจู…ูŠู†ุŸ ุจู‡ุฐู‡ ุงู„ู€ vectorsุŒ ุทูŠุจ ุจุฏู†ุง
32
00:02:44,820 --> 00:02:49,730
ู†ูŠุฌูŠ ู„ุจุฑู‡ุงู† ุงู„ู†ุธุฑูŠุฉุŒ ูŠุจู‚ู‰ ุจุฑู‡ุงู† ุงู„ู†ุธุฑูŠุฉ ูƒุงู„ุชุงู„ูŠุŒ ุจุฏูŠ
33
00:02:49,730 --> 00:02:54,490
ุขุฎุฐ basis ู…ูˆุฌูˆุฏ ููŠ V ูˆุฃุซุจุช ุฃู† ู‡ุฐุง ุงู„ู€ basis
34
00:02:54,490 --> 00:02:59,830
ุจูŠูˆู„ุฏ ู„ูŠ ุฌู…ูŠุน ุนู†ุงุตุฑ VุŒ ุชู…ุงู…ุงุŒ ุฅุฐุง ุชู… ู„ู†ุง ุฐู„ูƒุŒ ุจูŠูƒูˆู†
35
00:02:59,830 --> 00:03:06,990
ุฎู„ุตู†ุง ู…ู† ุงู„ู…ูˆุถูˆุนุŒ ูŠุจู‚ู‰ ุจุฏุงุฆูŠ ุฃู‚ูˆู„ ู‡ู†ุง let ุงู„ุฐูŠ ู‡ูˆ
36
00:03:06,990 --> 00:03:13,130
ู…ู† V1 ูˆ V2 ูˆ ู„ุบุงูŠุฉ ุงู„ู€ VN ุจู€
37
00:03:22,480 --> 00:03:27,840
ูŠุจู‚ู‰ ุฃู†ุง ูุฑุถุช ุฃู† v1 ูˆv2 ูˆู„ุบุงูŠุฉ vn ุนุจุงุฑุฉ ุนู† ุงู„ู€ basis
38
00:03:27,840 --> 00:03:34,540
ู„ู€ vector space vุŒ ุทุจุนุง ุฃู†ุง ู…ุฌุจุฑ ุฃู† ุฃู‚ูˆู„ ู…ู† 1
39
00:03:34,540 --> 00:03:40,300
ู„ุบุงูŠุฉ nุŒ ูˆู„ุง ูƒุงู† ุจูŠู…ูƒู† ุฃุฒูŠุฏู‡ู… ุดูˆูŠุฉุŒ ู…ุฌุจุฑ
40
00:03:42,550 --> 00:03:48,250
ู…ุฌุจุฑ ุฅุฌุจุงุฑูŠ ู„ุฅู†ู‡ dimension ู„ู„ู€ vector space NุŒ ุชู…ุงู…
41
00:03:48,250 --> 00:03:52,690
ุงู„ู€ dimension ู„ู‡ ูŠุจู‚ู‰ ุนุฏุฏ ุงู„ุนู†ุงุตุฑ ููŠ ุงู„ู€ bases ูŠุจู‚ู‰
42
00:03:52,690 --> 00:03:58,710
ุจู†ุงุก ุนู„ูŠู‡ ู‡ุฐูˆู„ bases ู„ู…ูŠู†ุŸ ู„ู„ู€ vector space VุŒ ุชู…ุงู…
43
00:03:59,230 --> 00:04:04,350
ุงู„ุขู† ุฅุฐุง ุฃุซุจุช ู„ู‡ ุฃู† ุฃูŠ element ููŠ ุงู„ู€ vector space
44
00:04:04,350 --> 00:04:09,490
V ู‡ูˆ linear combination ู…ู† ู‡ุฐูˆู„ุŒ ุฃุชูˆู…ุงุชูŠูƒ ุจูŠูƒูˆู†ูˆุง
45
00:04:09,490 --> 00:04:15,370
ู‡ุฐูˆู„ ุจูŠูˆู„ุฏูˆุง ู„ุฌู…ูŠุน ุนู†ุงุตุฑ V ุจุงู„ุถุจุท ุชู…ุงู…ุงุŒ ู„ุฐู„ูƒ ุฃุฑูˆุญ
46
00:04:15,370 --> 00:04:25,810
ุขุฎุฐ ุฃูŠ ุนู†ุตุฑ V ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ vector space VุŒ ู…ุฏุงู… ุฃุฎุฐุช
47
00:04:25,810 --> 00:04:30,210
V ููŠ ุงู„ู€ vector space VุŒ ููŠ ุงุญุชู…ุงู„ ุฃู† ู‡ุฐู‡ ุงู„ู€ V ุชุจู‚ู‰
48
00:04:30,210 --> 00:04:34,850
ููŠ ุงู„ู…ุฌู…ูˆุนุฉ ู‡ุฐู‡ุŒ ุตุญ ูˆู„ุง ู„ุฃุŸ ูˆุงุญุชู…ุงู„ ุฃู† ุชูƒูˆู† ุฎุงุฑุฌ
49
00:04:34,850 --> 00:04:39,570
ุงู„ู…ุฌู…ูˆุนุฉุŒ ู…ุด ู„ุงุŒ ุงุญุชู…ุงู„ูŠู† ูˆุงุฑุฏูŠู†ุŒ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฏุฑุณ ู‡ุฐูŠู†
50
00:04:39,570 --> 00:04:46,270
ุงู„ุงุญุชู…ุงู„ูŠู†ุŒ ูŠุจู‚ู‰ let ุงู„ู€ V belongs to VุŒ ูุจุฌูŠ ุจู‚ูˆู„ if
51
00:04:46,270 --> 00:04:53,920
ุงู„ู€ V ู…ูˆุฌูˆุฏ ููŠ ุงู„ู…ุฌู…ูˆุนุฉ V1 ูˆV2 ู„ุบุงูŠุฉ ุงู„ู€ Vn then
52
00:04:53,920 --> 00:04:58,840
ู…ุงุฐุง ุณูŠุญุตู„ุŸ ู…ุฏุงู… V ู…ูˆุฌูˆุฏ ู‡ู†ุงุŒ ูŠุจู‚ู‰ V ุฃุจู‚ู‰ ุฃุญุฏ
53
00:04:58,840 --> 00:05:08,220
ู…ู† ู‡ุคู„ุงุกุŒ ูŠุจู‚ู‰ then ุงู„ู€ V ุณุชูƒูˆู† ViุŒ ูˆ I ุฃูƒุจุฑ ู…ู† ุฃูˆ
54
00:05:08,220 --> 00:05:15,240
ุชุณุงูˆู‰ 1 ูˆุฃู‚ู„ ู…ู† ุฃู† ุชุณุงูˆูŠ nุŒ ูŠุนู†ูŠ ุงุญุชู…ุงู„ ุฃู† V ุชุจู‚ู‰ V
55
00:05:15,240 --> 00:05:20,200
1 ูˆุงุญุชู…ุงู„ ุงู„ู€ V ุชุจู‚ู‰ V2 ูˆุงุญุชู…ุงู„ ุงู„ู€ V ุชุจู‚ู‰ V3 ูˆ
56
00:05:20,200 --> 00:05:26,800
ุงุญุชู…ุงู„ ุงู„ู€ V ุชูƒูˆู† ู…ูŠู†ุŸ Vn ูˆู‡ูƒุฐุงุŒ ุทูŠุจ ูŠุจู‚ู‰ ุงุญุชู…ุงู„ ุงู„ู€
57
00:05:26,800 --> 00:05:33,960
V ู‡ุฐู‡ ุชุจู‚ู‰ ู…ูŠู†ุŸ ุชุจู‚ู‰ ViุŒ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุจู‚ุฏุฑ ุฃูƒุชุจ
58
00:05:33,960 --> 00:05:42,540
ุงู„ู€ V ู‡ุฐู‡ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠุŒ Zero ููŠ V1ุŒ 0 ููŠ V2 ุฒุงุฆุฏ
59
00:05:42,540 --> 00:05:52,200
ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ Vi ุฒุงุฆุฏ ูˆู†ู†ุฒู„ ู„ุบุงูŠุฉ Zero ููŠ ุงู„ู€ Vn
60
00:05:52,200 --> 00:06:02,500
ุจู†ุนู…ู„ู‡ุงุŒ ุจู†ุนูุดุŒ ู‡ุฐุง ูƒู„ู‡ ุจูŠุตูุฑุŒ ุจูŠุธู„ ู…ูŠู† ุนู†ุฏูŠุŸ ูˆ Vi ู…ูŠู†
61
00:06:02,500 --> 00:06:07,390
ู‡ูŠ ูŠุจู‚ู‰ ูƒู„ุงู…ูŠ ุตุญูŠุญุŒ ุตุญูŠุญ ูˆู„ุง ู„ุฃุŸ ูŠุจู‚ู‰ ุฅูŠุด ู…ุนู†ู‰ ู‡ุฐุง
62
00:06:07,390 --> 00:06:11,370
ุงู„ูƒู„ุงู…ุŸ ุฃู† V ู‡ูˆ linear combination ู…ู† ูƒู„ ุงู„ู€ V's
63
00:06:11,370 --> 00:06:21,670
ุงู„ุชูŠ ุนู†ุฏูŠุŒ ูŠุจู‚ู‰ ู‡ู†ุง this means thatุŒ ู‡ุฐุง ูŠุนู†ูŠ ุฃู† ุงู„ู€
64
00:06:21,670 --> 00:06:26,730
V is a linear combination
65
00:06:29,170 --> 00:06:36,050
linear combination ofุŒ ู‡ู… ูƒู„ู‡ู… ุงู„ู€ V's ุงู„ุชูŠ ู„ุฏูŠู†ุง
66
00:06:36,050 --> 00:06:40,370
V1 ูˆ V2 ูˆ ู„ุบุงูŠุฉ VN
67
00:06:44,540 --> 00:06:49,660
ุฅูŠุด ุฃู†ุง ุจุฏูŠ ุฃุซุจุชุŸ ุฃูŠ basis span ุงู„ู€ VุŒ ุฃุฎุฐุช element
68
00:06:49,660 --> 00:06:52,920
ุนุดูˆุงุฆูŠ ูˆุทุงู„ุน ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ุชูŠ ุฃุฎุฐุชู‡ุงุŒ ู‡ุฐุง
69
00:06:52,920 --> 00:06:57,980
ู‚ุฏุฑุช ุฃูƒุชุจู‡ ุนู„ู‰ linear combination ู…ู† ุงู„ู€ VุŒ ู…ุนู†ุงุชู‡
70
00:06:57,980 --> 00:07:02,540
ุงู„ู€ V ู‡ุฐุง ู…ูˆุฌูˆุฏ ูˆูŠู†ุŸ ููŠ ุงู„ู€ span ุชุจุน ุงู„ู€ vectors ุงู„ุชูŠ
71
00:07:02,540 --> 00:07:12,780
ุนู†ุฏู†ุง ู‡ุฐู‡ุŒ ุทูŠุจ ุงู„ุขู†ุŒ ุณุฑุง V ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ span ุชุจุน ู…ู†ุŸ V1
72
00:07:12,780 --> 00:07:20,580
ูˆ V2 ูˆ ู„ุบุงูŠุฉ VNุŒ ู‡ุฐุง ู„ูˆ ูƒุงู† ุงู„ู€ V ู…ูˆุฌูˆุฏ ููŠ ุงู„ู…ุฌู…ูˆุนุฉ
73
00:07:20,580 --> 00:07:27,460
ู‡ุฐู‡ุŒ ุทูŠุจ ู‡ู†ุง ู„ูˆ ูƒุงู† ุงู„ู€ V does not belong to ู…ู†
74
00:07:27,460 --> 00:07:33,260
ู„ู„ู…ุฌู…ูˆุนุฉ V1 ูˆ V2 ูˆ ู„ุบุงูŠุฉ VN
75
00:07:36,130 --> 00:07:42,630
ู„ูˆ ูƒุงู† ู‡ุฐุง ู…ุด ู…ูˆุฌูˆุฏ ู‡ู†ุงุŒ ุฅูŠุด ุงู„ุฐูŠ ุจุฏูŠ ูŠุญุตู„ุŸ then ุฅูŠุด
76
00:07:42,630 --> 00:07:50,910
ุฑุฃูŠูƒ ููŠ ุงู„ุณุช ู‡ุฐู‡ V ูˆ V1 ูˆ V2 ูˆ VN linearly
77
00:07:50,910 --> 00:07:59,210
dependent ูˆู„ุง linearly independentุŒ ุงู„ู€
78
00:07:59,210 --> 00:08:03,710
vectors ู‡ุฐูˆู„ุŒ ุฃุถูุช ุนู„ูŠู‡ู… ุงู„ุฐูŠ ู‡ูˆ ุงู„ู€ vector V ุงู„ุชูŠ
79
00:08:03,710 --> 00:08:08,360
ู…ุด ู…ู†ู‡ู…ุŒ ูŠุจู‚ู‰ ู‡ุฐูˆู„ ู…ุฌู…ูˆุนุฉ linearly dependent ูˆู„ุง
80
00:08:08,360 --> 00:08:13,680
linearly independentุŸ linearly independentุŒ ู„ูŠุดุŸ
81
00:08:13,680 --> 00:08:18,000
ู„ุฃู† ุงู„ู€ dimension ู‡ุฐุง ู„ูŠู‡ ูŠุณุงูˆูŠ NุŸ ุฃูˆู„ ุชุนุฑูŠู ุฃุฎุฐู†ุงู‡
82
00:08:18,000 --> 00:08:22,440
ููŠ ู‡ุฐุง section ูˆุฐูƒุฑุชู‡ ู‚ุจู„ ู‚ู„ูŠู„ ุฃูˆู„ ู…ุง ุจุฏุฃุช ู…ุญุงุถุฑุชูŠ
83
00:08:22,440 --> 00:08:27,360
ู‚ู„ุช ู„ู…ุง ุฃู‚ูˆู„ ุงู„ู€ vector space finite dimensional ุฃูˆ
84
00:08:27,360 --> 00:08:30,960
ุงู„ู€ dimension ู„ู‡ ูŠุณุงูˆูŠ NุŒ ูŠุจู‚ู‰ ููŠู‡ ุนู†ุฏูŠ ุดุฑุทูŠู†
85
00:08:33,510 --> 00:08:37,850
ู„ูˆ ุฃุถูุช ุนู„ูŠู‡ู… ูƒู…ุงู† vector ุจูŠุตูŠุฑ ู…ูŠู†ุŸ linearly
86
00:08:37,850 --> 00:08:41,290
dependentุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ ุฃุถูุช ุนู„ูŠู‡ู… ุฏูˆู„ vector ูˆู„ุง ู„ุฃุŸ
87
00:08:41,290 --> 00:08:48,670
ูŠุจู‚ู‰ then ู‡ุฐูˆู„ are linearly dependentุŒ ุงู„ุณุจุจ
88
00:08:48,670 --> 00:08:54,410
because the
89
00:08:54,410 --> 00:08:56,250
dimension
90
00:08:59,440 --> 00:09:09,180
V is nุŒ ูˆู‡ุฐูˆู„ ุนุฏุฏู‡ู… ูƒู…ุŸ n ุฒุงุฆุฏ ูˆุงุญุฏุŒ ูŠุนู†ูŠ ุฃูƒุซุฑ
91
00:09:09,180 --> 00:09:14,160
ู…ู†ู‡ู… ุจู…ู‚ุฏุงุฑุŒ ุจูƒู…ุŸ ุจู…ู‚ุฏุงุฑ ูˆุงุญุฏุŒ ุทูŠุจ ูƒูˆูŠุณุŒ ู…ุฏุงู… ู‡ุฐูˆู„
92
00:09:14,160 --> 00:09:20,220
linearly dependentุŒ ูŠุจู‚ู‰ ู„ุงุฒู… ุฃู„ุงู‚ูŠ scalars ู‡ู‡ู‡
93
00:09:20,220 --> 00:09:23,820
ู…ูˆุฌูˆุฏุฉ ููŠ R ุจุญูŠุซ ุฃุถุฑุจ scalar ููŠ ูƒู„ ูˆุงุญุฏ ูˆุฃุฌู…ุน
94
00:09:23,820 --> 00:09:37,100
ุจูŠุณุงูˆูŠ ูƒู…ุŸ ZeroุŒ ูŠุจู‚ู‰ this means that there exist c0
95
00:09:37,100 --> 00:09:53,200
ูˆ c1 ูˆ c2 ูˆ cn not all zero such thatุŒ ุจุญูŠุซ ุฃู† such
96
00:09:53,200 --> 00:10:03,940
that ุงู„ุฐูŠ ู‡ูˆ c0 V ุฒุงุฆุฏ c1 V1 ุฒุงุฆุฏ c2 V2 ุฒุงุฆุฏ cn
97
00:10:03,940 --> 00:10:08,240
Vn ุจุฏู‘ู‡ ูŠุณุงูˆูŠ zeroุŒ ู…ูŠู† ุงู„ุชูŠ ุชุณุฃู„ุŸ ุงู„ุชูŠ ุชุญูƒูŠ ุฃูŠูˆุฉ
98
00:10:08,240 --> 00:10:19,450
ูƒูŠู ู‡ุฐูˆู„ ู…ู† ู…ู† V1 ู„ุบุงูŠุฉ Vn ุญุทูŠุช ุนู„ูŠู‡ู… ูƒู…ุงู† ูˆุงุญุฏุŒ ู…ุด
99
00:10:19,450 --> 00:10:24,330
ู‡ูŠูƒ ุชุนุฑูŠู ุงู„ู€ dimensionุŸ ุฃูˆู„ ุชุนุฑูŠูุŒ ู‡ุฐู‡ ู‡ูŠ V ูˆุจุนุฏูŠู†
100
00:10:24,330 --> 00:10:28,990
ุจุนุฏูŠู† V1 ูˆุจุนุฏูŠู† V2ุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ
101
00:10:28,990 --> 00:10:33,070
ุงู„ุชูŠ ููˆู‚ ุงู„ุชูŠ linearly independentุŒ ุฃุถูุช ู„ู‡ู… ูƒู…ุงู†
102
00:10:33,070 --> 00:10:36,900
ูˆุงุญุฏุŒ ู…ู† ุชุนุฑูŠู ุงู„ู€ dimension ุชุจุน ุงู„ู…ุฑุฉ ุงู„ุชูŠ ูุงุชุชุŒ ุฃูˆู„
103
00:10:36,900 --> 00:10:41,780
ุชุนุฑูŠู ุฃุฎุฐู†ุงู‡ุง ูˆุฐูƒุฑุชู‡ ู‚ุจู„ ู‚ู„ูŠู„ ู…ุฑุชูŠู†ุŒ ู‚ู„ุช ุชุนุฑูŠู ุฃู†
104
00:10:41,780 --> 00:10:45,620
ู„ู…ุง ุฃู‚ูˆู„ ุงู„ู€ dimension ู„ู„ู€ vector space N ู…ุนู†ุงุชู‡ ุฃู†
105
00:10:45,620 --> 00:10:49,960
ุงู„ู€ linearly independent vectors ุนุฏุฏู‡ู… ูŠุณุงูˆูŠ N ู„ูˆ
106
00:10:49,960 --> 00:10:53,730
ุฃุถูุช ุนู„ูŠู‡ุง ูƒู…ุงู† vector ุจูŠุตูŠุฑูˆุง linearlyุŒ ู‡ูŠ ุงู„ุชูŠ
107
00:10:53,730 --> 00:10:57,810
ุงุญู†ุง ุจู†ู‚ูˆู„ู‡ุŒ ู„ู… ู†ุฃุชู ุบูŠุฑ ุงู„ูƒู„ุงู… ู‡ุฐุงุŒ ู…ุง ุฌูŠุจู†ุงู‡ ุดูŠุก
108
00:10:57,810 --> 00:11:02,050
ุฌุฏูŠุฏุŒ ุชู…ุงู…ุŸ ู„ูƒู† ูŠุจุฏูˆ ุฃู†ูƒู… ู…ุด ู‚ุงุฑุฆุงุชุŒ ู‡ุฐุง ุงู„ุฐูŠ
109
00:11:02,050 --> 00:11:05,130
ุฃุฎุฐู†ุงู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉุŒ ูˆุฑุบู… ุฃู†ูŠ ู‚ู„ุชู‡ ู…ุฑุชูŠู†
110
00:11:05,130 --> 00:11:09,690
ุงู„ูŠูˆู… ูˆู‡ูŠ ูƒู…ุงู† ุซุงู„ุซ ู…ุฑุฉุŒ ูŠุจู‚ู‰ ู…ุง ู„ูƒู…ุด ุญุถุฑ ุจุนุฏ ุฐู„ูƒ
111
00:11:10,780 --> 00:11:15,460
ุทูŠุจ ูŠุจู‚ู‰ ุจุฃุฌูŠ ุจู‚ูˆู„ ู‡ุฐุง ูŠุนู†ูŠ ุฃู† ููŠ ุนู†ุฏูŠ ุซูˆุงุจุช ู…ุด
112
00:11:15,460 --> 00:11:20,280
ูƒู„ู‡ู… ุตูุฑ ู„ุฅูŠุด ุฃู‚ูˆู„ linearly dependentุŒ ุจุญูŠุซ
113
00:11:20,280 --> 00:11:25,560
ุงู„ู…ุฌู…ูˆุน ู‡ุฐุง ูŠุณุงูˆูŠ zeroุŒ ู…ุนู†ุงุชู‡ ุงู„ุณูŠู‡ุงุช ู‡ุฐูˆู„ ููŠู‡ู…
114
00:11:25,560 --> 00:11:33,430
ุนู„ู‰ ุงู„ุฃู‚ู„ ูˆู„ูˆ ุฑู‚ู… ูˆุงุญุฏ ู„ุง ูŠุณุงูˆูŠ zeroุŒ ุทุจ ุฃู†ุง ุจุฏูŠ ุฃุฏุนูŠ
115
00:11:33,430 --> 00:11:38,310
ุงู„ุขู† ุฃู† c0 ู‡ุฐุง ู„ุง ูŠุณุงูˆูŠ zero ูˆู†ุดูˆู ุงู„ุฏุนุงุก ู‡ุฐุง
116
00:11:38,310 --> 00:11:46,930
ุตุญ ูˆู„ุง ุบู„ุทุŒ ูŠุจู‚ู‰ ุจุฃุฌูŠ ุจู‚ูˆู„ we claim thatุŒ ุฃู† c
117
00:11:46,930 --> 00:11:53,430
0 ู„ุง ูŠุณุงูˆูŠ zeroุŒ claim ูŠุนู†ูŠ ูŠุฏุนู‰ุŒ ูŠุจู‚ู‰ ุฃู†ุง ุจุฏุนูŠ
118
00:11:53,430 --> 00:11:58,230
ุงู„ุขู† ุฃู† c0 ู‡ุฐุง ู„ุง ูŠุณุงูˆูŠ zeroุŒ ุจุฏูŠ ุฃุดูˆู ุงู„ุฏุนุงุก
119
00:11:58,230 --> 00:12:03,610
ุตุญ ูˆู„ุง ุบู„ุทุŒ ู„ูˆ ูุฑุถุช ุนูƒุณ ู‡ุฐุงุŒ ู„ูˆ ูุฑุถุช ุฃู† ุงู„ู€ c0
120
00:12:03,610 --> 00:12:07,490
ุจุฏู‘ู‡ ูŠุณุงูˆูŠ zero ูŠุง ุจู†ุงุชุŒ ูŠุจู‚ู‰ ุงู„ู€ term ู‡ุฐุง ุจูŠุฑูˆุญ ุจู€
121
00:12:07,490 --> 00:12:13,160
zeroุŒ ู…ูŠู† ุจูŠุธู„ุŸ ู‡ุฐูˆู„ุŒ ุทุจ ู‡ุฐูˆู„ ูƒู„ู‡ู… linearly
122
00:12:13,160 --> 00:12:17,180
independentุŒ ุฅุฐุง ุฅุฌุจุงุฑูŠ ุงู„ุจุงู‚ูŠ ูƒู„ู‡ ุจูŠุตูŠุฑ ุจู…ูŠู†ุŸ ุจู€
123
00:12:17,180 --> 00:12:20,980
zeroุŒ ุฅุฐุง ูŠุจู‚ู‰ ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… c0 ุจูŠุณุงูˆูŠ c1
124
00:12:20,980 --> 00:12:23,940
ุจูŠุณุงูˆูŠ cุŒ independentุŒ ู…ุนู‚ูˆู„ ู‡ุฐุง ุงู„ูƒู„ุงู…ุŸ ุทุจ ุฃู†ุง ุฌุงูŠ
125
00:12:23,940 --> 00:12:27,800
linearly dependent ูˆูƒูŠู ู‡ุฐูˆู„ ุจูŠุณุงูˆูŠุŸ ู…ุง ููŠุด ุฅู…ูƒุงู†ูŠุฉ
126
00:12:27,800 --> 00:12:32,700
ูŠุจู‚ู‰ ุจูŠุตูŠุฑ ูƒู„ุงู…ูŠ ุบู„ุท ูˆุนูƒุณู‡ ู‡ูˆ ู…ูŠู†ุŸ ุตุญุŒ ูŠุจู‚ู‰ ุฃู†ุง ุจุฃุฌูŠ
127
00:12:32,700 --> 00:12:37,340
ุจู‚ูˆู„ ูˆุฃู‚ู„ู… ุฐุงุชู†ุงุŒ ู†ุฏุนูŠ ุฃู† ุงู„ู€ c0 ูŠุณุงูˆูŠ zeroุŒ
128
00:12:37,340 --> 00:12:38,300
otherwise
129
00:12:40,470 --> 00:12:47,530
ูŠุนู†ูŠ ูˆุฅู„ุง ู„ูˆ ูƒุงู† ุงู„ู€ c0 ุจุฏู‘ู‡ ูŠุณุงูˆูŠ zeroุŒ then ุงู„ู€
130
00:12:47,530 --> 00:12:56,250
c1 V1 ุฒุงุฆุฏ c2 V2 ุฒุงุฆุฏ cn Vn ุจุฏู‘ู‡ ูŠุณุงูˆูŠ zeroุŒ ู‡ุฐุง ุฅูŠุด
131
00:12:56,250 --> 00:13:02,550
ู…ุนู†ุงู‡ุŸ ู…ุนู†ุงู‡ ุฅู†ู‡ c1 ุจุฏู‘ู‡ ูŠุณุงูˆูŠ c2 ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ุจุฏู‘ู‡ ูŠุณุงูˆูŠ
132
00:13:02,550 --> 00:13:09,230
cn ุจุฏู‘ู‡ ูŠุณุงูˆูŠ zeroุŒ becauseุŒ ุงู„ุณุจุจ ุฅู†ู‡ v1
133
00:13:18,000 --> 00:13:24,660
ูŠุจู‚ู‰ ุฅุฐุง ู‡ุฐุง ุงู„ูƒู„ุงู… ุตุญูŠุญ ูˆู„ุง ุบู„ุทุŸ ุฅู† c0 ุจูŠุจู‚ู‰ 0
134
00:13:24,660 --> 00:13:31,360
ุบู„ุทุŒ ูŠุจู‚ู‰ ุงู„ุตุญ ุฅู†ู‡ c0 ู…ุง ู„ู‡ุŸ ู„ุง ูŠุณุงูˆูŠ 0ุŒ ู„ุฅู† ู„ูˆ
135
00:13:31,360 --> 00:13:34,740
ุตุงุฑ 0ุŒ ูŠุจู‚ู‰ ู‡ุฐูˆู„ ุจูŠุจู‚ู‰ ุตุงุฑ 0 ูˆู‡ุฐุง ูƒู„ู‡ ุตุงุฑ 0ุŒ
136
00:13:34,740 --> 00:13:38,540
linearly independentุŒ ูŠุจู‚ู‰ ู…ุนู†ุงุชู‡ ุจูŠุตูŠุฑูˆุง ู‡ุฐูˆู„ ูƒู„ู‡ู…
137
00:13:38,540 --> 00:13:43,780
linearly independentุŒ ูˆู‡ุฐุง ุฎุทุฃุŒ ูŠุจู‚ู‰ ู‡ู†ุง c0 ู„ุง
138
00:13:43,780 --> 00:13:52,290
ูŠู…ูƒู† ุฃู† ูŠุณุงูˆูŠ 0ุŒ ุชู…ุงู…ุŒ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ so c0 V ุจุฏู‘ู‡
139
00:13:52,290 --> 00:14:01,350
ูŠุณุงูˆูŠ ู†ุงู‚ุต c1 V1 ู†ุงู‚ุต c2 V2 ู†ุงู‚ุต cn ููŠ ุงู„ู€ VnุŒ ู†ู‚ุณู…
140
00:14:01,350 --> 00:14:07,000
ูƒู„ู‡ ุนู„ู‰ c0ุŒ ู„ูŠุดุŸ ู„ุฃู† c0 ู„ุง ูŠุณุงูˆูŠุŒ ุฅุฐุง ุงู„ู€ V
141
00:14:07,000 --> 00:14:13,920
ู†ุงู‚ุต c1 ุนู„ู‰ c0 ููŠ ุงู„ู€ V1 ู†ุงู‚ุต c2 ุนู„ู‰ c0 ููŠ
142
00:14:13,920 --> 00:14:20,120
ุงู„ู€ V2 ู†ุงู‚ุต ู†ุงู‚ุต cn ุนู„ู‰ c0 ููŠ ุงู„ู€ VnุŒ ุฃูˆ ุฅู†
143
00:14:20,120 --> 00:14:26,380
ุดุฆุชุŒ ู‚ู„ู†ุง ุฅู† V ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ู‡ุฐุง a1 ูƒู„ู‡ุŒ ูŠุจู‚ู‰ a1 V1
144
00:14:26,380 --> 00:14:32,460
ุฒุงุฆุฏ a2 V2 ุฒุงุฆุฏ an Vn
145
00:14:34,880 --> 00:14:39,620
ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…ุŸ ู…ุนู†ุงุชู‡ ุงู„ู€ element V ุงู„ุชูŠ ู…ุด
146
00:14:39,620 --> 00:14:43,540
ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ set of linearly independent elements
147
00:14:43,540 --> 00:14:49,260
ู‡ูˆ linear combination ู…ู† ู…ู†ุŸ ู…ู† ุงู„ุขุฎุฑูŠู†ุŒ ูŠุจู‚ู‰ ู‡ู†ุง
148
00:14:49,260 --> 00:14:55,160
So V is a linear combination
149
00:14:58,100 --> 00:15:06,060
combination of V1 ูˆV2 ูˆูƒุฐู„ูƒ VN
150
00:15:10,000 --> 00:15:14,060
ุทู„ุน ู‡ู†ุง V ู„ู…ุง ูƒุงู† ููŠ ุงู„ู…ุฌู…ูˆุนุฉุŒ ุทู„ุน ู‡ูˆ linear
151
00:15:14,060 --> 00:15:18,600
combination ู…ู† ุงู„ุขุฎุฑูŠู†ุŒ ูˆู„ู…ุง ู…ุง ูƒุงู†ุด ููŠ ุงู„ู…ุฌู…ูˆุนุฉ
152
00:15:18,600 --> 00:15:23,260
ุทู„ุน ูƒู…ุงู† ู‡ูˆ linear combination ู…ู† ุงู„ุขุฎุฑูŠู†ุŒ ู…ุนู†ุงุชู‡
153
00:15:23,260 --> 00:15:29,720
ุฅูŠุดุŸ ู…ุนู†ุงุชู‡ ู‡ุฐุง ูŠู…ุซู„ ู…ู†ุŸ basisุŒ ู…ุนู†ุงุชู‡ ุงู„ู€ basis ู‡ุฐุง
154
00:15:29,720 --> 00:15:38,290
spanning ุงู„ู€ VุŒ ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ู€ V ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ span
155
00:15:38,290 --> 00:15:47,290
ุจุชุงุจุน ุงู„ู€ V ูƒู„ู‡ุงุŒ ูŠุจู‚ู‰ ู‡ูƒุฐุง ุงู„ุฐูŠ ู‡ูˆ ุงู„ู€ V1 ูˆุงู„ู€
156
00:15:47,290 --> 00:15:55,750
V2 ูˆุงู„ู€ Vn ูƒู„ ุงู„ู…ุฌู…ูˆุนุฉ ู‡ุฐู‡ ู…ุงู„ู‡ุงุŸ span ุงู„ุฐูŠ ู‡ูˆ ุงู„ู€ V
157
00:15:59,930 --> 00:16:05,630
ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู…ู† ุงู„ุขู† ุตุงุนุฏุงุŒ ุฃูŠ basis ู„ู€ vector
158
00:16:05,630 --> 00:16:10,390
space ุจุฏู‘ู‡ ูŠุฌูŠุจ ู„ูŠ ุฌู…ูŠุน ุนู†ุงุตุฑ ุงู„ู€ space ุจูŠ listู†ุง
159
00:16:10,390 --> 00:16:14,550
ุชู…ุงู…ุŸ ูˆู‡ูŠ ุฃุซุจุชู†ุง ุฃู†ู‡ ู„ูˆ ูƒุงู† ุงู„ู€ element ู…ู† ุถู…ู† ุงู„ู€
160
00:16:14,550 --> 00:16:18,470
basis ุฃูˆ ูƒุงู† ุงู„ู€ element ู…ู† ุจุฑุง ุงู„ู€ basis ูŠุจู‚ู‰ ูƒุชุจุชู‡
161
00:16:18,470 --> 00:16:22,910
ุนู„ู‰ ุตูŠุบุฉ linear combination ู…ู† ู…ู†ุŸ ู…ู† ุนู†ุงุตุฑ ุงู„ู€ basis
162
00:16:23,250 --> 00:16:28,010
ูŠุจู‚ู‰ ุญุท ุงู„ู…ุนู„ูˆู…ุฉ ู‡ุฐู‡ ููŠ ุฏู…ุงุบูƒุŒ ู‡ุฐู‡ ู…ุนู„ูˆู…ุฉ ุฃุณุงุณูŠุฉ
163
00:16:28,010 --> 00:16:39,270
ุจุฏู†ุง ู†ุจู†ูŠ ุนู„ูŠู‡ุง ูƒุซูŠุฑ ู…ู† ุงู„ุดุบู„ ุชุจุนู†ุง ููŠ
164
00:16:39,270 --> 00:16:48,670
ุฃู†ุง ูƒู…ุงู† ู†ุธุฑูŠุฉ ุจุณูŠุทุฉ ุตุบูŠุฑุฉุŒ ู…ุด ุฒูŠ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ
165
00:16:48,670 --> 00:16:50,450
ุจุชู‚ูˆู„ ู…ุง ูŠุฃุชูŠุŒ theorem
166
00:16:57,290 --> 00:17:17,730
ุฅุฐุง ูƒุงู† ู‡ู†ุงูƒ ู…ุฌู…ูˆุนุฉ ู…ู† n ูˆุญุฏุงุช ู„ูŠู†ูŠุงุฑูŠุฉุŒ ุงู„ูˆุญุฏุงุช
167
00:17:17,730 --> 00:17:20,090
ุงู„ู„ูŠู†ูŠุงุฑูŠุฉุŒ ุงู„ูˆุญุฏุงุช ุงู„ู„ูŠู†ูŠุงุฑูŠุฉุŒ ุงู„ู„ูŠู†ูŠุงุฑูŠุฉุŒ ุงู„ูˆุงุญุฏุฉ
168
00:17:20,090 --> 00:17:20,790
ู…ู† ู…ุฌู„ุฉ V
169
00:17:28,510 --> 00:17:34,330
a vector space
170
00:17:34,330 --> 00:17:42,130
V that
171
00:17:42,130 --> 00:17:47,190
spans
172
00:17:47,190 --> 00:17:52,430
V then
173
00:17:52,430 --> 00:17:56,870
V has
174
00:17:58,890 --> 00:18:16,770
201
00:20:48,030 --> 00:20:53,210
V1 ูˆ V2 ูˆ ู„ุบุงูŠุฉ VN
202
00:21:00,160 --> 00:21:03,860
ู‡ูˆ ุฐูƒุฑู†ุง ุฃู†ู‡ ู…ุด ู‡ู†ุซุจุช ุฃู† ุงู„ dimension ุงู„ุฐูŠ ูŠุณุงูˆูŠ
203
00:21:03,860 --> 00:21:08,720
ุฃู†ู‡ ุจุฏู‡ ูŠุซุจุช ุดุบู„ุชูŠู† ุงู„ุดุบู„ ุงู„ุฃูˆู„ ู…ุนุชุงู‡ ุฅูŠุด ู‚ุงู„ ู„ูŠุŸ
204
00:21:08,720 --> 00:21:12,740
ู‚ุงู„ ู„ูŠ ููŠ ุนู†ุฏูƒ n linearly independent elements ูŠุจู‚ู‰
205
00:21:12,740 --> 00:21:18,160
ู‡ุฐู‡ ุงู„ุดุบู„ ู…ุนุชุงู‡ ูˆุฒูŠุงุฏุฉ ุดูˆูŠุฉ ุดูˆูŠุฉ that spans V
206
00:21:18,160 --> 00:21:23,680
ุจูŠูˆู„ุฏูˆุง ู„ูŠ ู…ู†ุŸ ุจูŠูˆู„ุฏูˆุง ู„ูŠ ุนู†ุงุตุฑ V ุจู‚ูˆู„ ุขู‡ ู‡ุฏูˆู„ ุงู„ n
207
00:21:23,680 --> 00:21:29,310
linearly independent ู„ูˆ ุฒุฏุช ุนู„ูŠู‡ู… ูƒู…ุงู† vector ู…ุงุฐุง
208
00:21:29,310 --> 00:21:35,610
ูŠุญุฏุซุŸ Linearly Independent ูˆู‡ุฐุง ุฅุฌุจุงุฑูŠ ู„ูˆ ูƒุงู†
209
00:21:35,610 --> 00:21:40,030
Linearly Independent ู‡ุฐุง ู„ูˆ ูƒุงู† ู„ูˆ ูƒุงู† ุงู„
210
00:21:40,030 --> 00:21:42,990
dimension ูŠุณุงูˆูŠ N ู„ูƒู† ุฃู†ุง ู…ุด ุนุงุฑู ุฅู† ุงู„ dimension
211
00:21:42,990 --> 00:21:49,170
ุฃู†ุง ุจุฏูŠ ุฃุซุจุช ุฅู† ุงู„ dimension ูŠุณุงูˆูŠ M ู„ูƒู† ุฎู„ูŠู†ูŠ
212
00:21:49,170 --> 00:21:53,250
ุฃุฑุฌุน ุจุงู„ุฐุงูƒุฑุฉ ุฅู„ู‰ ุงู„ูˆุฑุงุก ุดูˆูŠุฉ ู†ุฐูƒุฑ ู…ุด section
213
00:21:53,250 --> 00:21:58,970
ุซู„ุงุซุฉ ุฃุฑุจุนุฉ section ุซู„ุงุซุฉ ุซู„ุงุซุฉ ู„ูˆ ุฃุฎุฐุช ู…ุฌู…ูˆุนุฉ ู…ู†
214
00:21:58,970 --> 00:22:03,770
ุงู„ vectors ูˆ ุฃุฎุฐุช ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ vectors ุงู„ุซุงู†ูŠุฉ ูˆ
215
00:22:03,770 --> 00:22:08,330
ุฃุซุจุช ุฃู† ูƒู„ vector ููŠ ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ุฃูˆู„ู‰ ู‡ูˆ linear
216
00:22:08,330 --> 00:22:13,250
combination ู…ู† ุงู„ุซุงู†ูŠุฉ ูˆ ูƒุงู†ุช ุงู„ู…ุฌู…ูˆุนุฉ ุฃูƒุจุฑ ู…ู†
217
00:22:13,250 --> 00:22:19,090
ุงู„ุซุงู†ูŠุฉ ุจุฌู‡ุฏ linearly dependent ู‚ู„ู†ุง ุฅุฐุง ูƒุงู† ุงู„ V1
218
00:22:19,090 --> 00:22:26,330
ูˆ V2 ูˆ ู„ุบุงูŠุฉ VN ู‡ุฏูˆู„ ู…ุงู„ู‡ู… ูˆ ุนู†ุฏูŠ ู…ุฌู…ูˆุนุฉ ุซุงู†ูŠุฉ U1
219
00:22:26,330 --> 00:22:34,770
ูˆ U2 ูˆ ู„ุบุงูŠุฉ UK ูˆ ู„ุฌูŠุช ุฅู† ุงู„ N ุฃูƒุจุฑ ู…ู† K ุฅู† ุญุฏุซ
220
00:22:34,770 --> 00:22:39,370
ุฐู„ูƒ ุซู… ูƒู„ ุนู†ุงุตุฑ ู…ู† V1 ู„ุบุงูŠุฉ VN ู‡ูˆ linear
221
00:22:39,370 --> 00:22:44,130
combination ู…ู† ุงู„ U1 ูˆ U2 ูˆ ู„ุบุงูŠุฉ UK ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡
222
00:22:44,130 --> 00:22:47,390
ุงู„ุญุงู„ุฉ ุจู‚ูˆู„ ุฃู† ุงู„ V ู‡ุงุช ู‡ุฏูˆู„ ูƒู„ู‡ู… are linearly
223
00:22:47,390 --> 00:22:52,750
dependent ู…ุด ู‡ูŠูƒ ุฃุฎุฐู†ุง ู†ุธุฑูŠุฉ ููŠ section ุซู„ุงุซุฉ
224
00:22:52,750 --> 00:22:58,270
ุซู„ุงุซุฉ ุทูŠุจ ูŠุจู‚ู‰ ุฃู†ุง ุงู„ุขู† ุจุชุทุจู‚ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุชุทู„ุน ู„ูŠ
225
00:22:58,270 --> 00:23:05,330
ูŠุง ุจู†ุงุช ู‡ุฏูˆู„ ู…ุงู„ู‡ู… linearly independent ูŠุจู‚ู‰ ู‡ุฏูˆู„
226
00:23:05,330 --> 00:23:14,700
ู„ูˆ ุฃุฎุฐุช ุนุฏุฏ ู…ู†ู‡ู… ุฃูƒุซุฑ ุจูˆุงุญุฏ Linearly ุจุญูŠุซ ุฃู†ุง ุฌุงูŠู„
227
00:23:14,700 --> 00:23:19,620
ุฅูŠุด ู‡ุฏูˆู„ Linearly ุฃู† ุฏูŠ ู…ู†ู‡ุง ุฐุงุช Spans V Spans V
228
00:23:19,620 --> 00:23:24,040
ูŠุนู†ูŠ ุฅูŠุดุŸ ูŠุนู†ูŠ ูƒู„ element ููŠ V ู‡ูˆ linear
229
00:23:24,040 --> 00:23:37,500
combination ู…ู† ู‡ุฏูˆู„ ูŠุจู‚ู‰ that is every element of
230
00:23:37,500 --> 00:23:45,780
V is a linear combination
231
00:23:45,780 --> 00:23:49,960
of
232
00:23:49,960 --> 00:23:58,360
V1 ูˆ V2 ูˆ ู„ุบุงูŠุฉ VN
233
00:24:01,170 --> 00:24:06,110
ูŠุจู‚ู‰ ู‡ู†ุง ุฃุฎุฐ ูƒู„ element ู…ู† V ู‡ูˆ linear combination
234
00:24:06,110 --> 00:24:10,670
ูƒู„ element ู…ู† V ู‡ูˆ linear combination ูƒู„ element
235
00:24:10,670 --> 00:24:15,690
ู…ู† V ู‡ูˆ linear combination ูƒู„ element ู…ู† V ู‡ูˆ
236
00:24:15,690 --> 00:24:17,490
linear combination ูƒู„ element ู…ู† V ู‡ูˆ linear
237
00:24:17,490 --> 00:24:20,270
combination ูƒู„ element ู…ู† V ู‡ูˆ linear combination
238
00:24:20,270 --> 00:24:25,370
ูƒู„ element ู…ู† V ู‡ูˆ linear
239
00:24:25,370 --> 00:24:25,390
combination ูƒู„ element ู…ู† V ู‡ูˆ linear combination
240
00:24:25,390 --> 00:24:25,910
ูƒู„ element ู…ู† V ู‡ูˆ linear combination
241
00:24:28,730 --> 00:24:47,190
ู†ุธุฑูŠุฉ ุณุงุจู‚ุฉ Any set with more than N elements is
242
00:24:47,850 --> 00:24:53,930
Linearly dependent ุตุญูŠุญ ูˆู„ุง ู„ุฃุŸ ูŠุจู‚ู‰ ุฃูŠ ู…ุฌู…ูˆุนุฉ ุฃุฎุฑู‰
243
00:24:53,930 --> 00:24:58,750
ู…ู† ู‡ุฐู‡ ุงู„ vectors ุฃูƒุซุฑ ู…ู† N elements ุจุชูƒูˆู† ู…ุงู„ู‡ุง
244
00:24:58,750 --> 00:25:02,430
Linearly dependent ู‡ุฐุง ุงู„ุชุนุฑูŠู ู…ู† ุฃูŠู†ุŸ ุชุนุฑูŠู ุงู„
245
00:25:02,430 --> 00:25:05,130
dimension ุงู„ุฐูŠ ุฃุฎุฐู†ุงู‡ ุงู„ู…ุฑุฉ ุงู„ุชูŠ ููŠ ุงู„ุฃูˆู„ ุชุนุฑูŠู
246
00:25:05,130 --> 00:25:18,390
ูŠุจู‚ู‰ Thus ูˆู‡ูƒุฐุง The dimension of V is N ูŠุนู†ูŠ ุฃู†ุง
247
00:25:18,390 --> 00:25:34,430
ุทุจู‚ุช ุงู„ุชุนุฑูŠู ุชุทุจูŠู‚ู‹ุง ู…ุจุงุดุฑู‹ุง ูƒู…ุงู†
248
00:25:34,430 --> 00:25:39,850
ู†ุธุฑูŠุฉ ุซุงู„ุซุฉ without proof ูŠุจู‚ู‰ ู‡ุฐู‡ ูƒู…ุงู† ู†ุธุฑูŠุฉ
249
00:25:39,850 --> 00:25:40,390
theorem
250
00:25:45,440 --> 00:25:59,460
if ุงู„ V has dimension N then
251
00:25:59,460 --> 00:26:11,420
every set of
ูุงุชุญ
252
00:26:11,420 --> 00:26:13,860
ุงู„ุจุงุจ
253
00:26:18,690 --> 00:26:26,650
ูŠุจู‚ู‰ FLV ู„ุฏูŠู‡ ู…ุฑุญู„ุฉ ููŠ ูƒู„ ุฌุฒุก ู…ู† ุงู„ุฃุดูŠุงุก
254
00:26:26,650 --> 00:26:33,390
ุงู„ู„ูŠู†ูŠุงุฑูŠุฉ ุงู„ุงู†ุฏุจู†ุฏู†ุชูŠุฉ ุงู„ู„ูŠู…ูŠู†ุชุณ ุงู„ู„ูŠู…ูŠู†ุชุณ
255
00:26:33,390 --> 00:26:38,530
ุงู„ู„ูŠู…ูŠู†ุชุณ ุงู„ู„ูŠู…ูŠู†ุชุณ ุงู„ู„ูŠู…ูŠู†ุชุณ ุงู„ู„ูŠู…ูŠู†ุชุณ ุงู„ู„ูŠู…ูŠู†ุชุณ
256
00:26:38,530 --> 00:26:45,110
ุงู„ู„ูŠู…ูŠู†ุชุณ ุงู„ู„ูŠู…ูŠู†ุชุณ ุงู„ู„ูŠู…ูŠู†ุชุณ ุงู„ู„ูŠู…ูŠู†ุชุณ
257
00:26:45,110 --> 00:26:46,910
ุงู„ู„ูŠู…ูŠู†ุชุณ ุงู„ู„ูŠู…ูŠู†ุชุณ ุงู„ู„ูŠู…ูŠู†ุชุณ ุงู„ู„ูŠู…ูŠู†ุชุณ ุงู„ู„ูŠู…ูŠู†ุชุณ
258
00:26:46,910 --> 00:26:47,050
ุงู„ู„ูŠู…ูŠู†ุชุณ ุงู„ู„ูŠู…ูŠู†ุชุณ ุงู„ู„ูŠู…ูŠู†ุชุณ ุงู„ู„ูŠู…ูŠู†ุชุณ ุงู„ู„ูŠู…ูŠู†ุชุณ
259
00:26:47,050 --> 00:26:55,570
ุงู„ู„ูŠู…ูŠู†ุชุณ ุงู„ู„ูŠู…ูŠู†ุชุณ exactly has exactly n elements
260
00:26:55,570 --> 00:26:58,750
ููŠู‡ุง
261
00:26:58,750 --> 00:27:05,370
n elements which is
262
00:27:05,370 --> 00:27:13,510
also a basis for
263
00:27:13,510 --> 00:27:13,810
v
264
00:28:58,730 --> 00:29:02,770
ู†ุฑุฌุน ู„ู†ุธุฑูŠุฉ ุงู„ุฃุฎูŠุฑุฉ ูˆ ู†ุฑู‰ ู…ุง ู‡ูˆ ุงู„ู…ู‚ุตูˆุฏ ู…ู†ู‡ุง
265
00:29:02,770 --> 00:29:07,130
ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ุงู„ letter V has dimension N ูŠุจู‚ู‰ ุฃู†ุง
266
00:29:07,130 --> 00:29:11,230
ููŠู‡ ุนู†ุฏูŠ vector space ูˆ ุงู„ dimension ู„ู‡ ูŠุณุงูˆูŠ N
267
00:29:11,230 --> 00:29:17,540
ูŠุจู‚ู‰ ู…ุง ูŠุฌุฏุด ุนุฏุฏ ุงู„ุนู†ุงุตุฑ ููŠ ุงู„ business ูŠุง ุจู†ุงุช ุทูŠุจ
268
00:29:17,540 --> 00:29:21,700
ุชู…ุงู… then every set of linearly independent
269
00:29:21,700 --> 00:29:26,300
elements that span V has exactly N elements ูŠุจู‚ู‰
270
00:29:26,300 --> 00:29:30,560
ุฃู†ุง ุจุฏุนูŠ ุฃู† ุงู„ bases ุงู„ุฐูŠ ูŠุณุงูˆูŠ N ู„ูˆ ุฑูˆุญุช ู„ุฌูŠุช ุณุช
271
00:29:30,560 --> 00:29:35,300
ุนุฏุฏ ุนู†ุงุตุฑู‡ุง ูŠุณุงูˆูŠ N ูˆูƒุงู†ูˆุง linearly independent
272
00:29:35,300 --> 00:29:41,200
ูˆูƒู„ ูˆุงุญุฏ ูˆู„ุฏ ู„ูŠู‡ ุนู†ุงุตุฑ V ูŠุจู‚ู‰ ู‡ุฐุง ูŠู†ูุน ูƒู…ุงู† bases
273
00:29:41,200 --> 00:29:46,420
ูˆู„ุง ู„ุงุŸ ู…ุนู†ุงู‡ ู„ู„ vector space ุงู„ุฐูŠ ุนู†ุฏูŠ ููŠู‡ ูƒู…
274
00:29:46,420 --> 00:29:51,700
bases ูƒุซูŠุฑุฉ ูŠุนู†ูŠ ู…ุง ุนู†ุฏูŠุด ู…ุด bases ูˆุงุญุฏ ุนู†ุฏูŠ ูƒุซูŠุฑุฉ ู…ู†
275
00:29:51,700 --> 00:29:55,400
ุงู„ bases ู‡ุฐู‡ ุชู…ุงู… ูŠุนู†ูŠ ุงู„ vector space ุงู„ุฐูŠ ูˆุงุญุฏ
276
00:29:55,400 --> 00:29:59,500
ู‚ุฏ ูŠูƒูˆู† ู„ู‡ two bases ุซู„ุงุซุฉ bases ุฃุฑุจุนุฉ bases ุฎู…ุณุฉ
277
00:29:59,500 --> 00:30:04,360
bases ุงู„ุขู† ูƒู„ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ elements ูŠุชุญู‚ู‚ ููŠู‡ุง
278
00:30:04,360 --> 00:30:08,590
ุดุฑุทุงู† ุงู„ุดุฑุท ุงู„ุฃูˆู„ ุฃู†ู‡ู… linearly independent
279
00:30:08,590 --> 00:30:13,490
elements ุงู„ุดุฑุท ุงู„ุซุงู†ูŠ ุฃูŠ ุนู†ุตุฑ ููŠ ุงู„ vector space
280
00:30:13,490 --> 00:30:17,450
ุฏูŠ ุจู†ู‚ุฏุฑ ู†ูˆู„ู‘ุฏู‡ ูˆุงุณุทุฉ ู‡ุฐู‡ ุงู„ุนู†ุงุตุฑ ุจูŠูƒูˆู†ูˆุง ู‡ุฏูˆู„
281
00:30:17,450 --> 00:30:22,030
bases ู„ู…ู†ุŸ ู„ู„ vector space ูˆุนุชู„ุงุฌ ุงู„ vector space
282
00:30:22,030 --> 00:30:27,330
ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ bases ุทูŠุจ ุฎู„ูŠู†ูŠ ุฃุณุฃู„ ูƒู…ุงู† ุณุคุงู„ ุงู„
283
00:30:27,330 --> 00:30:31,150
bases ุงู„ู…ุฎุชู„ูุฉ ู„ูˆ ุฃุฎุฐู†ุง two bases ู„ู„ vector space
284
00:30:31,150 --> 00:30:35,370
ู‡ู„ ุนุฏุฏ ุงู„ุนู†ุงุตุฑ ู‡ู†ุง ูŠุฎุชู„ู ุนู† ุนุฏุฏ ุงู„ุนู†ุงุตุฑ ู‡ู†ุงุŸ
285
00:30:35,590 --> 00:30:42,520
ุงู„ุนุฑุจูŠุฉ ุจุณ ุงู„ุฐูŠ ูŠุฎุชู„ู ู„ุง ูŠุฎุชู„ู ุชู…ุงู…ู‹ุง ู„ูŠุดุŸ ู„ุฃู† ุนุฏุฏ
286
00:30:42,520 --> 00:30:47,200
ุนู†ุงุตุฑ ุจูŠุฒุฒ ู‡ูˆ ุงู„ dimension ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ dimension ูˆ
287
00:30:47,200 --> 00:30:50,300
ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ ูŠุนุทูŠู†ูŠ ู†ูุณ ุงู„ dimension ูŠุจู‚ู‰ ุงู„ุงุซู†ูŠู†
288
00:30:50,300 --> 00:30:54,480
ุจุฏูˆู† ุฃู† ูŠูƒูˆู† ุฃูˆ ุงู„ุซู„ุงุซุฉ ุฃูˆ ุงู„ุฃุฑุจุนุฉ ุฃูˆ ุงู„ุฎู…ุณุฉ ุจูŠุฒุฒ
289
00:30:54,480 --> 00:30:59,120
ูƒู„ู‡ู… ููŠู‡ู… ู†ูุณ ุงู„ุนุฏุฏ ู…ู† ุงู„ุนู†ุงุตุฑ ูˆู„ู… ุฃู‚ูˆู„ ู†ูุณ
290
00:30:59,120 --> 00:31:03,700
ุงู„ุนู†ุงุตุฑ ู†ูุณ ุงู„ุนุฏุฏ ููŠ ุฎู…ุณุฉ ูŠุจู‚ู‰ ู‡ู†ุง ููŠ ุฎู…ุณุฉ ููŠ ุซุง
291
00:31:03,700 --> 00:31:07,200
ููŠ ุณุชุฉ ูŠุจู‚ู‰ ู‡ู†ุง ููŠ ุณุชุฉ ูˆู‡ูƒุฐุง
292
00:31:11,730 --> 00:31:17,030
ู‡ุฐุง ุงู„ู€ V ู„ูˆ ูƒุงู† ุงู„ dimension ู„ู‡ ูŠุณุงูˆูŠ N ูŠุจู‚ู‰ ุฃูŠ
293
00:31:17,030 --> 00:31:21,370
ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ู€ linearly independent elements ู…ู† ุงู„ู€
294
00:31:21,370 --> 00:31:26,510
V ุงู„ุชูŠ ุจุชูˆู„ุฏ ู„ูŠ ุฃูˆ ุจุชุฌูŠุจ ู„ูŠ ุนู†ุงุตุฑ V has exactly N
295
00:31:26,510 --> 00:31:30,870
elements ููŠู‡ุง ุจุงู„ุถุจุท N elements which also is a
296
00:31:30,870 --> 00:31:35,180
basis ูˆู‡ุฐุง ูŠูƒูˆู† ู„ูŠ ุจุงูŠุฒุฒ ู„ู„ vector space V ู…ุนู†ุงู‡
297
00:31:35,180 --> 00:31:40,360
ุฃู† ุงู„ vector space V ู„ู‡ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ bases ูˆู„ูŠุณ
298
00:31:40,360 --> 00:31:48,460
ุจุงูŠุฒุฒ ูˆุงุญุฏ ูู‚ุท ู„ุง ุบูŠุฑ ูƒู…ุง ุณู†ุฑู‰ ู…ู† ุฎู„ุงู„ ุงู„ุฃู…ุซู„ุฉ ุงู„ุขู†
299
00:31:48,460 --> 00:31:52,560
ุฃุฎุฐุช ุงู„ vector space RN ุงู„ุฐูŠ ู‡ูˆ the set of all n
300
00:31:52,560 --> 00:31:57,040
tuples ู…ู† X1 ู„ XN ูˆูƒู„ ุงู„ X ู‡ุฐูˆู„ are real number
301
00:31:57,040 --> 00:32:02,900
ุฑูˆุญุช ู…ู† ู‡ุฐูˆู„ ุฃุฎุฐุช ู…ุฌู…ูˆุนุฉ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ ุนุฏุฏู‡ุง ูƒู…ุŸ
302
00:32:02,900 --> 00:32:08,880
ุนุฏุฏู‡ุง N E1 ุงู„ุญุฏ ุงู„ุฃูˆู„ูŠ ุจูˆุงุญุฏ ูˆุงู„ุจุงู‚ูŠ ุจุตูุฑ E2 ุงู„ุญุฏ
303
00:32:08,880 --> 00:32:12,040
ุงู„ุซุงู†ูŠ ุจูˆุงุญุฏ ูˆุงู„ุจุงู‚ูŠ ุงู„ุฐูŠ ุฌุงุจู„ู‡ ูˆุงู„ุฐูŠ ุจุนุฏู‡ ุจุตูุฑ
304
00:32:12,040 --> 00:32:16,100
E3 ุงู„ุญุฏ ุงู„ุซุงู†ูŠ ุจุตูุฑ ุงู„ุฐูŠ ุฌุงุจู„ู‡ ูˆุงู„ุฐูŠ ุจุนุฏู‡ ุจุตูุฑ
305
00:32:16,100 --> 00:32:20,860
ู„ุบุงูŠุฉ EN ูƒู„ู‡ ุจุตูุฑ ู…ุง ุนุฏุง ุงู„ุญุฏ ุงู„ุฃุฎูŠุฑ ุจุฌุฏุงุด ุจูˆุงุญุฏ ุตูุฉ
306
00:32:22,260 --> 00:32:28,300
ุจูŠู‚ูˆู„ ูŠุจูŠู† ู„ูŠ ุฃู† ู‡ุฏูˆู„ ุจูŠูƒูˆู†ูˆุง ู„ูŠ basis ู„ู„ RN ุนู„ุดุงู†
307
00:32:28,300 --> 00:32:32,870
ูŠูƒูˆู†ูˆุง ู„ูŠ basis ุจุฏูŠ ุฃุทุจู‚ ุดุฑุทูŠู† ุงู„ุดุฑุท ู„ูˆ ุชุซุจุช ุฃู†ู‡ู…
308
00:32:32,870 --> 00:32:37,030
linearly independent ุฅุญู†ุง ุจู†ุซุจุช ุฃู†ู‡ู… linearly
309
00:32:37,030 --> 00:32:40,870
independent ุจุฃูƒุซุฑ ู…ู† ุทุฑูŠู‚ุฉ ูƒูˆู†ุณุชุงู†ุฏ ููŠ ุงู„ุฃูˆู„
310
00:32:40,870 --> 00:32:43,370
ูƒูˆู†ุณุชุงู†ุฏ ููŠ ุงู„ุซุงู†ูŠ ูƒูˆู†ุณุชุงู†ุฏ ููŠ ุงู„ุซุงู†ูŠ ูˆู†ุณุงูˆูŠ
311
00:32:43,370 --> 00:32:48,110
ุจุงู„ุตูุฑ ูˆู†ุซุจุช ุฃู† ุงู„ูƒูˆู†ุณุชุงู†ุฏ ู‡ุฐูˆู„ ูƒู„ู‡ู… ุจุฃุณูุงุฑ ู…ุธุจูˆุท
312
00:32:48,110 --> 00:32:52,510
ู‡ูŠูƒ ุทุฑูŠู‚ุฉ ุซุงู†ูŠุฉ ุฃู†ุง ุจุฏูŠ ุฃุฌูŠุจ ุงู„ determinant ู„ู‡ู… ู„ูˆ
313
00:32:52,510 --> 00:32:55,810
ุทู„ุนุช ุงู„ determinant ุฃู†ู‡ู… ู„ุง ูŠุณุงูˆูŠ ุตูุฑ ูŠุจู‚ู‰ ุฏูˆู„
314
00:32:55,810 --> 00:33:00,770
ู…ุงู„ู‡ู… Linearly Independent ู…ุด ู‡ูŠูƒ ุฃุฎุฐู†ุง ู†ุธุฑูŠุฉ ุจูŠุฏ
315
00:33:00,770 --> 00:33:06,190
ุงู„ู…ู‚ุงู„ ู…ู…ุชุงุฒ ุฌุฏู‹ุง ูŠุจู‚ู‰ ุฃู†ุง ุจุฏูŠ ุฃุฌู„ูŠ solution ุจุฏูŠ
316
00:33:06,190 --> 00:33:11,270
ุฃุฌู„ูŠ ุงู„ุฎุงุตูŠุฉ ุงู„ุฃูˆู„ู‰ ุจุฏูŠ ุฃุซุจุช ู„ู‡ ุฃู† ู‡ุฏูˆู„ linearly
317
00:33:11,270 --> 00:33:18,240
independent ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฎุฐ ู„ู‡ determinant ู„ู…ูŠู†ุŸ ู„ู„ู€ E1
318
00:33:18,240 --> 00:33:25,080
ูˆุงู„ู€ E2 ูˆ ู„ุบุงูŠุฉ ุงู„ู€ EN ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ
319
00:33:25,080 --> 00:33:31,660
ู‡ุฐุง ุงู„ู…ุญุฏุฏ E1 ุจุฏูŠ ุฃูƒุชุจู‡ ุนู„ู‰ ุดูƒู„ ุนู…ูˆุฏ 1ุŒ 0 ูˆุธู„ ู…ุงุดูŠ
320
00:33:31,660 --> 00:33:40,090
ู„ุบุงูŠุฉ ุงู„ู€ 0 E2ุŒ 0ุŒ 1ุŒ 0 ูˆุธู„ ู…ุงุดูŠ ู„ุบุงูŠุฉ ุงู„ู€ 0 ูˆู‡ูƒุฐุง
321
00:33:40,090 --> 00:33:45,090
ุงู„ุฐูŠ ุจุนุฏู‡ zero zero ูˆุงุญุฏ ูˆู†ุธู„ ู…ุงุดูŠู† ู„ุบุงูŠุฉ ุงู„ zero
322
00:33:45,090 --> 00:33:50,810
ู†ุธู„ ู…ุงุดูŠู† ู„ุบุงูŠุฉ ุงู„ zero ูˆู‡ู†ุง zero ูˆู‡ู†ุง zero ูˆ
323
00:33:50,810 --> 00:33:56,670
ู†ุธู„ ู…ุงุดูŠู† ู„ุบุงูŠุฉ ูƒุฏู‡ุŸ ู„ุบุงูŠุฉ ุงู„ ูˆุงุญุฏ ุทุจ ู‡ุฐุง ู…ุด ู‡ูˆ
324
00:33:56,670 --> 00:34:02,450
ู…ุญุฏุฏ ู„ู…ุตููˆูุฉ ุงู„ูˆุญุฏุฉ ูˆู„ุง ู„ุงุŸ ูŠุจู‚ู‰ ู‡ุฐุง ู‡ูˆ determinant
325
00:34:02,450 --> 00:34:12,860
ู„ู„ I Nู…ุญุฏุฏ ูŠุญุฏุซ ุถุฑุจู‡ ูˆุงุญุฏ ููŠ ูˆุงุญุฏ ุจูˆุงุญุฏ ูƒู„ู‡ ู…ุงู„ู‡
326
00:34:12,860 --> 00:34:16,020
ู„ุง ูŠุณุงูˆูŠ ุตูุฑ ุงู„ู…ุนู†ุงุชู‡ ู‡ุฏูˆู„ are linearly
327
00:34:16,020 --> 00:34:23,820
independent ูŠุจู‚ู‰ ู‡ู†ุง ุณุง ุงูŠ ูˆุงุญุฏ ูˆ ุงูŠ ุงุชู†ูŠู† ูˆ ู„ุบุงูŠุฉ
328
00:34:23,820 --> 00:34:31,540
ุงู„ EN are linearly independent vectors in RN
329
00:34:36,590 --> 00:34:43,170
ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุงู„ุชูŠ ุนู†ุฏู†ุง ุจุฏูŠ ุฃุซุจุช ุฃู† ู‡ุฏูˆู„ ุจูŠูˆู„ุฏูˆุง ู„ูŠ
330
00:34:43,170 --> 00:34:48,410
ู…ูŠู†ุŸ ุฌู…ูŠุน ุนู†ุงุตุฑ ุงู„ vector space V ุฃูˆ ุฃูŠ element ููŠ
331
00:34:48,410 --> 00:34:52,360
ุงู„ vector space V ู‡ูˆ linear combination ู…ู† ู…ูŠู†ุŸ ู…ู†
332
00:34:52,360 --> 00:35:00,260
ุงู„ vectors ู‡ุฐูˆู„ ูƒูˆูŠุณ ูุจุฌูŠ ุจู‚ูˆู„ ู„ู‡ let x1 ูˆ x2 ูˆ
333
00:35:00,260 --> 00:35:05,400
ู„ุบุงูŠุฉ xn ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ RN then
334
00:35:07,840 --> 00:35:12,720
ุจุฏูŠ ุฃูƒุชุจ ุงู„ element ู‡ุฐุง ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ X1 ูˆ X2 ูˆ
335
00:35:12,720 --> 00:35:20,380
ู„ุบุงูŠุฉ XN ุจุฏู‡ ูŠุณุงูˆูŠ ุขู‡ ุขู‡ ุจู‚ุฏุฑ ุฃู‚ูˆู„ X1 ูˆุงู„ุจุงู‚ูŠ ูƒู„ู‡
336
00:35:20,380 --> 00:35:29,200
ุจุฃุณูุงุฑ ุฒุงุฆุฏ Zero X2 Zero ูˆุงู„ุจุงู‚ูŠ ูƒู„ู‡ ุจุฃุณูุงุฑ ุฒุงุฆุฏ
337
00:35:29,200 --> 00:35:35,100
ูˆู†ุธู„ ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ ู…ุง ู†ูˆุตู„ ู„ Zero Zero Zero ูˆ
338
00:35:35,100 --> 00:35:42,080
ู„ุบุงูŠุฉ XN ูŠู†ูุน ู‡ูŠูƒ ูˆู„ุง ู„ุงุŸ ู„ูˆ ุฌูŠุช ุฌุงู…ุนุฉ ุงู„ู…ุฑูƒุจุฉ ู„ูˆ ู„ุง
339
00:35:42,080 --> 00:35:47,190
X ูˆุงุญุฏ ูˆุงู„ุจุงู‚ูŠ ุงู„ูƒู„ ุจูŠุตูุฑ ูŠุจู‚ู‰ X ูˆุงุญุฏ ุงู„ุฐูŠ ุจุนุฏู‡ 0
340
00:35:47,190 --> 00:35:52,130
ู‡ู†ุง x2 ุงู„ุฐูŠ ุจู‚ู‰ ูŠุจู‚ู‰ ุฃุณูุงุฑูŠ ุจู€x2 ูŠุจู‚ู‰ ูƒุชุงุจุฉ ู‡ุฐุง ุงู„
341
00:35:52,130 --> 00:35:57,450
element ุนู„ู‰ ุดูƒู„ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ elements ุฅุฐุง ุจู‚ุฏุฑ
342
00:35:57,450 --> 00:36:09,050
ุฃู‚ูˆู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณูˆูŠ x1 ููŠ 1 x1 ููŠ 1 0 0 ูˆ ู„ุบุงูŠุฉ 0
343
00:36:10,130 --> 00:36:20,210
X2 ููŠ 0 ูˆ 1 ูˆ 0 ูˆ ู„ุบุงูŠุฉ ุงู„ู€ 0 ุฒุงุฆุฏ ุฒุงุฆุฏ XN ููŠ 0 ูˆ
344
00:36:20,210 --> 00:36:25,870
0 ูˆู†ุธู„ ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ ุงู„ 1 ุฃุฎุฐู†ุง ุนุงู…ู„ ู…ุดุชุฑูƒ ูƒุจูŠุฑุฑ
345
00:36:25,870 --> 00:36:33,120
ุชู…ุงู…ุŸ ุทุจ ุงู„ุฌุซุฉ ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ E1 ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…
346
00:36:33,120 --> 00:36:43,180
ุจุฏู‡ ูŠุนุทูŠู†ูŠ X1E1 X2E2 ูˆ ู„ุบุงูŠุฉ XNEN ุงูŠู‡ ูŠุนู†ูŠ ู…ุนู†ู‰
347
00:36:43,180 --> 00:36:48,120
ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู† ุฃูŠ element ู…ูˆุฌูˆุฏ ููŠ ุงู„ุงุฑ ุงู† ู‡ูˆ
348
00:36:48,120 --> 00:36:55,220
linear combination ู…ู† ู…ู† ู…ู† ู‡ุฐูˆู„ ูŠุจู‚ู‰ ู‡ู†ุง every
349
00:36:55,220 --> 00:36:57,640
element
350
00:37:00,720 --> 00:37:08,420
ู†ุฑู† is a linear combination
351
00:37:08,420 --> 00:37:16,240
of
352
00:37:16,240 --> 00:37:24,660
E1 ูˆ E2 ูˆ ู„ุบุงูŠุฉ En ู…ุนู†ุงุชู‡ ุงู„ vectors ู‡ุฏูˆู„ ู…ุง ู„ู‡ู…
353
00:37:24,660 --> 00:37:35,780
span RN ูŠุนู†ูŠ ุจูˆู„ุฏูˆุง ู„ูŠ ุงู„ RN ูŠุจู‚ู‰ ู‡ู†ุง that is ุฃูŠ ุฃู†
354
00:37:35,780 --> 00:37:46,660
ุงู„ู€ E1 ูˆุงู„ู€ E2 ูˆุงู„ู€ EN ุฃุณุจุงู† ู…ูŠู†ุŸ ุฃุณุจุงู† RN ูŠุจู‚ู‰
355
00:37:46,660 --> 00:37:51,260
ู‡ุฐูˆู„ ุจูŠูˆู„ุฏูˆุง ู„ูŠ RN ุฅูŠุด ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…ุŸ ุฅู† ู‡ุฐูˆู„
356
00:37:51,260 --> 00:37:54,880
ุจูŠุดูƒู„ูˆุง ู„ูŠ ู…ูŠู†ุŸ Bases ู„ู„ู€ RN
357
00:37:58,310 --> 00:38:10,030
ุงู„ุฐูŠ ู‡ูˆ ุงู„ E1 ูˆ ุงู„ E2 ูˆ ุงู„ AN is a basis for RN
358
00:38:10,030 --> 00:38:16,180
ุชุนุฑููˆุง ุฅูŠุด ุจูŠุณู…ูˆู‡ุง ุฏู‡ ูŠุง ุจู†ุงุชุŸ ุจูŠุณู…ูˆู‡ุง standard
359
00:38:16,180 --> 00:38:22,100
basis ูŠุนู†ูŠ ุงู„ basis ุงู„ู…ุชุนุฑู ุนู„ูŠู‡ ุนู†ุฏ ูƒู„ ุงู„ุนู„ู…ุงุก
360
00:38:22,100 --> 00:38:25,980
ูˆู„ุง ุนู†ุฏ ูƒู„ ุงู„ุฏูˆู„ ูˆู„ุง ุนู†ุฏ ูƒู„ ุงู„ู†ุงุณ ูŠุจู‚ู‰ ู‡ุฐุง called
361
00:38:25,980 --> 00:38:35,600
the standard basis of RM ูŠุจู‚ู‰ ู‡ุฐุง basis called the
362
00:38:35,600 --> 00:38:40,740
standard basis
363
00:38:40,740 --> 00:38:42,760
for
364
00:38:45,230 --> 00:38:50,030
RN ุฅูŠุด standard basis for ุงู†ุŸ ูŠุนู†ูŠ ููŠ basis ุบูŠุฑู‡ุŸ
365
00:38:50,030 --> 00:39:05,090
ุขู‡ ููŠ ุบูŠุฑู‡ ุจุณ ู…ุด ุนู„ู‰ ู‡ุงู„ุดูƒู„ ู‡ุฐุง ุทุจ
366
00:39:05,090 --> 00:39:08,890
ู„ูˆ ู„ุฌูŠุช basis ุขุฎุฑ ูŠุง ุจู†ุงุช ูƒุฏู‡ุด ุจุฏูŠูƒูˆู† ุนุฏุฏ ุนู†ุงุตุฑู‡ุŸ
367
00:39:10,150 --> 00:39:14,110
ู† ู…ุซู„ ู‡ุฐุง ุจุงู„ุถุจุท ุชู…ุงู…ู‹ุง ู…ุงุฏุงู… ู†ุณุชุฎุฏู… ุงู„ basis ุนุฏุฏ
368
00:39:14,110 --> 00:39:21,630
ุนู†ุงุตุฑู‡ ู† ูŠุจู‚ู‰ ุฃูŠ basis ุขุฎุฑ ุนุฏุฏ ุนู†ุงุตุฑู‡ ูŠุณุงูˆูŠ N ุทูŠุจ
369
00:39:21,630 --> 00:39:26,150
ุฎู„ูŠู†ูŠ ุฃุฎุฐ special cases ู…ู† ู‡ุฐุง ุงู„ู…ุซุงู„ ูŠุนู†ูŠ ู†ุตุบุฑ
370
00:39:26,150 --> 00:39:31,430
ุดูˆูŠุฉ ูˆู†ุดุชุบู„ ุนู…ู„ ุดูˆูŠุฉ ูŠุจู‚ู‰ ุจุฏูŠ ุฃู‚ูˆู„ ู„ู‡ special
371
00:39:31,430 --> 00:39:38,450
cases of
372
00:39:44,360 --> 00:39:52,180
ุฃูˆู„ ูˆุงุญุฏุฉ ู„ูˆ ุฃุฎุฐุช ุงูŠ ูˆุงุญุฏ ุจุฏู‡ ูŠุณุงูˆูŠ ูˆุงุญุฏ ูˆุตูุฑ ูˆ ุงูŠ
373
00:39:52,180 --> 00:40:01,760
ุงุชู†ูŠู† ุจุฏู‡ ูŠุณุงูˆูŠ ุตูุฑ ูˆูˆุงุญุฏ ู‡ุฏูˆู„ are the standard
374
00:40:01,760 --> 00:40:08,760
basis of R2
375
00:40:10,190 --> 00:40:19,970
ู…ุธุจูˆุท ู‡ูƒุŸ ุทูŠุจ ู„ูŠุดุŸ ู„ุฃู† ุฃูŠ element x1 ูˆ x2 ุจู‚ุฏุฑ
376
00:40:19,970 --> 00:40:23,590
ุฃูƒุชุจู‡ ุนู„ู‰ ุตูŠุบุฉ linear combination ู…ู† ุงุชู†ูŠู† ู‡ุฏูˆู„
377
00:40:23,590 --> 00:40:32,030
ูŠุนู†ูŠ x1 x2 ุจู‚ุฏุฑ ุฃูƒุชุจ x1 ููŠ 1 ูˆ 0 ุฒุงุฆุฏ x2 ููŠ 0 ูˆ 1
378
00:40:32,030 --> 00:40:35,690
ุตุญูŠุญ ูˆู„ุง ู„ุฃุŸ ุฅุฐุง ูƒุชุจุช linear combination ู…ู† ุงุชู†ูŠู†
379
00:40:36,000 --> 00:40:40,580
ู‡ุฏูˆู„ linearly dependent ูˆู„ุง linearly independentุŸ
380
00:40:40,580 --> 00:40:45,540
401
00:43:10,060 --> 00:43:17,880
ูˆุงุญุฏ ุฎุฏ ู…ุฌู…ูˆุนุฉ ุชุงู†ูŠุฉ ุงู„ element ูˆุงุญุฏ ูˆ ุชู„ุงุชุฉ ูˆ ุงู„
402
00:43:17,880 --> 00:43:26,410
element ุชุงู†ูŠ ุณุงู„ุจ ุงุชู†ูŠู† ูˆ ุณุชุฉ ุฎุฏ ู…ุฌู…ูˆุนุฉ ุชุงู„ุชุฉ ุงุชู†ูŠู†
403
00:43:26,410 --> 00:43:35,330
ูˆ ูˆุงุญุฏ ูˆ ุชู„ุงุชุฉ ูˆ ุฒูŠุฑูˆ ุฎุฏ ู…ุฌู…ูˆุนุฉ ุฑุงุจุนุฉ ูƒู…ุงู† ุงู„ู„ูŠ ู‡ูˆ
404
00:43:35,330 --> 00:43:43,770
ุงุชู†ูŠู† ูˆ ุณุงู„ุจ ูˆุงุญุฏ ูˆ ุณุงู„ุจ ุงุชู†ูŠู† ูˆ ุงุชู†ูŠู† ูƒู„ู‡ู… ุฏูˆู„
405
00:43:43,770 --> 00:43:45,550
ู…ุนุงู‡ู… because
406
00:43:56,630 --> 00:44:05,650
ู„ุฃู† ุนู„ู‰ ุณุจูŠู„ ุงู„ู…ุซุงู„ V1
407
00:44:05,650 --> 00:44:12,010
== 1.3 V2
408
00:44:12,010 --> 00:44:24,410
== 1.1 V2 == 1.3 V2 == 1.3 V2
409
00:44:24,410 --> 00:44:30,290
== 1.3 each one is
410
00:44:30,290 --> 00:44:37,750
not a multiple of
411
00:44:37,750 --> 00:44:55,170
the other ู…ูˆุงุด ู…ุถุงุนูุงุช ุงู„ุขุฎุฑ and the dimension of
412
00:44:56,100 --> 00:44:59,020
ุงุฑุชูˆ ุงุฒ ุชูˆ
413
00:45:30,070 --> 00:45:35,850
ุฎู„ู‘ูŠู†ูŠ ุฃุฎุจุฑูƒ ุฃู† ุฃู†ุง ุงุญู†ุง ุจู†ุงุฎุฏ ุจุนุถ ุงู„ุญุงู„ุงุช ุงู„ุฎุงุตุฉ
414
00:45:35,850 --> 00:45:41,790
ู…ู† ุงู„ุงุฑ ุงู† ุทุจุนุง ู‚ู„ู†ุง ุจู†ุงุฎุฏ ุงู„ุญุงู„ุฉ ุงู„ุฎุงุตุฉ ุงู„ุฃูˆู„ู‰ ู„ูˆ
415
00:45:41,790 --> 00:45:47,650
ุฃุฎุฏ ุงู„ elements E1 ู‡ูˆ ูˆุงุญุฏ ูˆ E2 ู‡ูˆ ุฒูŠุฑูˆ ูˆ ูˆุงุญุฏ
416
00:45:47,650 --> 00:45:52,130
ูŠุจู‚ู‰ ุงุชู†ูŠู† ู‡ุฏูˆู„ are linearly independent ู„ุฃู† ูˆู„ุง
417
00:45:52,130 --> 00:45:57,530
ูˆุงุญุฏ ููŠู‡ู… ู‡ูˆ ู…ุถุงุนูุงุช ุงู„ุขุฎุฑ ูŠุจู‚ู‰ ู„ู‡ุงุฏูˆู„ linearly
418
00:45:57,530 --> 00:46:02,330
independent ู‡ุฏูˆู„ ุจูŠูƒูˆู†ูˆุง ู„ู„ูŠ standard bases ู„ู…ูŠู†
419
00:46:02,330 --> 00:46:06,470
ู„ุงุฑุชูˆ ู„ุฃู† ุงุญู†ุง ุชูˆ ููŠ ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ู‚ุจู„ู‡ ุฃุซุจุชู†ุงู‡ู… ู„ูˆ
420
00:46:06,470 --> 00:46:10,890
ูƒุงู† ูƒู„ ูˆุงุญุฏ ููŠ N ู…ู† ุงู„ู…ุฑุงูƒุจุงุช ุฅุฐุง ุงู„ุญุงู„ุฉ ุฎุงุตุฉ ู„ูˆ
421
00:46:10,890 --> 00:46:15,650
ุฃุฎุฏุช ุฌุฏู‡ุด ุจุณ ู…ุฑุงูƒุจุชูŠู† ูŠุจู‚ู‰ ู‡ุฏูˆู„ vectors ูŠู…ุซู„ูˆุง ู„ู„ูŠ
422
00:46:15,650 --> 00:46:22,090
standard bases ู„ู…ูŠู† ู„ุงุฑุชูˆ ูˆู‡ุฐุง ุจูŠุนุทูŠู†ุง ุฃู† ุงู„
423
00:46:22,090 --> 00:46:27,230
dimension ู„ุงู„ู€ vector space R2 ู‡ูˆ ุฌุฏุงุด ุงุชู†ูŠู† ุจุนุฏ
424
00:46:27,230 --> 00:46:32,310
ุฐู„ูƒ ู„ูˆ ุฃุฎุฏุช ุงู„ู€ E1 ูŠุชูƒูˆู† ู…ู† ุซู„ุงุซ ู…ุฑูƒุจุงุช 100
425
00:46:32,310 --> 00:46:39,670
ูˆุงู„ุชุงู†ูŠ 010 ูˆุงู„ุชุงู„ูŠ 001 ูŠุจู‚ู‰ ู‡ุฐูˆู„ ูƒู…ุงู† linearly
426
00:46:39,670 --> 00:46:45,130
independent ู„ุฃู† ูˆู„ุง ูˆุงุญุฏ ููŠู‡ู… ู…ุถุงุนูุงุช ุงู„ุซุงู†ูŠ ุจุฑุถู‡
427
00:46:45,130 --> 00:46:48,870
ู‡ุฐูˆู„ standard basis ู„ู…ูŠู† ู„ู„ู€ R3 ูˆุงู„ู€ R3 ุงู„
428
00:46:48,870 --> 00:46:56,270
dimension ู„ู‡ ูŠุณุงูˆูŠ 3 ุงุญู†ุง ุจู†ู‚ูˆู„ ู‡ุฏูˆู„ ู„ูŠู‡ standard
429
00:46:56,270 --> 00:47:01,970
basis ูŠุนู†ูŠ ู‡ู„ ู‡ู†ุงูƒ basis ุฃุฎุฑู‰ุŒ ุงู„ุฅุฌุงุจุฉ ู†ุนู…ุŒ ู‡ู†ุงูƒ
430
00:47:01,970 --> 00:47:06,590
ู…ุฌู…ูˆุนุฉ ูƒุซูŠุฑุฉ ู…ู† ุงู„ basisุŒ ู…ุด ุน ุฌุฏ ู‡ุฏูˆู„ุŒ ู„ูˆ ูƒู…ุงู†ุŒ
431
00:47:06,590 --> 00:47:10,230
ุจุณ ุงุญู†ุง ู‡ุฏูˆู„ ุฌูŠุจู†ุงู‡ู… ุนู„ู‰ ุณุจูŠู„ ุงู„ู…ุซุงู„ุŒ ู„ูˆ ุฌุงุช
432
00:47:10,230 --> 00:47:16,690
ู„ู„ู…ุฌู…ูˆุนุฉ ู‡ุฐู‡ุŒ ูŠุจู‚ู‰ ุทู„ุน ููŠ ู‡ุฏูˆู„ ุงุชู†ูŠู†ุŒ ู‡ู„ ูˆุงุญุฏ ููŠู‡
433
00:47:16,690 --> 00:47:22,090
ู…ุถุงุนูุงุช ุงู„ุชุงู†ูŠุŸ ู„ุฃ ู‡ุฏูˆู„ ู‡ู„ ูˆุงุญุฏ ููŠู‡ู… ู…ุถุงุนูุงุช
434
00:47:22,090 --> 00:47:27,110
ุงู„ุชุงู†ูŠุฉ ู„ุฃ ู‡ุฏูˆู„ ููŠ ูˆุงุญุฏ ููŠู‡ู… ู…ุถุงุนูุงุช ุงู„ุชุงู†ูŠุฉ ูŠุนู†ูŠ
435
00:47:27,110 --> 00:47:31,550
ู„ูˆ ุถุฑุจุช ู‡ุฐุง ููŠ ุฑู‚ู… ุจูŠุทู„ุน ู‡ุฐุง ู…ุงุนู†ุฏูŠุด ู‡ู„ ู‡ุฐุง
436
00:47:31,550 --> 00:47:36,250
ู…ุถุงุนูุงุช ู‡ุฐุง ุจุฑุถู‡ ู„ุฃ ูŠุจู‚ู‰ ูˆู„ุง ูˆุงุญุฏ ููŠู‡ู… ู…ุถุงุนูุงุช
437
00:47:36,250 --> 00:47:40,730
ุงู„ุชุงู†ูŠุฉ ุทูŠุจ ู…ู…ุชุงุฒ ูŠุจู‚ู‰ ู‡ุฏูˆู„ linearly independent
438
00:47:40,730 --> 00:47:46,270
ุตุญูŠุญ ุทูŠุจ ุงู„ vector space ู‡ุฐุง ุฌุฏุงุด ุงู„ู„ูŠ ุงู„ bases ู„ู‡
439
00:47:48,660 --> 00:47:54,600
ุฅุฐุง ู‡ุฐุง ุจู†ูุน ูŠูƒูˆู† basis ู„ุฃู† ุงู„ dimension ู„ู‡ ูŠุณูˆู‰ 2
440
00:47:54,600 --> 00:47:58,340
ูˆู‡ูŠ ุฌุจุช ู„ู‡ 2 linearly independent of L ู…ุซู„ุง
441
00:47:58,340 --> 00:48:02,580
ุงู„ู†ุธุฑูŠุฉ ุงู„ุฃุฎูŠุฑุฉ ุจุชู‚ูˆู„ ู„ูŠ ูƒู„ ุงู„ basis ููŠู‡ู… ู†ูุณ
442
00:48:02,580 --> 00:48:08,140
ุงู„ุนุฏุฏ ู…ู† ุงู„ุนู†ุงุตุฑ ุชู…ุงู… ูŠุจู‚ู‰ ุงู„ุนู†ุงุตุฑ ู‡ุฐูˆู„ linearly
443
00:48:08,140 --> 00:48:13,440
independent ูˆุนุฏุฏู‡ู… ูŠุณุงูˆูŠ ุงุชู†ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงู„
444
00:48:13,440 --> 00:48:16,940
dimension ู„ู„ vector space ูŠุจู‚ู‰ ู‡ุฐูˆู„ ูŠู…ุซู„ูˆู† ุงู„ main
445
00:48:16,940 --> 00:48:23,260
bases ูŠุจู‚ู‰ ู‡ุฐูˆู„ E1 ูˆE2 bases ู„ุฃุนู„ู‰ ุงุชู†ูŠู† ู‡ุฐูˆู„ ุจุฑุถู‡
446
00:48:23,260 --> 00:48:26,960
bases ู„ุฃุนู„ู‰ ุงุชู†ูŠู† ู‡ุฐูˆู„ bases ู„ุฃุนู„ู‰ ุงุชู†ูŠู† ู‡ุฐูˆู„
447
00:48:26,960 --> 00:48:30,320
bases ู„ุฃุนู„ู‰ ุงุชู†ูŠู† ู‡ุฐูˆู„ bases ู„ุฃุนู„ู‰ ุงุชู†ูŠู† ุจุชุญุจ
448
00:48:30,320 --> 00:48:36,170
ุชุชุฃูƒุฏ ุฃู† ู…ุงุนู†ุฏูƒูŠุด ู…ุดูƒู„ุฉ ุฎุฏ ุงูƒุณ ูˆุงุญุฏ ูˆ ุงูƒุณ ุงุชู†ูŠู†
449
00:48:36,170 --> 00:48:40,130
ู…ูˆุฌูˆุฏุฉ ููŠ ู‚ุงุฑุฉ ุงุชู†ูŠู† ูˆ ุดูˆู ู‡ุฐุง ุงู„ element ุจุชู‚ุฏุฑ
450
00:48:40,130 --> 00:48:45,050
ุชูƒุชุจู‡ ุจุฏู„ุงู„ุฉ ุงูŠ ูˆุงุญุฏ ููŠู‡ู… ูˆู„ุง ู„ุง ูŠุนู†ูŠ ู‡ู„ ุจู‚ุฏุฑ ุงู‚ูˆู„
451
00:48:45,050 --> 00:48:48,610
constant ููŠ ุงู„ุงูˆู„ ุฒุงุฆุฏ constant ููŠ ุงู„ุชุงู†ูŠ ุจูŠุนุทูŠู†ูŠ
452
00:48:48,610 --> 00:48:52,330
ุงู„ X ูˆุงุญุฏ ูˆ X ุงุชู†ูŠู† ู„ุฃ ูŠุนู†ูŠ ุจุฏูŠ ุงุฌูŠุจ ู‚ูŠู…ุฉ ุงู„
453
00:48:52,330 --> 00:48:55,590
constant C ูˆุงุญุฏ ูˆ C ุงุชู†ูŠู† ุจุฏู„ุงู„ุฉ X ูˆุงุญุฏ ูˆ X ุงุชู†ูŠู†
454
00:48:55,590 --> 00:49:01,040
ุงู† ุฌุฏุฑุช ุงุฌูŠุจ ุฌุจ ู‡ุฏูˆู„ linearcombination ูŠุนู†ูŠ ุฅุฌุจุงุฑูŠ
455
00:49:01,040 --> 00:49:06,180
ุจุฏูƒ ุชุฌูŠุจู‡ู… ู…ุด ุจู†ู‚ุฏุฑ ู„ุฃ ุจู†ู‚ุฏุฑ ูˆ ู†ุต ูƒู…ุงู† ู†ุฌูŠุจู‡ู… ู„ูŠุด
456
00:49:06,180 --> 00:49:10,020
ู„ุฃู† ู‡ุฏูˆู„ ูŠู…ุซู„ูˆู„ูŠ basis ู„ุฃ ู„ุฅู† ุนู„ู‰ ุฃูŠ ุญุงู„ ููŠ
457
00:49:10,020 --> 00:49:14,500
ุงู„ู…ุญุงุถุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุงู† ุดุงุก ุงู„ู„ู‡ ุงู„ูŠูˆู… ุจู†ุฑูˆุญ ุจู†ูƒู…ู„
458
00:49:14,500 --> 00:49:18,140
ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ุงู„ section ุงู† ุดุงุก ุงู„ู„ู‡